spam-classifier
/
venv
/lib
/python3.11
/site-packages
/scipy
/interpolate
/tests
/test_interpolate.py
from scipy._lib._array_api import ( | |
xp_assert_equal, xp_assert_close, assert_almost_equal, assert_array_almost_equal | |
) | |
from pytest import raises as assert_raises | |
import pytest | |
from numpy import mgrid, pi, sin, poly1d | |
import numpy as np | |
from scipy.interpolate import (interp1d, interp2d, lagrange, PPoly, BPoly, | |
splrep, splev, splantider, splint, sproot, Akima1DInterpolator, | |
NdPPoly, BSpline, PchipInterpolator) | |
from scipy.special import poch, gamma | |
from scipy.interpolate import _ppoly | |
from scipy._lib._gcutils import assert_deallocated, IS_PYPY | |
from scipy._lib._testutils import _run_concurrent_barrier | |
from scipy.integrate import nquad | |
from scipy.special import binom | |
class TestInterp2D: | |
def test_interp2d(self): | |
y, x = mgrid[0:2:20j, 0:pi:21j] | |
z = sin(x+0.5*y) | |
with assert_raises(NotImplementedError): | |
interp2d(x, y, z) | |
class TestInterp1D: | |
def setup_method(self): | |
self.x5 = np.arange(5.) | |
self.x10 = np.arange(10.) | |
self.y10 = np.arange(10.) | |
self.x25 = self.x10.reshape((2,5)) | |
self.x2 = np.arange(2.) | |
self.y2 = np.arange(2.) | |
self.x1 = np.array([0.]) | |
self.y1 = np.array([0.]) | |
self.y210 = np.arange(20.).reshape((2, 10)) | |
self.y102 = np.arange(20.).reshape((10, 2)) | |
self.y225 = np.arange(20.).reshape((2, 2, 5)) | |
self.y25 = np.arange(10.).reshape((2, 5)) | |
self.y235 = np.arange(30.).reshape((2, 3, 5)) | |
self.y325 = np.arange(30.).reshape((3, 2, 5)) | |
# Edge updated test matrix 1 | |
# array([[ 30, 1, 2, 3, 4, 5, 6, 7, 8, -30], | |
# [ 30, 11, 12, 13, 14, 15, 16, 17, 18, -30]]) | |
self.y210_edge_updated = np.arange(20.).reshape((2, 10)) | |
self.y210_edge_updated[:, 0] = 30 | |
self.y210_edge_updated[:, -1] = -30 | |
# Edge updated test matrix 2 | |
# array([[ 30, 30], | |
# [ 2, 3], | |
# [ 4, 5], | |
# [ 6, 7], | |
# [ 8, 9], | |
# [ 10, 11], | |
# [ 12, 13], | |
# [ 14, 15], | |
# [ 16, 17], | |
# [-30, -30]]) | |
self.y102_edge_updated = np.arange(20.).reshape((10, 2)) | |
self.y102_edge_updated[0, :] = 30 | |
self.y102_edge_updated[-1, :] = -30 | |
self.fill_value = -100.0 | |
def test_validation(self): | |
# Make sure that appropriate exceptions are raised when invalid values | |
# are given to the constructor. | |
# These should all work. | |
for kind in ('nearest', 'nearest-up', 'zero', 'linear', 'slinear', | |
'quadratic', 'cubic', 'previous', 'next'): | |
interp1d(self.x10, self.y10, kind=kind) | |
interp1d(self.x10, self.y10, kind=kind, fill_value="extrapolate") | |
interp1d(self.x10, self.y10, kind='linear', fill_value=(-1, 1)) | |
interp1d(self.x10, self.y10, kind='linear', | |
fill_value=np.array([-1])) | |
interp1d(self.x10, self.y10, kind='linear', | |
fill_value=(-1,)) | |
interp1d(self.x10, self.y10, kind='linear', | |
fill_value=-1) | |
interp1d(self.x10, self.y10, kind='linear', | |
fill_value=(-1, -1)) | |
interp1d(self.x10, self.y10, kind=0) | |
interp1d(self.x10, self.y10, kind=1) | |
interp1d(self.x10, self.y10, kind=2) | |
interp1d(self.x10, self.y10, kind=3) | |
interp1d(self.x10, self.y210, kind='linear', axis=-1, | |
fill_value=(-1, -1)) | |
interp1d(self.x2, self.y210, kind='linear', axis=0, | |
fill_value=np.ones(10)) | |
