Sam Chaudry
Upload folder using huggingface_hub
7885a28 verified
raw
history blame
25.7 kB
import math
import heapq
import itertools
from dataclasses import dataclass, field
from types import ModuleType
from typing import Any, TypeAlias
from scipy._lib._array_api import (
array_namespace,
xp_size,
xp_copy,
xp_broadcast_promote
)
from scipy._lib._util import MapWrapper
from scipy.integrate._rules import (
ProductNestedFixed,
GaussKronrodQuadrature,
GenzMalikCubature,
)
from scipy.integrate._rules._base import _split_subregion
__all__ = ['cubature']
Array: TypeAlias = Any # To be changed to an array-api-typing Protocol later
@dataclass
class CubatureRegion:
estimate: Array
error: Array
a: Array
b: Array
_xp: ModuleType = field(repr=False)
def __lt__(self, other):
# Consider regions with higher error estimates as being "less than" regions with
# lower order estimates, so that regions with high error estimates are placed at
# the top of the heap.
this_err = self._xp.max(self._xp.abs(self.error))
other_err = self._xp.max(self._xp.abs(other.error))
return this_err > other_err
@dataclass
class CubatureResult:
estimate: Array
error: Array
status: str
regions: list[CubatureRegion]
subdivisions: int
atol: float
rtol: float
def cubature(f, a, b, *, rule="gk21", rtol=1e-8, atol=0, max_subdivisions=10000,
args=(), workers=1, points=None):
r"""
Adaptive cubature of multidimensional array-valued function.
Given an arbitrary integration rule, this function returns an estimate of the
integral to the requested tolerance over the region defined by the arrays `a` and
`b` specifying the corners of a hypercube.
Convergence is not guaranteed for all integrals.
Parameters
----------
f : callable
Function to integrate. `f` must have the signature::
f(x : ndarray, *args) -> ndarray
`f` should accept arrays ``x`` of shape::
(npoints, ndim)
and output arrays of shape::
(npoints, output_dim_1, ..., output_dim_n)
In this case, `cubature` will return arrays of shape::
(output_dim_1, ..., output_dim_n)
a, b : array_like
Lower and upper limits of integration as 1D arrays specifying the left and right
endpoints of the intervals being integrated over. Limits can be infinite.
rule : str, optional
Rule used to estimate the integral. If passing a string, the options are
"gauss-kronrod" (21 node), or "genz-malik" (degree 7). If a rule like
"gauss-kronrod" is specified for an ``n``-dim integrand, the corresponding
Cartesian product rule is used. "gk21", "gk15" are also supported for
compatibility with `quad_vec`. See Notes.
rtol, atol : float, optional
Relative and absolute tolerances. Iterations are performed until the error is
estimated to be less than ``atol + rtol * abs(est)``. Here `rtol` controls
relative accuracy (number of correct digits), while `atol` controls absolute
accuracy (number of correct decimal places). To achieve the desired `rtol`, set
`atol` to be smaller than the smallest value that can be expected from
``rtol * abs(y)`` so that `rtol` dominates the allowable error. If `atol` is
larger than ``rtol * abs(y)`` the number of correct digits is not guaranteed.
Conversely, to achieve the desired `atol`, set `rtol` such that
``rtol * abs(y)`` is always smaller than `atol`. Default values are 1e-8 for
`rtol` and 0 for `atol`.
max_subdivisions : int, optional
Upper bound on the number of subdivisions to perform. Default is 10,000.
args : tuple, optional
Additional positional args passed to `f`, if any.
workers : int or map-like callable, optional
If `workers` is an integer, part of the computation is done in parallel
subdivided to this many tasks (using :class:`python:multiprocessing.pool.Pool`).
