|
from copy import ( |
|
copy, |
|
deepcopy, |
|
) |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from pandas.core.dtypes.common import is_scalar |
|
|
|
from pandas import ( |
|
DataFrame, |
|
Index, |
|
Series, |
|
date_range, |
|
) |
|
import pandas._testing as tm |
|
|
|
|
|
|
|
|
|
|
|
def construct(box, shape, value=None, dtype=None, **kwargs): |
|
""" |
|
construct an object for the given shape |
|
if value is specified use that if its a scalar |
|
if value is an array, repeat it as needed |
|
""" |
|
if isinstance(shape, int): |
|
shape = tuple([shape] * box._AXIS_LEN) |
|
if value is not None: |
|
if is_scalar(value): |
|
if value == "empty": |
|
arr = None |
|
dtype = np.float64 |
|
|
|
|
|
kwargs.pop(box._info_axis_name, None) |
|
else: |
|
arr = np.empty(shape, dtype=dtype) |
|
arr.fill(value) |
|
else: |
|
fshape = np.prod(shape) |
|
arr = value.ravel() |
|
new_shape = fshape / arr.shape[0] |
|
if fshape % arr.shape[0] != 0: |
|
raise Exception("invalid value passed in construct") |
|
|
|
arr = np.repeat(arr, new_shape).reshape(shape) |
|
else: |
|
arr = np.random.default_rng(2).standard_normal(shape) |
|
return box(arr, dtype=dtype, **kwargs) |
|
|
|
|
|
class TestGeneric: |
|
@pytest.mark.parametrize( |
|
"func", |
|
[ |
|
str.lower, |
|
{x: x.lower() for x in list("ABCD")}, |
|
Series({x: x.lower() for x in list("ABCD")}), |
|
], |
|
) |
|
def test_rename(self, frame_or_series, func): |
|
|
|
idx = list("ABCD") |
|
|
|
for axis in frame_or_series._AXIS_ORDERS: |
|
kwargs = {axis: idx} |
|
obj = construct(frame_or_series, 4, **kwargs) |
|
|
|
|
|
result = obj.rename(**{axis: func}) |
|
expected = obj.copy() |
|
setattr(expected, axis, list("abcd")) |
|
tm.assert_equal(result, expected) |
|
|
|
def test_get_numeric_data(self, frame_or_series): |
|
n = 4 |
|
kwargs = { |
|
frame_or_series._get_axis_name(i): list(range(n)) |
|
for i in range(frame_or_series._AXIS_LEN) |
|
} |
|
|
|
|
|
o = construct(frame_or_series, n, **kwargs) |
|
result = o._get_numeric_data() |
|
tm.assert_equal(result, o) |
|
|
|
|
|
result = o._get_bool_data() |
|
expected = construct(frame_or_series, n, value="empty", **kwargs) |
|
if isinstance(o, DataFrame): |
|
|
|
expected.columns = o.columns[:0] |
|
|
|
tm.assert_equal(result.reset_index(drop=True), expected) |
|
|
|
|
|
arr = np.array([True, True, False, True]) |
|
o = construct(frame_or_series, n, value=arr, **kwargs) |
|
result = o._get_numeric_data() |
|
tm.assert_equal(result, o) |
|
|
|
def test_nonzero(self, frame_or_series): |
|
|
|
|
|
obj = construct(frame_or_series, shape=4) |
|
msg = f"The truth value of a {frame_or_series.__name__} is ambiguous" |
|
with pytest.raises(ValueError, match=msg): |
|
bool(obj == 0) |
|
with pytest.raises(ValueError, match=msg): |
|
bool(obj == 1) |
|
with pytest.raises(ValueError, match=msg): |
|
bool(obj) |
|
|
|
obj = construct(frame_or_series, shape=4, value=1) |
|
with pytest.raises(ValueError, match=msg): |
|
bool(obj == 0) |
|
with pytest.raises(ValueError, match=msg): |
|
bool(obj == 1) |
|
with pytest.raises(ValueError, match=msg): |
|
bool(obj) |
|
|
|
obj = construct(frame_or_series, shape=4, value=np.nan) |
|
with pytest.raises(ValueError, match=msg): |
|
bool(obj == 0) |
|
with pytest.raises(ValueError, match=msg): |
|
bool(obj == 1) |
|
with pytest.raises(ValueError, match=msg): |
|
bool(obj) |
|
|
|
|
|
obj = construct(frame_or_series, shape=0) |
|
with pytest.raises(ValueError, match=msg): |
|
bool(obj) |
|
|
|
|
|
|
|
obj1 = construct(frame_or_series, shape=4, value=1) |
|
obj2 = construct(frame_or_series, shape=4, value=1) |
|
|
|