interp1d(self.x2, self.y210, kind='linear', axis=0, | |
fill_value=(np.ones(10), np.ones(10))) | |
interp1d(self.x2, self.y210, kind='linear', axis=0, | |
fill_value=(np.ones(10), -1)) | |
# x array must be 1D. | |
assert_raises(ValueError, interp1d, self.x25, self.y10) | |
# y array cannot be a scalar. | |
assert_raises(ValueError, interp1d, self.x10, np.array(0)) | |
# Check for x and y arrays having the same length. | |
assert_raises(ValueError, interp1d, self.x10, self.y2) | |
assert_raises(ValueError, interp1d, self.x2, self.y10) | |
assert_raises(ValueError, interp1d, self.x10, self.y102) | |
interp1d(self.x10, self.y210) | |
interp1d(self.x10, self.y102, axis=0) | |
# Check for x and y having at least 1 element. | |
assert_raises(ValueError, interp1d, self.x1, self.y10) | |
assert_raises(ValueError, interp1d, self.x10, self.y1) | |
# Bad fill values | |
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear', | |
fill_value=(-1, -1, -1)) # doesn't broadcast | |
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear', | |
fill_value=[-1, -1, -1]) # doesn't broadcast | |
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear', | |
fill_value=np.array((-1, -1, -1))) # doesn't broadcast | |
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear', | |
fill_value=[[-1]]) # doesn't broadcast | |
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear', | |
fill_value=[-1, -1]) # doesn't broadcast | |
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear', | |
fill_value=np.array([])) # doesn't broadcast | |
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear', | |
fill_value=()) # doesn't broadcast | |
assert_raises(ValueError, interp1d, self.x2, self.y210, kind='linear', | |
axis=0, fill_value=[-1, -1]) # doesn't broadcast | |
assert_raises(ValueError, interp1d, self.x2, self.y210, kind='linear', | |
axis=0, fill_value=(0., [-1, -1])) # above doesn't bc | |
def test_init(self): | |
# Check that the attributes are initialized appropriately by the | |
# constructor. | |
assert interp1d(self.x10, self.y10).copy | |
assert not interp1d(self.x10, self.y10, copy=False).copy | |
assert interp1d(self.x10, self.y10).bounds_error | |
assert not interp1d(self.x10, self.y10, bounds_error=False).bounds_error | |
assert np.isnan(interp1d(self.x10, self.y10).fill_value) | |
assert interp1d(self.x10, self.y10, fill_value=3.0).fill_value == 3.0 | |
assert (interp1d(self.x10, self.y10, fill_value=(1.0, 2.0)).fill_value == | |
(1.0, 2.0) | |
) | |
assert interp1d(self.x10, self.y10).axis == 0 | |
assert interp1d(self.x10, self.y210).axis == 1 | |
assert interp1d(self.x10, self.y102, axis=0).axis == 0 | |
xp_assert_equal(interp1d(self.x10, self.y10).x, self.x10) | |
xp_assert_equal(interp1d(self.x10, self.y10).y, self.y10) | |
xp_assert_equal(interp1d(self.x10, self.y210).y, self.y210) | |
def test_assume_sorted(self): | |
# Check for unsorted arrays | |
interp10 = interp1d(self.x10, self.y10) | |
interp10_unsorted = interp1d(self.x10[::-1], self.y10[::-1]) | |
assert_array_almost_equal(interp10_unsorted(self.x10), self.y10) | |
assert_array_almost_equal(interp10_unsorted(1.2), np.array(1.2)) | |
assert_array_almost_equal(interp10_unsorted([2.4, 5.6, 6.0]), | |
interp10([2.4, 5.6, 6.0])) | |
# Check assume_sorted keyword (defaults to False) | |
interp10_assume_kw = interp1d(self.x10[::-1], self.y10[::-1], | |
