|
""" |
|
Discrete Fourier Transforms - basic.py |
|
""" |
|
import numpy as np |
|
import functools |
|
from . import pypocketfft as pfft |
|
from .helper import (_asfarray, _init_nd_shape_and_axes, _datacopied, |
|
_fix_shape, _fix_shape_1d, _normalization, |
|
_workers) |
|
|
|
def c2c(forward, x, n=None, axis=-1, norm=None, overwrite_x=False, |
|
workers=None, *, plan=None): |
|
""" Return discrete Fourier transform of real or complex sequence. """ |
|
if plan is not None: |
|
raise NotImplementedError('Passing a precomputed plan is not yet ' |
|
'supported by scipy.fft functions') |
|
tmp = _asfarray(x) |
|
overwrite_x = overwrite_x or _datacopied(tmp, x) |
|
norm = _normalization(norm, forward) |
|
workers = _workers(workers) |
|
|
|
if n is not None: |
|
tmp, copied = _fix_shape_1d(tmp, n, axis) |
|
overwrite_x = overwrite_x or copied |
|
elif tmp.shape[axis] < 1: |
|
message = f"invalid number of data points ({tmp.shape[axis]}) specified" |
|
raise ValueError(message) |
|
|
|
out = (tmp if overwrite_x and tmp.dtype.kind == 'c' else None) |
|
|
|
return pfft.c2c(tmp, (axis,), forward, norm, out, workers) |
|
|
|
|
|
fft = functools.partial(c2c, True) |
|
fft.__name__ = 'fft' |
|
ifft = functools.partial(c2c, False) |
|
ifft.__name__ = 'ifft' |
|
|
|
|
|
def r2c(forward, x, n=None, axis=-1, norm=None, overwrite_x=False, |
|
workers=None, *, plan=None): |
|
""" |
|
Discrete Fourier transform of a real sequence. |
|
""" |
|
if plan is not None: |
|
raise NotImplementedError('Passing a precomputed plan is not yet ' |
|
'supported by scipy.fft functions') |
|
tmp = _asfarray(x) |
|
norm = _normalization(norm, forward) |
|
workers = _workers(workers) |
|
|
|
if not np.isrealobj(tmp): |
|
raise TypeError("x must be a real sequence") |
|
|
|
if n is not None: |
|
tmp, _ = _fix_shape_1d(tmp, n, axis) |
|
elif tmp.shape[axis] < 1: |
|
raise ValueError(f"invalid number of data points ({tmp.shape[axis]}) specified") |
|
|
|
|
|
return pfft.r2c(tmp, (axis,), forward, norm, None, workers) |
|
|
|
|
|
rfft = functools.partial(r2c, True) |
|
rfft.__name__ = 'rfft' |
|
ihfft = functools.partial(r2c, False) |
|
ihfft.__name__ = 'ihfft' |
|
|
|
|
|
def c2r(forward, x, n=None, axis=-1, norm=None, overwrite_x=False, |
|
workers=None, *, plan=None): |
|
""" |
|
Return inverse discrete Fourier transform of real sequence x. |
|
""" |
|
if plan is not None: |
|
raise NotImplementedError('Passing a precomputed plan is not yet ' |
|
'supported by scipy.fft functions') |
|
tmp = _asfarray(x) |
|
norm = _normalization(norm, forward) |
|
workers = _workers(workers) |
|
|
|
|
|
if np.isrealobj(tmp): |
|
tmp = tmp + 0.j |
|
|
|
|
|
if n is None: |
|
n = (tmp.shape[axis] - 1) * 2 |
|
if n < 1: |
|
raise ValueError(f"Invalid number of data points ({n}) specified") |
|
else: |
|
tmp, _ = _fix_shape_1d(tmp, (n//2) + 1, axis) |
|
|
|
|
|
return pfft.c2r(tmp, (axis,), n, forward, norm, None, workers) |
|
|
|
|
|
hfft = functools.partial(c2r, True) |
|
hfft.__name__ = 'hfft' |
|
irfft = functools.partial(c2r, False) |
|
irfft.__name__ = 'irfft' |
|
|
|
|
|
def hfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None, |
|
*, plan=None): |
|
""" |
|
2-D discrete Fourier transform of a Hermitian sequence |
|
""" |
|
if plan is not None: |
|
raise NotImplementedError('Passing a precomputed plan is not yet ' |
|
'supported by scipy.fft functions') |
|
return hfftn(x, s, axes, norm, overwrite_x, workers) |
|
|
|
|
|
def ihfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None, |
|
*, plan=None): |
|
""" |
|
2-D discrete inverse Fourier transform of a Hermitian sequence |
|
""" |
|
if plan is not None: |
|
raise NotImplementedError('Passing a precomputed plan is not yet ' |
|
'supported by scipy.fft functions') |
|
return ihfftn(x, s, axes, norm, overwrite_x, workers) |
|
|
|
|
|
def c2cn(forward, x, s=None, axes=None, norm=None, overwrite_x=False, |
