|
import numpy as np |
|
import pytest |
|
|
|
from sklearn.datasets import make_regression |
|
from sklearn.kernel_ridge import KernelRidge |
|
from sklearn.linear_model import Ridge |
|
from sklearn.metrics.pairwise import pairwise_kernels |
|
from sklearn.utils._testing import assert_array_almost_equal, ignore_warnings |
|
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS |
|
|
|
X, y = make_regression(n_features=10, random_state=0) |
|
Y = np.array([y, y]).T |
|
|
|
|
|
def test_kernel_ridge(): |
|
pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) |
|
pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) |
|
assert_array_almost_equal(pred, pred2) |
|
|
|
|
|
@pytest.mark.parametrize("sparse_container", [*CSR_CONTAINERS, *CSC_CONTAINERS]) |
|
def test_kernel_ridge_sparse(sparse_container): |
|
X_sparse = sparse_container(X) |
|
pred = ( |
|
Ridge(alpha=1, fit_intercept=False, solver="cholesky") |
|
.fit(X_sparse, y) |
|
.predict(X_sparse) |
|
) |
|
pred2 = KernelRidge(kernel="linear", alpha=1).fit(X_sparse, y).predict(X_sparse) |
|
assert_array_almost_equal(pred, pred2) |
|
|
|
|
|
def test_kernel_ridge_singular_kernel(): |
|
|
|
|
|
pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) |
|
kr = KernelRidge(kernel="linear", alpha=0) |
|
ignore_warnings(kr.fit)(X, y) |
|
pred2 = kr.predict(X) |
|
assert_array_almost_equal(pred, pred2) |
|
|
|
|
|
def test_kernel_ridge_precomputed(): |
|
for kernel in ["linear", "rbf", "poly", "cosine"]: |
|
K = pairwise_kernels(X, X, metric=kernel) |
|
pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) |
|
pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) |
|
assert_array_almost_equal(pred, pred2) |
|
|
|
|
|
def test_kernel_ridge_precomputed_kernel_unchanged(): |
|
K = np.dot(X, X.T) |
|
K2 = K.copy() |
|
KernelRidge(kernel="precomputed").fit(K, y) |
|
assert_array_almost_equal(K, K2) |
|
|
|
|
|
def test_kernel_ridge_sample_weights(): |
|
K = np.dot(X, X.T) |
|
sw = np.random.RandomState(0).rand(X.shape[0]) |
|
|
|
pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) |
|
pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) |
|
pred3 = ( |
|
KernelRidge(kernel="precomputed", alpha=1) |
|
.fit(K, y, sample_weight=sw) |
|
.predict(K) |
|
) |
|
assert_array_almost_equal(pred, pred2) |
|
assert_array_almost_equal(pred, pred3) |
|
|
|
|
|
def test_kernel_ridge_multi_output(): |
|
pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) |
|
pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) |
|
assert_array_almost_equal(pred, pred2) |
|
|
|
pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) |
|
pred3 = np.array([pred3, pred3]).T |
|
assert_array_almost_equal(pred2, pred3) |
|
|