assume_sorted=False) | |
assert_array_almost_equal(interp10_assume_kw(self.x10), self.y10) | |
interp10_assume_kw2 = interp1d(self.x10[::-1], self.y10[::-1], | |
assume_sorted=True) | |
# Should raise an error for unsorted input if assume_sorted=True | |
assert_raises(ValueError, interp10_assume_kw2, self.x10) | |
# Check that if y is a 2-D array, things are still consistent | |
interp10_y_2d = interp1d(self.x10, self.y210) | |
interp10_y_2d_unsorted = interp1d(self.x10[::-1], self.y210[:, ::-1]) | |
assert_array_almost_equal(interp10_y_2d(self.x10), | |
interp10_y_2d_unsorted(self.x10)) | |
def test_linear(self): | |
for kind in ['linear', 'slinear']: | |
self._check_linear(kind) | |
def _check_linear(self, kind): | |
# Check the actual implementation of linear interpolation. | |
interp10 = interp1d(self.x10, self.y10, kind=kind) | |
assert_array_almost_equal(interp10(self.x10), self.y10) | |
assert_array_almost_equal(interp10(1.2), np.array(1.2)) | |
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]), | |
np.array([2.4, 5.6, 6.0])) | |
# test fill_value="extrapolate" | |
extrapolator = interp1d(self.x10, self.y10, kind=kind, | |
fill_value='extrapolate') | |
xp_assert_close(extrapolator([-1., 0, 9, 11]), | |
np.asarray([-1.0, 0, 9, 11]), rtol=1e-14) | |
opts = dict(kind=kind, | |
fill_value='extrapolate', | |
bounds_error=True) | |
assert_raises(ValueError, interp1d, self.x10, self.y10, **opts) | |
def test_linear_dtypes(self): | |
# regression test for gh-5898, where 1D linear interpolation has been | |
# delegated to numpy.interp for all float dtypes, and the latter was | |
# not handling e.g. np.float128. | |
for dtyp in [np.float16, | |
np.float32, | |
np.float64, | |
np.longdouble]: | |
x = np.arange(8, dtype=dtyp) | |
y = x | |
yp = interp1d(x, y, kind='linear')(x) | |
assert yp.dtype == dtyp | |
xp_assert_close(yp, y, atol=1e-15) | |
# regression test for gh-14531, where 1D linear interpolation has been | |
# has been extended to delegate to numpy.interp for integer dtypes | |
x = [0, 1, 2] | |
y = [np.nan, 0, 1] | |
yp = interp1d(x, y)(x) | |
xp_assert_close(yp, y, atol=1e-15) | |
def test_slinear_dtypes(self): | |
# regression test for gh-7273: 1D slinear interpolation fails with | |
# float32 inputs | |
dt_r = [np.float16, np.float32, np.float64] | |
dt_rc = dt_r + [np.complex64, np.complex128] | |
spline_kinds = ['slinear', 'zero', 'quadratic', 'cubic'] | |
for dtx in dt_r: | |
x = np.arange(0, 10, dtype=dtx) | |
for dty in dt_rc: | |
y = np.exp(-x/3.0).astype(dty) | |
for dtn in dt_r: | |
xnew = x.astype(dtn) | |
for kind in spline_kinds: | |
f = interp1d(x, y, kind=kind, bounds_error=False) | |
xp_assert_close(f(xnew), y, atol=1e-7, | |
check_dtype=False, | |
err_msg=f"{dtx}, {dty} {dtn}") | |
def test_cubic(self): | |
# Check the actual implementation of spline interpolation. | |
interp10 = interp1d(self.x10, self.y10, kind='cubic') | |
assert_array_almost_equal(interp10(self.x10), self.y10) | |
assert_array_almost_equal(interp10(1.2), np.array(1.2)) | |
assert_array_almost_equal(interp10(1.5), np.array(1.5)) | |
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]), | |
np.array([2.4, 5.6, 6.0]),) | |
def test_nearest(self): | |