Supply `-1` to use all cores available to the Process. Alternatively, supply a
map-like callable, such as :meth:`python:multiprocessing.pool.Pool.map` for
evaluating the population in parallel. This evaluation is carried out as
``workers(func, iterable)``.
points : list of array_like, optional
List of points to avoid evaluating `f` at, under the condition that the rule
being used does not evaluate `f` on the boundary of a region (which is the
case for all Genz-Malik and Gauss-Kronrod rules). This can be useful if `f` has
a singularity at the specified point. This should be a list of array-likes where
each element has length ``ndim``. Default is empty. See Examples.
Returns
-------
res : object
Object containing the results of the estimation. It has the following
attributes:
estimate : ndarray
Estimate of the value of the integral over the overall region specified.
error : ndarray
Estimate of the error of the approximation over the overall region
specified.
status : str
Whether the estimation was successful. Can be either: "converged",
"not_converged".
subdivisions : int
Number of subdivisions performed.
atol, rtol : float
Requested tolerances for the approximation.
regions: list of object
List of objects containing the estimates of the integral over smaller
regions of the domain.
Each object in ``regions`` has the following attributes:
a, b : ndarray
Points describing the corners of the region. If the original integral
contained infinite limits or was over a region described by `region`,
then `a` and `b` are in the transformed coordinates.
estimate : ndarray
Estimate of the value of the integral over this region.
error : ndarray
Estimate of the error of the approximation over this region.
Notes
-----
The algorithm uses a similar algorithm to `quad_vec`, which itself is based on the
implementation of QUADPACK's DQAG* algorithms, implementing global error control and
adaptive subdivision.
The source of the nodes and weights used for Gauss-Kronrod quadrature can be found
in [1]_, and the algorithm for calculating the nodes and weights in Genz-Malik
cubature can be found in [2]_.
The rules currently supported via the `rule` argument are:
- ``"gauss-kronrod"``, 21-node Gauss-Kronrod
- ``"genz-malik"``, n-node Genz-Malik
If using Gauss-Kronrod for an ``n``-dim integrand where ``n > 2``, then the
corresponding Cartesian product rule will be found by taking the Cartesian product
of the nodes in the 1D case. This means that the number of nodes scales
exponentially as ``21^n`` in the Gauss-Kronrod case, which may be problematic in a
moderate number of dimensions.
Genz-Malik is typically less accurate than Gauss-Kronrod but has much fewer nodes,
so in this situation using "genz-malik" might be preferable.
Infinite limits are handled with an appropriate variable transformation. Assuming
``a = [a_1, ..., a_n]`` and ``b = [b_1, ..., b_n]``:
If :math:`a_i = -\infty` and :math:`b_i = \infty`, the i-th integration variable
will use the transformation :math:`x = \frac{1-|t|}{t}` and :math:`t \in (-1, 1)`.
If :math:`a_i \ne \pm\infty` and :math:`b_i = \infty`, the i-th integration variable
will use the transformation :math:`x = a_i + \frac{1-t}{t}` and
:math:`t \in (0, 1)`.
If :math:`a_i = -\infty` and :math:`b_i \ne \pm\infty`, the i-th integration
variable will use the transformation :math:`x = b_i - \frac{1-t}{t}` and
:math:`t \in (0, 1)`.
References
----------
.. [1] R. Piessens, E. de Doncker, Quadpack: A Subroutine Package for Automatic
Integration, files: dqk21.f, dqk15.f (1983).
.. [2] A.C. Genz, A.A. Malik, Remarks on algorithm 006: An adaptive algorithm for
numerical integration over an N-dimensional rectangular region, Journal of
Computational and Applied Mathematics, Volume 6, Issue 4, 1980, Pages 295-302,
ISSN 0377-0427
:doi:`10.1016/0771-050X(80)90039-X`
Examples
--------
**1D integral with vector output**:
.. math::
\int^1_0 \mathbf f(x) \text dx
Where ``f(x) = x^n`` and ``n = np.arange(10)`` is a vector. Since no rule is
specified, the default "gk21" is used, which corresponds to Gauss-Kronrod
integration with 21 nodes.