|
workers=None, *, plan=None): |
|
""" |
|
Return multidimensional discrete Fourier transform. |
|
""" |
|
if plan is not None: |
|
raise NotImplementedError('Passing a precomputed plan is not yet ' |
|
'supported by scipy.fft functions') |
|
tmp = _asfarray(x) |
|
|
|
shape, axes = _init_nd_shape_and_axes(tmp, s, axes) |
|
overwrite_x = overwrite_x or _datacopied(tmp, x) |
|
workers = _workers(workers) |
|
|
|
if len(axes) == 0: |
|
return x |
|
|
|
tmp, copied = _fix_shape(tmp, shape, axes) |
|
overwrite_x = overwrite_x or copied |
|
|
|
norm = _normalization(norm, forward) |
|
out = (tmp if overwrite_x and tmp.dtype.kind == 'c' else None) |
|
|
|
return pfft.c2c(tmp, axes, forward, norm, out, workers) |
|
|
|
|
|
fftn = functools.partial(c2cn, True) |
|
fftn.__name__ = 'fftn' |
|
ifftn = functools.partial(c2cn, False) |
|
ifftn.__name__ = 'ifftn' |
|
|
|
def r2cn(forward, x, s=None, axes=None, norm=None, overwrite_x=False, |
|
workers=None, *, plan=None): |
|
"""Return multidimensional discrete Fourier transform of real input""" |
|
if plan is not None: |
|
raise NotImplementedError('Passing a precomputed plan is not yet ' |
|
'supported by scipy.fft functions') |
|
tmp = _asfarray(x) |
|
|
|
if not np.isrealobj(tmp): |
|
raise TypeError("x must be a real sequence") |
|
|
|
shape, axes = _init_nd_shape_and_axes(tmp, s, axes) |
|
tmp, _ = _fix_shape(tmp, shape, axes) |
|
norm = _normalization(norm, forward) |
|
workers = _workers(workers) |
|
|
|
if len(axes) == 0: |
|
raise ValueError("at least 1 axis must be transformed") |
|
|
|
|
|
return pfft.r2c(tmp, axes, forward, norm, None, workers) |
|
|
|
|
|
rfftn = functools.partial(r2cn, True) |
|
rfftn.__name__ = 'rfftn' |
|
ihfftn = functools.partial(r2cn, False) |
|
ihfftn.__name__ = 'ihfftn' |
|
|
|
|
|
def c2rn(forward, x, s=None, axes=None, norm=None, overwrite_x=False, |
|
workers=None, *, plan=None): |
|
"""Multidimensional inverse discrete fourier transform with real output""" |
|
if plan is not None: |
|
raise NotImplementedError('Passing a precomputed plan is not yet ' |
|
'supported by scipy.fft functions') |
|
tmp = _asfarray(x) |
|
|
|
|
|
if np.isrealobj(tmp): |
|
tmp = tmp + 0.j |
|
|
|
noshape = s is None |
|
shape, axes = _init_nd_shape_and_axes(tmp, s, axes) |
|
|
|
if len(axes) == 0: |
|
raise ValueError("at least 1 axis must be transformed") |
|
|
|
shape = list(shape) |
|
if noshape: |
|
shape[-1] = (x.shape[axes[-1]] - 1) * 2 |
|
|
|
norm = _normalization(norm, forward) |
|
workers = _workers(workers) |
|
|
|
|
|
lastsize = shape[-1] |
|
shape[-1] = (shape[-1] // 2) + 1 |
|
|
|
tmp, _ = tuple(_fix_shape(tmp, shape, axes)) |
|
|
|
|
|
return pfft.c2r(tmp, axes, lastsize, forward, norm, None, workers) |
|
|
|
|
|
hfftn = functools.partial(c2rn, True) |
|
hfftn.__name__ = 'hfftn' |
|
irfftn = functools.partial(c2rn, False) |
|
irfftn.__name__ = 'irfftn' |
|
|
|
|
|
def r2r_fftpack(forward, x, n=None, axis=-1, norm=None, overwrite_x=False): |
|
"""FFT of a real sequence, returning fftpack half complex format""" |
|
tmp = _asfarray(x) |
|
overwrite_x = overwrite_x or _datacopied(tmp, x) |
|
norm = _normalization(norm, forward) |
|
workers = _workers(None) |
|
|
|
if tmp.dtype.kind == 'c': |
|
raise TypeError('x must be a real sequence') |
|
|
|
if n is not None: |
|
tmp, copied = _fix_shape_1d(tmp, n, axis) |
|
overwrite_x = overwrite_x or copied |
|
elif tmp.shape[axis] < 1: |
|
raise ValueError(f"invalid number of data points ({tmp.shape[axis]}) specified") |
|
|
|
out = (tmp if overwrite_x else None) |
|
|
|
return pfft.r2r_fftpack(tmp, (axis,), forward, forward, norm, out, workers) |
|
|
|
|
|
rfft_fftpack = functools.partial(r2r_fftpack, True) |
|
rfft_fftpack.__name__ = 'rfft_fftpack' |
|
irfft_fftpack = functools.partial(r2r_fftpack, False) |
|
irfft_fftpack.__name__ = 'irfft_fftpack' |
|
|