# Check the actual implementation of nearest-neighbour interpolation. | |
# Nearest asserts that half-integer case (1.5) rounds down to 1 | |
interp10 = interp1d(self.x10, self.y10, kind='nearest') | |
assert_array_almost_equal(interp10(self.x10), self.y10) | |
assert_array_almost_equal(interp10(1.2), np.array(1.)) | |
assert_array_almost_equal(interp10(1.5), np.array(1.)) | |
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]), | |
np.array([2., 6., 6.]),) | |
# test fill_value="extrapolate" | |
extrapolator = interp1d(self.x10, self.y10, kind='nearest', | |
fill_value='extrapolate') | |
xp_assert_close(extrapolator([-1., 0, 9, 11]), | |
[0.0, 0, 9, 9], rtol=1e-14) | |
opts = dict(kind='nearest', | |
fill_value='extrapolate', | |
bounds_error=True) | |
assert_raises(ValueError, interp1d, self.x10, self.y10, **opts) | |
def test_nearest_up(self): | |
# Check the actual implementation of nearest-neighbour interpolation. | |
# Nearest-up asserts that half-integer case (1.5) rounds up to 2 | |
interp10 = interp1d(self.x10, self.y10, kind='nearest-up') | |
assert_array_almost_equal(interp10(self.x10), self.y10) | |
assert_array_almost_equal(interp10(1.2), np.array(1.)) | |
assert_array_almost_equal(interp10(1.5), np.array(2.)) | |
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]), | |
np.array([2., 6., 6.]),) | |
# test fill_value="extrapolate" | |
extrapolator = interp1d(self.x10, self.y10, kind='nearest-up', | |
fill_value='extrapolate') | |
xp_assert_close(extrapolator([-1., 0, 9, 11]), | |
[0.0, 0, 9, 9], rtol=1e-14) | |
opts = dict(kind='nearest-up', | |
fill_value='extrapolate', | |
bounds_error=True) | |
assert_raises(ValueError, interp1d, self.x10, self.y10, **opts) | |
def test_previous(self): | |
# Check the actual implementation of previous interpolation. | |
interp10 = interp1d(self.x10, self.y10, kind='previous') | |
assert_array_almost_equal(interp10(self.x10), self.y10) | |
assert_array_almost_equal(interp10(1.2), np.array(1.)) | |
assert_array_almost_equal(interp10(1.5), np.array(1.)) | |
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]), | |
np.array([2., 5., 6.]),) | |
# test fill_value="extrapolate" | |
extrapolator = interp1d(self.x10, self.y10, kind='previous', | |
fill_value='extrapolate') | |
xp_assert_close(extrapolator([-1., 0, 9, 11]), | |
[np.nan, 0, 9, 9], rtol=1e-14) | |
# Tests for gh-9591 | |
interpolator1D = interp1d(self.x10, self.y10, kind="previous", | |
fill_value='extrapolate') | |
xp_assert_close(interpolator1D([-1, -2, 5, 8, 12, 25]), | |
[np.nan, np.nan, 5, 8, 9, 9]) | |
interpolator2D = interp1d(self.x10, self.y210, kind="previous", | |
fill_value='extrapolate') | |
xp_assert_close(interpolator2D([-1, -2, 5, 8, 12, 25]), | |
[[np.nan, np.nan, 5, 8, 9, 9], | |
[np.nan, np.nan, 15, 18, 19, 19]]) | |
interpolator2DAxis0 = interp1d(self.x10, self.y102, kind="previous", | |
axis=0, fill_value='extrapolate') | |
xp_assert_close(interpolator2DAxis0([-2, 5, 12]), | |
[[np.nan, np.nan], | |
[10, 11], | |
[18, 19]]) | |
opts = dict(kind='previous', | |
fill_value='extrapolate', | |
bounds_error=True) | |
assert_raises(ValueError, interp1d, self.x10, self.y10, **opts) | |
# Tests for gh-16813 | |
interpolator1D = interp1d([0, 1, 2], | |
[0, 1, -1], kind="previous", | |
fill_value='extrapolate', | |
assume_sorted=True) | |
xp_assert_close(interpolator1D([-2, -1, 0, 1, 2, 3, 5]), | |
[np.nan, np.nan, 0, 1, -1, -1, -1]) | |