with pytest.raises(ValueError, match=msg): |
|
if obj1: |
|
pass |
|
|
|
with pytest.raises(ValueError, match=msg): |
|
obj1 and obj2 |
|
with pytest.raises(ValueError, match=msg): |
|
obj1 or obj2 |
|
with pytest.raises(ValueError, match=msg): |
|
not obj1 |
|
|
|
def test_frame_or_series_compound_dtypes(self, frame_or_series): |
|
|
|
|
|
|
|
def f(dtype): |
|
return construct(frame_or_series, shape=3, value=1, dtype=dtype) |
|
|
|
msg = ( |
|
"compound dtypes are not implemented " |
|
f"in the {frame_or_series.__name__} constructor" |
|
) |
|
|
|
with pytest.raises(NotImplementedError, match=msg): |
|
f([("A", "datetime64[h]"), ("B", "str"), ("C", "int32")]) |
|
|
|
|
|
f("int64") |
|
f("float64") |
|
f("M8[ns]") |
|
|
|
def test_metadata_propagation(self, frame_or_series): |
|
|
|
|
|
o = construct(frame_or_series, shape=3) |
|
o.name = "foo" |
|
o2 = construct(frame_or_series, shape=3) |
|
o2.name = "bar" |
|
|
|
|
|
|
|
|
|
|
|
|
|
for op in ["__add__", "__sub__", "__truediv__", "__mul__"]: |
|
result = getattr(o, op)(1) |
|
tm.assert_metadata_equivalent(o, result) |
|
|
|
|
|
for op in ["__add__", "__sub__", "__truediv__", "__mul__"]: |
|
result = getattr(o, op)(o) |
|
tm.assert_metadata_equivalent(o, result) |
|
|
|
|
|
for op in ["__eq__", "__le__", "__ge__"]: |
|
v1 = getattr(o, op)(o) |
|
tm.assert_metadata_equivalent(o, v1) |
|
tm.assert_metadata_equivalent(o, v1 & v1) |
|
tm.assert_metadata_equivalent(o, v1 | v1) |
|
|
|
|
|
result = o.combine_first(o2) |
|
tm.assert_metadata_equivalent(o, result) |
|
|
|
|
|
|
|
|
|
|
|
|
|
result = o + o2 |
|
tm.assert_metadata_equivalent(result) |
|
|
|
|
|
for op in ["__eq__", "__le__", "__ge__"]: |
|
|
|
v1 = getattr(o, op)(o) |
|
v2 = getattr(o, op)(o2) |
|
tm.assert_metadata_equivalent(v2) |
|
tm.assert_metadata_equivalent(v1 & v2) |
|
tm.assert_metadata_equivalent(v1 | v2) |
|
|
|
def test_size_compat(self, frame_or_series): |
|
|
|
|
|
|
|
o = construct(frame_or_series, shape=10) |
|
assert o.size == np.prod(o.shape) |
|
assert o.size == 10 ** len(o.axes) |
|
|
|
def test_split_compat(self, frame_or_series): |
|
|
|
o = construct(frame_or_series, shape=10) |
|
with tm.assert_produces_warning( |
|
FutureWarning, match=".swapaxes' is deprecated", check_stacklevel=False |
|
): |
|
assert len(np.array_split(o, 5)) == 5 |
|
assert len(np.array_split(o, 2)) == 2 |
|
|
|
|
|
def test_stat_unexpected_keyword(self, frame_or_series): |
|
obj = construct(frame_or_series, 5) |
|
starwars = "Star Wars" |
|
errmsg = "unexpected keyword" |
|
|
|
with pytest.raises(TypeError, match=errmsg): |
|
obj.max(epic=starwars) |
|
with pytest.raises(TypeError, match=errmsg): |
|
obj.var(epic=starwars) |
|
with pytest.raises(TypeError, match=errmsg): |
|
obj.sum(epic=starwars) |
|
with pytest.raises(TypeError, match=errmsg): |
|
obj.any(epic=starwars) |
|
|
|
@pytest.mark.parametrize("func", ["sum", "cumsum", "any", "var"]) |
|
def test_api_compat(self, func, frame_or_series): |
|
|
|
|
|
|
|
obj = construct(frame_or_series, 5) |
|
f = getattr(obj, func) |
|
assert f.__name__ == func |
|
assert f.__qualname__.endswith(func) |
|
|
|
def test_stat_non_defaults_args(self, frame_or_series): |
|
obj = construct(frame_or_series, 5) |
|
out = np.array([0]) |
|
errmsg = "the 'out' parameter is not supported" |
|
|
|
with pytest.raises(ValueError, match=errmsg): |
|
obj.max(out=out) |
|
with pytest.raises(ValueError, match=errmsg): |
|
obj.var(out=out) |
|
with pytest.raises(ValueError, match=errmsg): |
|
obj.sum(out=out) |
|
with pytest.raises(ValueError, match=errmsg): |
|
obj.any(out=out) |
|
|
|