>>> import numpy as np
>>> from scipy.integrate import cubature
>>> def f(x, n):
... # Make sure x and n are broadcastable
... return x[:, np.newaxis]**n[np.newaxis, :]
>>> res = cubature(
... f,
... a=[0],
... b=[1],
... args=(np.arange(10),),
... )
>>> res.estimate
array([1. , 0.5 , 0.33333333, 0.25 , 0.2 ,
0.16666667, 0.14285714, 0.125 , 0.11111111, 0.1 ])
**7D integral with arbitrary-shaped array output**::
f(x) = cos(2*pi*r + alphas @ x)
for some ``r`` and ``alphas``, and the integral is performed over the unit
hybercube, :math:`[0, 1]^7`. Since the integral is in a moderate number of
dimensions, "genz-malik" is used rather than the default "gauss-kronrod" to
avoid constructing a product rule with :math:`21^7 \approx 2 \times 10^9` nodes.
>>> import numpy as np
>>> from scipy.integrate import cubature
>>> def f(x, r, alphas):
... # f(x) = cos(2*pi*r + alphas @ x)
... # Need to allow r and alphas to be arbitrary shape
... npoints, ndim = x.shape[0], x.shape[-1]
... alphas = alphas[np.newaxis, ...]
... x = x.reshape(npoints, *([1]*(len(alphas.shape) - 1)), ndim)
... return np.cos(2*np.pi*r + np.sum(alphas * x, axis=-1))
>>> rng = np.random.default_rng()
>>> r, alphas = rng.random((2, 3)), rng.random((2, 3, 7))
>>> res = cubature(
... f=f,
... a=np.array([0, 0, 0, 0, 0, 0, 0]),
... b=np.array([1, 1, 1, 1, 1, 1, 1]),
... rtol=1e-5,
... rule="genz-malik",
... args=(r, alphas),
... )
>>> res.estimate
array([[-0.79812452, 0.35246913, -0.52273628],
[ 0.88392779, 0.59139899, 0.41895111]])
**Parallel computation with** `workers`:
>>> from concurrent.futures import ThreadPoolExecutor
>>> with ThreadPoolExecutor() as executor:
... res = cubature(
... f=f,
... a=np.array([0, 0, 0, 0, 0, 0, 0]),
... b=np.array([1, 1, 1, 1, 1, 1, 1]),
... rtol=1e-5,
... rule="genz-malik",
... args=(r, alphas),
... workers=executor.map,
... )
>>> res.estimate
array([[-0.79812452, 0.35246913, -0.52273628],
[ 0.88392779, 0.59139899, 0.41895111]])
**2D integral with infinite limits**:
.. math::
\int^{ \infty }_{ -\infty }
\int^{ \infty }_{ -\infty }
e^{-x^2-y^2}
\text dy
\text dx
>>> def gaussian(x):
... return np.exp(-np.sum(x**2, axis=-1))
>>> res = cubature(gaussian, [-np.inf, -np.inf], [np.inf, np.inf])
>>> res.estimate
3.1415926
**1D integral with singularities avoided using** `points`:
.. math::
\int^{ 1 }_{ -1 }
\frac{\sin(x)}{x}
\text dx
It is necessary to use the `points` parameter to avoid evaluating `f` at the origin.
>>> def sinc(x):
... return np.sin(x)/x
>>> res = cubature(sinc, [-1], [1], points=[[0]])
>>> res.estimate
1.8921661
"""
# It is also possible to use a custom rule, but this is not yet part of the public
# API. An example of this can be found in the class scipy.integrate._rules.Rule.
xp = array_namespace(a, b)
max_subdivisions = float("inf") if max_subdivisions is None else max_subdivisions