interpolator1D = interp1d([2, 0, 1], # x is not ascending | |
[-1, 0, 1], kind="previous", | |
fill_value='extrapolate', | |
assume_sorted=False) | |
xp_assert_close(interpolator1D([-2, -1, 0, 1, 2, 3, 5]), | |
[np.nan, np.nan, 0, 1, -1, -1, -1]) | |
interpolator2D = interp1d(self.x10, self.y210_edge_updated, | |
kind="previous", | |
fill_value='extrapolate') | |
xp_assert_close(interpolator2D([-1, -2, 5, 8, 12, 25]), | |
[[np.nan, np.nan, 5, 8, -30, -30], | |
[np.nan, np.nan, 15, 18, -30, -30]]) | |
interpolator2DAxis0 = interp1d(self.x10, self.y102_edge_updated, | |
kind="previous", | |
axis=0, fill_value='extrapolate') | |
xp_assert_close(interpolator2DAxis0([-2, 5, 12]), | |
[[np.nan, np.nan], | |
[10, 11], | |
[-30, -30]]) | |
def test_next(self): | |
# Check the actual implementation of next interpolation. | |
interp10 = interp1d(self.x10, self.y10, kind='next') | |
assert_array_almost_equal(interp10(self.x10), self.y10) | |
assert_array_almost_equal(interp10(1.2), np.array(2.)) | |
assert_array_almost_equal(interp10(1.5), np.array(2.)) | |
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]), | |
np.array([3., 6., 6.]),) | |
# test fill_value="extrapolate" | |
extrapolator = interp1d(self.x10, self.y10, kind='next', | |
fill_value='extrapolate') | |
xp_assert_close(extrapolator([-1., 0, 9, 11]), | |
[0, 0, 9, np.nan], rtol=1e-14) | |
# Tests for gh-9591 | |
interpolator1D = interp1d(self.x10, self.y10, kind="next", | |
fill_value='extrapolate') | |
xp_assert_close(interpolator1D([-1, -2, 5, 8, 12, 25]), | |
[0, 0, 5, 8, np.nan, np.nan]) | |
interpolator2D = interp1d(self.x10, self.y210, kind="next", | |
fill_value='extrapolate') | |
xp_assert_close(interpolator2D([-1, -2, 5, 8, 12, 25]), | |
[[0, 0, 5, 8, np.nan, np.nan], | |
[10, 10, 15, 18, np.nan, np.nan]]) | |
interpolator2DAxis0 = interp1d(self.x10, self.y102, kind="next", | |
axis=0, fill_value='extrapolate') | |
xp_assert_close(interpolator2DAxis0([-2, 5, 12]), | |
[[0, 1], | |
[10, 11], | |
[np.nan, np.nan]]) | |
opts = dict(kind='next', | |
fill_value='extrapolate', | |
bounds_error=True) | |
assert_raises(ValueError, interp1d, self.x10, self.y10, **opts) | |
# Tests for gh-16813 | |
interpolator1D = interp1d([0, 1, 2], | |
[0, 1, -1], kind="next", | |
fill_value='extrapolate', | |
assume_sorted=True) | |
xp_assert_close(interpolator1D([-2, -1, 0, 1, 2, 3, 5]), | |
[0, 0, 0, 1, -1, np.nan, np.nan]) | |
interpolator1D = interp1d([2, 0, 1], # x is not ascending | |
[-1, 0, 1], kind="next", | |
fill_value='extrapolate', | |
assume_sorted=False) | |
xp_assert_close(interpolator1D([-2, -1, 0, 1, 2, 3, 5]), | |
[0, 0, 0, 1, -1, np.nan, np.nan]) | |
interpolator2D = interp1d(self.x10, self.y210_edge_updated, | |
kind="next", | |
fill_value='extrapolate') | |
xp_assert_close(interpolator2D([-1, -2, 5, 8, 12, 25]), | |
[[30, 30, 5, 8, np.nan, np.nan], | |
[30, 30, 15, 18, np.nan, np.nan]]) | |
interpolator2DAxis0 = interp1d(self.x10, self.y102_edge_updated, | |
kind="next", | |
axis=0, fill_value='extrapolate') | |
xp_assert_close(interpolator2DAxis0([-2, 5, 12]), | |
[[30, 30], | |
[10, 11], | |
[np.nan, np.nan]]) | |
def test_zero(self): | |
# Check the actual implementation of zero-order spline interpolation. | |
interp10 = interp1d(self.x10, self.y10, kind='zero') | |