def test_truncate_out_of_bounds(self, frame_or_series): |
|
|
|
|
|
|
|
shape = [2000] + ([1] * (frame_or_series._AXIS_LEN - 1)) |
|
small = construct(frame_or_series, shape, dtype="int8", value=1) |
|
tm.assert_equal(small.truncate(), small) |
|
tm.assert_equal(small.truncate(before=0, after=3e3), small) |
|
tm.assert_equal(small.truncate(before=-1, after=2e3), small) |
|
|
|
|
|
shape = [2_000_000] + ([1] * (frame_or_series._AXIS_LEN - 1)) |
|
big = construct(frame_or_series, shape, dtype="int8", value=1) |
|
tm.assert_equal(big.truncate(), big) |
|
tm.assert_equal(big.truncate(before=0, after=3e6), big) |
|
tm.assert_equal(big.truncate(before=-1, after=2e6), big) |
|
|
|
@pytest.mark.parametrize( |
|
"func", |
|
[copy, deepcopy, lambda x: x.copy(deep=False), lambda x: x.copy(deep=True)], |
|
) |
|
@pytest.mark.parametrize("shape", [0, 1, 2]) |
|
def test_copy_and_deepcopy(self, frame_or_series, shape, func): |
|
|
|
obj = construct(frame_or_series, shape) |
|
obj_copy = func(obj) |
|
assert obj_copy is not obj |
|
tm.assert_equal(obj_copy, obj) |
|
|
|
def test_data_deprecated(self, frame_or_series): |
|
obj = frame_or_series() |
|
msg = "(Series|DataFrame)._data is deprecated" |
|
with tm.assert_produces_warning(DeprecationWarning, match=msg): |
|
mgr = obj._data |
|
assert mgr is obj._mgr |
|
|
|
|
|
class TestNDFrame: |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"ser", |
|
[ |
|
Series(range(10), dtype=np.float64), |
|
Series([str(i) for i in range(10)], dtype=object), |
|
], |
|
) |
|
def test_squeeze_series_noop(self, ser): |
|
|
|
tm.assert_series_equal(ser.squeeze(), ser) |
|
|
|
def test_squeeze_frame_noop(self): |
|
|
|
df = DataFrame(np.eye(2)) |
|
tm.assert_frame_equal(df.squeeze(), df) |
|
|
|
def test_squeeze_frame_reindex(self): |
|
|
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((10, 4)), |
|
columns=Index(list("ABCD"), dtype=object), |
|
index=date_range("2000-01-01", periods=10, freq="B"), |
|
).reindex(columns=["A"]) |
|
tm.assert_series_equal(df.squeeze(), df["A"]) |
|
|
|
def test_squeeze_0_len_dim(self): |
|
|
|
empty_series = Series([], name="five", dtype=np.float64) |
|
empty_frame = DataFrame([empty_series]) |
|
tm.assert_series_equal(empty_series, empty_series.squeeze()) |
|
tm.assert_series_equal(empty_series, empty_frame.squeeze()) |
|
|
|
def test_squeeze_axis(self): |
|
|
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((1, 4)), |
|
columns=Index(list("ABCD"), dtype=object), |
|
index=date_range("2000-01-01", periods=1, freq="B"), |
|
).iloc[:, :1] |
|
assert df.shape == (1, 1) |
|
tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0]) |
|
tm.assert_series_equal(df.squeeze(axis="index"), df.iloc[0]) |
|
tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0]) |
|
tm.assert_series_equal(df.squeeze(axis="columns"), df.iloc[:, 0]) |
|
assert df.squeeze() == df.iloc[0, 0] |
|
msg = "No axis named 2 for object type DataFrame" |
|
with pytest.raises(ValueError, match=msg): |
|
df.squeeze(axis=2) |
|
msg = "No axis named x for object type DataFrame" |
|
with pytest.raises(ValueError, match=msg): |
|
df.squeeze(axis="x") |
|
|
|
def test_squeeze_axis_len_3(self): |
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((3, 4)), |
|
columns=Index(list("ABCD"), dtype=object), |
|
index=date_range("2000-01-01", periods=3, freq="B"), |
|
) |
|
tm.assert_frame_equal(df.squeeze(axis=0), df) |
|
|
|
def test_numpy_squeeze(self): |
|
s = Series(range(2), dtype=np.float64) |
|
tm.assert_series_equal(np.squeeze(s), s) |
|
|
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((10, 4)), |
|
columns=Index(list("ABCD"), dtype=object), |