points = [] if points is None else points
# Convert a and b to arrays and convert each point in points to an array, promoting
# each to a common floating dtype.
a, b, *points = xp_broadcast_promote(a, b, *points, force_floating=True)
result_dtype = a.dtype
if xp_size(a) == 0 or xp_size(b) == 0:
raise ValueError("`a` and `b` must be nonempty")
if a.ndim != 1 or b.ndim != 1:
raise ValueError("`a` and `b` must be 1D arrays")
# If the rule is a string, convert to a corresponding product rule
if isinstance(rule, str):
ndim = xp_size(a)
if rule == "genz-malik":
rule = GenzMalikCubature(ndim, xp=xp)
else:
quadratues = {
"gauss-kronrod": GaussKronrodQuadrature(21, xp=xp),
# Also allow names quad_vec uses:
"gk21": GaussKronrodQuadrature(21, xp=xp),
"gk15": GaussKronrodQuadrature(15, xp=xp),
}
base_rule = quadratues.get(rule)
if base_rule is None:
raise ValueError(f"unknown rule {rule}")
rule = ProductNestedFixed([base_rule] * ndim)
# If any of limits are the wrong way around (a > b), flip them and keep track of
# the sign.
sign = (-1) ** xp.sum(xp.astype(a > b, xp.int8), dtype=result_dtype)
a_flipped = xp.min(xp.stack([a, b]), axis=0)
b_flipped = xp.max(xp.stack([a, b]), axis=0)
a, b = a_flipped, b_flipped
# If any of the limits are infinite, apply a transformation
if xp.any(xp.isinf(a)) or xp.any(xp.isinf(b)):
f = _InfiniteLimitsTransform(f, a, b, xp=xp)
a, b = f.transformed_limits
# Map points from the original coordinates to the new transformed coordinates.
#
# `points` is a list of arrays of shape (ndim,), but transformations are applied
# to arrays of shape (npoints, ndim).
#
# It is not possible to combine all the points into one array and then apply
# f.inv to all of them at once since `points` needs to remain iterable.
# Instead, each point is reshaped to an array of shape (1, ndim), `f.inv` is
# applied, and then each is reshaped back to (ndim,).
points = [xp.reshape(point, (1, -1)) for point in points]
points = [f.inv(point) for point in points]
points = [xp.reshape(point, (-1,)) for point in points]
# Include any problematic points introduced by the transformation
points.extend(f.points)
# If any problematic points are specified, divide the initial region so that these
# points lie on the edge of a subregion.
#
# This means ``f`` won't be evaluated there if the rule being used has no evaluation
# points on the boundary.
if len(points) == 0:
initial_regions = [(a, b)]
else:
initial_regions = _split_region_at_points(a, b, points, xp)
regions = []
est = 0.0
err = 0.0
for a_k, b_k in initial_regions:
est_k = rule.estimate(f, a_k, b_k, args)
err_k = rule.estimate_error(f, a_k, b_k, args)
regions.append(CubatureRegion(est_k, err_k, a_k, b_k, xp))
est += est_k
err += err_k
subdivisions = 0
success = True
with MapWrapper(workers) as mapwrapper:
while xp.any(err > atol + rtol * xp.abs(est)):
# region_k is the region with highest estimated error
region_k = heapq.heappop(regions)