assert_array_almost_equal(interp10(self.x10), self.y10) | |
assert_array_almost_equal(interp10(1.2), np.array(1.)) | |
assert_array_almost_equal(interp10(1.5), np.array(1.)) | |
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]), | |
np.array([2., 5., 6.])) | |
def bounds_check_helper(self, interpolant, test_array, fail_value): | |
# Asserts that a ValueError is raised and that the error message | |
# contains the value causing this exception. | |
assert_raises(ValueError, interpolant, test_array) | |
try: | |
interpolant(test_array) | |
except ValueError as err: | |
assert (f"{fail_value}" in str(err)) | |
def _bounds_check(self, kind='linear'): | |
# Test that our handling of out-of-bounds input is correct. | |
extrap10 = interp1d(self.x10, self.y10, fill_value=self.fill_value, | |
bounds_error=False, kind=kind) | |
xp_assert_equal(extrap10(11.2), np.array(self.fill_value)) | |
xp_assert_equal(extrap10(-3.4), np.array(self.fill_value)) | |
xp_assert_equal(extrap10([[[11.2], [-3.4], [12.6], [19.3]]]), | |
np.array(self.fill_value), check_shape=False) | |
xp_assert_equal(extrap10._check_bounds( | |
np.array([-1.0, 0.0, 5.0, 9.0, 11.0])), | |
np.array([[True, False, False, False, False], | |
[False, False, False, False, True]])) | |
raises_bounds_error = interp1d(self.x10, self.y10, bounds_error=True, | |
kind=kind) | |
self.bounds_check_helper(raises_bounds_error, -1.0, -1.0) | |
self.bounds_check_helper(raises_bounds_error, 11.0, 11.0) | |
self.bounds_check_helper(raises_bounds_error, [0.0, -1.0, 0.0], -1.0) | |
self.bounds_check_helper(raises_bounds_error, [0.0, 1.0, 21.0], 21.0) | |
raises_bounds_error([0.0, 5.0, 9.0]) | |
def _bounds_check_int_nan_fill(self, kind='linear'): | |
x = np.arange(10).astype(int) | |
y = np.arange(10).astype(int) | |
c = interp1d(x, y, kind=kind, fill_value=np.nan, bounds_error=False) | |
yi = c(x - 1) | |
assert np.isnan(yi[0]) | |
assert_array_almost_equal(yi, np.r_[np.nan, y[:-1]]) | |
def test_bounds(self): | |
for kind in ('linear', 'cubic', 'nearest', 'previous', 'next', | |
'slinear', 'zero', 'quadratic'): | |
self._bounds_check(kind) | |
self._bounds_check_int_nan_fill(kind) | |
def _check_fill_value(self, kind): | |
interp = interp1d(self.x10, self.y10, kind=kind, | |
fill_value=(-100, 100), bounds_error=False) | |
assert_array_almost_equal(interp(10), np.asarray(100.)) | |
assert_array_almost_equal(interp(-10), np.asarray(-100.)) | |
assert_array_almost_equal(interp([-10, 10]), [-100, 100]) | |
# Proper broadcasting: | |
# interp along axis of length 5 | |
# other dim=(2, 3), (3, 2), (2, 2), or (2,) | |
# one singleton fill_value (works for all) | |
for y in (self.y235, self.y325, self.y225, self.y25): | |
interp = interp1d(self.x5, y, kind=kind, axis=-1, | |
fill_value=100, bounds_error=False) | |
assert_array_almost_equal(interp(10), np.asarray(100.)) | |
assert_array_almost_equal(interp(-10), np.asarray(100.)) | |
assert_array_almost_equal(interp([-10, 10]), np.asarray(100.)) | |
# singleton lower, singleton upper | |
interp = interp1d(self.x5, y, kind=kind, axis=-1, | |
fill_value=(-100, 100), bounds_error=False) | |
assert_array_almost_equal(interp(10), np.asarray(100.)) | |
assert_array_almost_equal(interp(-10), np.asarray(-100.)) | |
if y.ndim == 3: | |
result = [[[-100, 100]] * y.shape[1]] * y.shape[0] | |
else: | |