|
index=date_range("2000-01-01", periods=10, freq="B"), |
|
).reindex(columns=["A"]) |
|
tm.assert_series_equal(np.squeeze(df), df["A"]) |
|
|
|
@pytest.mark.parametrize( |
|
"ser", |
|
[ |
|
Series(range(10), dtype=np.float64), |
|
Series([str(i) for i in range(10)], dtype=object), |
|
], |
|
) |
|
def test_transpose_series(self, ser): |
|
|
|
tm.assert_series_equal(ser.transpose(), ser) |
|
|
|
def test_transpose_frame(self): |
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((10, 4)), |
|
columns=Index(list("ABCD"), dtype=object), |
|
index=date_range("2000-01-01", periods=10, freq="B"), |
|
) |
|
tm.assert_frame_equal(df.transpose().transpose(), df) |
|
|
|
def test_numpy_transpose(self, frame_or_series): |
|
obj = DataFrame( |
|
np.random.default_rng(2).standard_normal((10, 4)), |
|
columns=Index(list("ABCD"), dtype=object), |
|
index=date_range("2000-01-01", periods=10, freq="B"), |
|
) |
|
obj = tm.get_obj(obj, frame_or_series) |
|
|
|
if frame_or_series is Series: |
|
|
|
tm.assert_series_equal(np.transpose(obj), obj) |
|
|
|
|
|
tm.assert_equal(np.transpose(np.transpose(obj)), obj) |
|
|
|
msg = "the 'axes' parameter is not supported" |
|
with pytest.raises(ValueError, match=msg): |
|
np.transpose(obj, axes=1) |
|
|
|
@pytest.mark.parametrize( |
|
"ser", |
|
[ |
|
Series(range(10), dtype=np.float64), |
|
Series([str(i) for i in range(10)], dtype=object), |
|
], |
|
) |
|
def test_take_series(self, ser): |
|
indices = [1, 5, -2, 6, 3, -1] |
|
out = ser.take(indices) |
|
expected = Series( |
|
data=ser.values.take(indices), |
|
index=ser.index.take(indices), |
|
dtype=ser.dtype, |
|
) |
|
tm.assert_series_equal(out, expected) |
|
|
|
def test_take_frame(self): |
|
indices = [1, 5, -2, 6, 3, -1] |
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((10, 4)), |
|
columns=Index(list("ABCD"), dtype=object), |
|
index=date_range("2000-01-01", periods=10, freq="B"), |
|
) |
|
out = df.take(indices) |
|
expected = DataFrame( |
|
data=df.values.take(indices, axis=0), |
|
index=df.index.take(indices), |
|
columns=df.columns, |
|
) |
|
tm.assert_frame_equal(out, expected) |
|
|
|
def test_take_invalid_kwargs(self, frame_or_series): |
|
indices = [-3, 2, 0, 1] |
|
|
|
obj = DataFrame(range(5)) |
|
obj = tm.get_obj(obj, frame_or_series) |
|
|
|
msg = r"take\(\) got an unexpected keyword argument 'foo'" |
|
with pytest.raises(TypeError, match=msg): |
|
obj.take(indices, foo=2) |
|
|
|
msg = "the 'out' parameter is not supported" |
|
with pytest.raises(ValueError, match=msg): |
|
obj.take(indices, out=indices) |
|
|
|
msg = "the 'mode' parameter is not supported" |
|
with pytest.raises(ValueError, match=msg): |
|
obj.take(indices, mode="clip") |
|
|
|
def test_axis_classmethods(self, frame_or_series): |
|
box = frame_or_series |
|
obj = box(dtype=object) |
|
values = box._AXIS_TO_AXIS_NUMBER.keys() |
|
for v in values: |
|
assert obj._get_axis_number(v) == box._get_axis_number(v) |
|
assert obj._get_axis_name(v) == box._get_axis_name(v) |
|
assert obj._get_block_manager_axis(v) == box._get_block_manager_axis(v) |
|
|
|
def test_flags_identity(self, frame_or_series): |
|
obj = Series([1, 2]) |
|
if frame_or_series is DataFrame: |
|
obj = obj.to_frame() |
|
|
|
assert obj.flags is obj.flags |
|
obj2 = obj.copy() |
|
assert obj2.flags is not obj.flags |
|
|
|
def test_bool_dep(self) -> None: |
|
|
|
msg_warn = ( |
|
"DataFrame.bool is now deprecated and will be removed " |
|
"in future version of pandas" |
|
) |
|
with tm.assert_produces_warning(FutureWarning, match=msg_warn): |
|
DataFrame({"col": [False]}).bool() |
|
|