est_k = region_k.estimate
err_k = region_k.error
a_k, b_k = region_k.a, region_k.b
# Subtract the estimate of the integral and its error over this region from
# the current global estimates, since these will be refined in the loop over
# all subregions.
est -= est_k
err -= err_k
# Find all 2^ndim subregions formed by splitting region_k along each axis,
# e.g. for 1D integrals this splits an estimate over an interval into an
# estimate over two subintervals, for 3D integrals this splits an estimate
# over a cube into 8 subcubes.
#
# For each of the new subregions, calculate an estimate for the integral and
# the error there, and push these regions onto the heap for potential
# further subdividing.
executor_args = zip(
itertools.repeat(f),
itertools.repeat(rule),
itertools.repeat(args),
_split_subregion(a_k, b_k, xp),
)
for subdivision_result in mapwrapper(_process_subregion, executor_args):
a_k_sub, b_k_sub, est_sub, err_sub = subdivision_result
est += est_sub
err += err_sub
new_region = CubatureRegion(est_sub, err_sub, a_k_sub, b_k_sub, xp)
heapq.heappush(regions, new_region)
subdivisions += 1
if subdivisions >= max_subdivisions:
success = False
break
status = "converged" if success else "not_converged"
# Apply sign change to handle any limits which were initially flipped.
est = sign * est
return CubatureResult(
estimate=est,
error=err,
status=status,
subdivisions=subdivisions,
regions=regions,
atol=atol,
rtol=rtol,
)
def _process_subregion(data):
f, rule, args, coord = data
a_k_sub, b_k_sub = coord
est_sub = rule.estimate(f, a_k_sub, b_k_sub, args)
err_sub = rule.estimate_error(f, a_k_sub, b_k_sub, args)
return a_k_sub, b_k_sub, est_sub, err_sub
def _is_strictly_in_region(a, b, point, xp):
if xp.all(point == a) or xp.all(point == b):
return False
return xp.all(a <= point) and xp.all(point <= b)
def _split_region_at_points(a, b, points, xp):
"""
Given the integration limits `a` and `b` describing a rectangular region and a list
of `points`, find the list of ``[(a_1, b_1), ..., (a_l, b_l)]`` which breaks up the
initial region into smaller subregion such that no `points` lie strictly inside
any of the subregions.
"""
regions = [(a, b)]
for point in points:
if xp.any(xp.isinf(point)):
# If a point is specified at infinity, ignore.
#
# This case occurs when points are given by the user to avoid, but after
# applying a transformation, they are removed.
continue
new_subregions = []
for a_k, b_k in regions:
if _is_strictly_in_region(a_k, b_k, point, xp):
subregions = _split_subregion(a_k, b_k, xp, point)
for left, right in subregions:
# Skip any zero-width regions.
if xp.any(left == right):
continue
else:
new_subregions.append((left, right))
new_subregions.extend(subregions)
else:
new_subregions.append((a_k, b_k))
regions = new_subregions
return regions
class _VariableTransform:
"""
A transformation that can be applied to an integral.
"""
@property
def transformed_limits(self):
"""
New limits of integration after applying the transformation.
"""
raise NotImplementedError
@property
def points(self):
"""
Any problematic points introduced by the transformation.
These should be specified as points where ``_VariableTransform(f)(self, point)``
would be problematic.
For example, if the transformation ``x = 1/((1-t)(1+t))`` is applied to a
univariate integral, then points should return ``[ [1], [-1] ]``.
"""
return []
def inv(self, x):
"""
Map points ``x`` to ``t`` such that if ``f`` is the original function and ``g``
is the function after the transformation is applied, then::
f(x) = g(self.inv(x))
"""
raise NotImplementedError
def __call__(self, t, *args, **kwargs):
"""
Apply the transformation to ``f`` and multiply by the Jacobian determinant.
This should be the new integrand after the transformation has been applied so
that the following is satisfied::
f_transformed = _VariableTransform(f)
cubature(f, a, b) == cubature(
f_transformed,
*f_transformed.transformed_limits(a, b),
)
"""
raise NotImplementedError
class _InfiniteLimitsTransform(_VariableTransform):
r"""
Transformation for handling infinite limits.
Assuming ``a = [a_1, ..., a_n]`` and ``b = [b_1, ..., b_n]``:
If :math:`a_i = -\infty` and :math:`b_i = \infty`, the i-th integration variable
will use the transformation :math:`x = \frac{1-|t|}{t}` and :math:`t \in (-1, 1)`.
If :math:`a_i \ne \pm\infty` and :math:`b_i = \infty`, the i-th integration variable
will use the transformation :math:`x = a_i + \frac{1-t}{t}` and
:math:`t \in (0, 1)`.
If :math:`a_i = -\infty` and :math:`b_i \ne \pm\infty`, the i-th integration
variable will use the transformation :math:`x = b_i - \frac{1-t}{t}` and
:math:`t \in (0, 1)`.