result = [[-100, 100]] * y.shape[0] | |
assert_array_almost_equal(interp([-10, 10]), result) | |
# one broadcastable (3,) fill_value | |
fill_value = [100, 200, 300] | |
for y in (self.y325, self.y225): | |
assert_raises(ValueError, interp1d, self.x5, y, kind=kind, | |
axis=-1, fill_value=fill_value, bounds_error=False) | |
interp = interp1d(self.x5, self.y235, kind=kind, axis=-1, | |
fill_value=fill_value, bounds_error=False) | |
assert_array_almost_equal(interp(10), [[100, 200, 300]] * 2) | |
assert_array_almost_equal(interp(-10), [[100, 200, 300]] * 2) | |
assert_array_almost_equal(interp([-10, 10]), [[[100, 100], | |
[200, 200], | |
[300, 300]]] * 2) | |
# one broadcastable (2,) fill_value | |
fill_value = [100, 200] | |
assert_raises(ValueError, interp1d, self.x5, self.y235, kind=kind, | |
axis=-1, fill_value=fill_value, bounds_error=False) | |
for y in (self.y225, self.y325, self.y25): | |
interp = interp1d(self.x5, y, kind=kind, axis=-1, | |
fill_value=fill_value, bounds_error=False) | |
result = [100, 200] | |
if y.ndim == 3: | |
result = [result] * y.shape[0] | |
assert_array_almost_equal(interp(10), result) | |
assert_array_almost_equal(interp(-10), result) | |
result = [[100, 100], [200, 200]] | |
if y.ndim == 3: | |
result = [result] * y.shape[0] | |
assert_array_almost_equal(interp([-10, 10]), result) | |
# broadcastable (3,) lower, singleton upper | |
fill_value = (np.array([-100, -200, -300]), 100) | |
for y in (self.y325, self.y225): | |
assert_raises(ValueError, interp1d, self.x5, y, kind=kind, | |
axis=-1, fill_value=fill_value, bounds_error=False) | |
interp = interp1d(self.x5, self.y235, kind=kind, axis=-1, | |
fill_value=fill_value, bounds_error=False) | |
assert_array_almost_equal(interp(10), np.asarray(100.)) | |
assert_array_almost_equal(interp(-10), [[-100, -200, -300]] * 2) | |
assert_array_almost_equal(interp([-10, 10]), [[[-100, 100], | |
[-200, 100], | |
[-300, 100]]] * 2) | |
# broadcastable (2,) lower, singleton upper | |
fill_value = (np.array([-100, -200]), 100) | |
assert_raises(ValueError, interp1d, self.x5, self.y235, kind=kind, | |
axis=-1, fill_value=fill_value, bounds_error=False) | |
for y in (self.y225, self.y325, self.y25): | |
interp = interp1d(self.x5, y, kind=kind, axis=-1, | |
fill_value=fill_value, bounds_error=False) | |
assert_array_almost_equal(interp(10), np.asarray(100)) | |
result = [-100, -200] | |
if y.ndim == 3: | |
result = [result] * y.shape[0] | |
assert_array_almost_equal(interp(-10), result) | |
result = [[-100, 100], [-200, 100]] | |
if y.ndim == 3: | |
result = [result] * y.shape[0] | |
assert_array_almost_equal(interp([-10, 10]), result) | |
# broadcastable (3,) lower, broadcastable (3,) upper | |
fill_value = ([-100, -200, -300], [100, 200, 300]) | |
for y in (self.y325, self.y225): | |
assert_raises(ValueError, interp1d, self.x5, y, kind=kind, | |
axis=-1, fill_value=fill_value, bounds_error=False) | |
for ii in range(2): # check ndarray as well as list here | |
if ii == 1: | |
fill_value = tuple(np.array(f) for f in fill_value) | |
interp = interp1d(self.x5, self.y235, kind=kind, axis=-1, | |
fill_value=fill_value, bounds_error=False) | |
assert_array_almost_equal(interp(10), [[100, 200, 300]] * 2) | |
assert_array_almost_equal(interp(-10), [[-100, -200, -300]] * 2) | |
assert_array_almost_equal(interp([-10, 10]), [[[-100, 100], | |