"""
def __init__(self, f, a, b, xp):
self._xp = xp
self._f = f
self._orig_a = a
self._orig_b = b
# (-oo, oo) will be mapped to (-1, 1).
self._double_inf_pos = (a == -math.inf) & (b == math.inf)
# (start, oo) will be mapped to (0, 1).
start_inf_mask = (a != -math.inf) & (b == math.inf)
# (-oo, end) will be mapped to (0, 1).
inf_end_mask = (a == -math.inf) & (b != math.inf)
# This is handled by making the transformation t = -x and reducing it to
# the other semi-infinite case.
self._semi_inf_pos = start_inf_mask | inf_end_mask
# Since we flip the limits, we don't need to separately multiply the
# integrand by -1.
self._orig_a[inf_end_mask] = -b[inf_end_mask]
self._orig_b[inf_end_mask] = -a[inf_end_mask]
self._num_inf = self._xp.sum(
self._xp.astype(self._double_inf_pos | self._semi_inf_pos, self._xp.int64),
).__int__()
@property
def transformed_limits(self):
a = xp_copy(self._orig_a)
b = xp_copy(self._orig_b)
a[self._double_inf_pos] = -1
b[self._double_inf_pos] = 1
a[self._semi_inf_pos] = 0
b[self._semi_inf_pos] = 1
return a, b
@property
def points(self):
# If there are infinite limits, then the origin becomes a problematic point
# due to a division by zero there.
# If the function using this class only wraps f when a and b contain infinite
# limits, this condition will always be met (as is the case with cubature).
#
# If a and b do not contain infinite limits but f is still wrapped with this
# class, then without this condition the initial region of integration will
# be split around the origin unnecessarily.
if self._num_inf != 0:
return [self._xp.zeros(self._orig_a.shape)]
else:
return []
def inv(self, x):
t = xp_copy(x)
npoints = x.shape[0]
double_inf_mask = self._xp.tile(
self._double_inf_pos[self._xp.newaxis, :],
(npoints, 1),
)
semi_inf_mask = self._xp.tile(
self._semi_inf_pos[self._xp.newaxis, :],
(npoints, 1),
)
# If any components of x are 0, then this component will be mapped to infinity
# under the transformation used for doubly-infinite limits.
#
# Handle the zero values and non-zero values separately to avoid division by
# zero.
zero_mask = x[double_inf_mask] == 0
non_zero_mask = double_inf_mask & ~zero_mask
t[zero_mask] = math.inf
t[non_zero_mask] = 1/(x[non_zero_mask] + self._xp.sign(x[non_zero_mask]))
start = self._xp.tile(self._orig_a[self._semi_inf_pos], (npoints,))
t[semi_inf_mask] = 1/(x[semi_inf_mask] - start + 1)
return t
def __call__(self, t, *args, **kwargs):
x = xp_copy(t)
npoints = t.shape[0]
double_inf_mask = self._xp.tile(
self._double_inf_pos[self._xp.newaxis, :],
(npoints, 1),
)
semi_inf_mask = self._xp.tile(
self._semi_inf_pos[self._xp.newaxis, :],
(npoints, 1),
)
# For (-oo, oo) -> (-1, 1), use the transformation x = (1-|t|)/t.
x[double_inf_mask] = (
(1 - self._xp.abs(t[double_inf_mask])) / t[double_inf_mask]
)
start = self._xp.tile(self._orig_a[self._semi_inf_pos], (npoints,))
# For (start, oo) -> (0, 1), use the transformation x = start + (1-t)/t.
x[semi_inf_mask] = start + (1 - t[semi_inf_mask]) / t[semi_inf_mask]
jacobian_det = 1/self._xp.prod(
self._xp.reshape(
t[semi_inf_mask | double_inf_mask]**2,
(-1, self._num_inf),
),
axis=-1,
)
f_x = self._f(x, *args, **kwargs)
jacobian_det = self._xp.reshape(jacobian_det, (-1, *([1]*(len(f_x.shape) - 1))))
return f_x * jacobian_det