[-200, 200], | |
[-300, 300]]] * 2) | |
# broadcastable (2,) lower, broadcastable (2,) upper | |
fill_value = ([-100, -200], [100, 200]) | |
assert_raises(ValueError, interp1d, self.x5, self.y235, kind=kind, | |
axis=-1, fill_value=fill_value, bounds_error=False) | |
for y in (self.y325, self.y225, self.y25): | |
interp = interp1d(self.x5, y, kind=kind, axis=-1, | |
fill_value=fill_value, bounds_error=False) | |
result = [100, 200] | |
if y.ndim == 3: | |
result = [result] * y.shape[0] | |
assert_array_almost_equal(interp(10), result) | |
result = [-100, -200] | |
if y.ndim == 3: | |
result = [result] * y.shape[0] | |
assert_array_almost_equal(interp(-10), result) | |
result = [[-100, 100], [-200, 200]] | |
if y.ndim == 3: | |
result = [result] * y.shape[0] | |
assert_array_almost_equal(interp([-10, 10]), result) | |
# one broadcastable (2, 2) array-like | |
fill_value = [[100, 200], [1000, 2000]] | |
for y in (self.y235, self.y325, self.y25): | |
assert_raises(ValueError, interp1d, self.x5, y, kind=kind, | |
axis=-1, fill_value=fill_value, bounds_error=False) | |
for ii in range(2): | |
if ii == 1: | |
fill_value = np.array(fill_value) | |
interp = interp1d(self.x5, self.y225, kind=kind, axis=-1, | |
fill_value=fill_value, bounds_error=False) | |
assert_array_almost_equal(interp(10), [[100, 200], [1000, 2000]]) | |
assert_array_almost_equal(interp(-10), [[100, 200], [1000, 2000]]) | |
assert_array_almost_equal(interp([-10, 10]), [[[100, 100], | |
[200, 200]], | |
[[1000, 1000], | |
[2000, 2000]]]) | |
# broadcastable (2, 2) lower, broadcastable (2, 2) upper | |
fill_value = ([[-100, -200], [-1000, -2000]], | |
[[100, 200], [1000, 2000]]) | |
for y in (self.y235, self.y325, self.y25): | |
assert_raises(ValueError, interp1d, self.x5, y, kind=kind, | |
axis=-1, fill_value=fill_value, bounds_error=False) | |
for ii in range(2): | |
if ii == 1: | |
fill_value = (np.array(fill_value[0]), np.array(fill_value[1])) | |
interp = interp1d(self.x5, self.y225, kind=kind, axis=-1, | |
fill_value=fill_value, bounds_error=False) | |
assert_array_almost_equal(interp(10), [[100, 200], [1000, 2000]]) | |
assert_array_almost_equal(interp(-10), [[-100, -200], | |
[-1000, -2000]]) | |
assert_array_almost_equal(interp([-10, 10]), [[[-100, 100], | |
[-200, 200]], | |
[[-1000, 1000], | |
[-2000, 2000]]]) | |
def test_fill_value(self): | |
# test that two-element fill value works | |
for kind in ('linear', 'nearest', 'cubic', 'slinear', 'quadratic', | |
'zero', 'previous', 'next'): | |
self._check_fill_value(kind) | |
def test_fill_value_writeable(self): | |
# backwards compat: fill_value is a public writeable attribute | |
interp = interp1d(self.x10, self.y10, fill_value=123.0) | |
assert interp.fill_value == 123.0 | |
interp.fill_value = 321.0 | |
assert interp.fill_value == 321.0 | |
def _nd_check_interp(self, kind='linear'): | |
# Check the behavior when the inputs and outputs are multidimensional. | |
# Multidimensional input. | |
interp10 = interp1d(self.x10, self.y10, kind=kind) | |
assert_array_almost_equal(interp10(np.array([[3., 5.], [2., 7.]])), | |
np.array([[3., 5.], [2., 7.]])) | |
# Scalar input -> 0-dim scalar array output | |
assert isinstance(interp10(1.2), np.ndarray) | |
assert interp10(1.2).shape == () | |
# Multidimensional outputs. | |
interp210 = interp1d(self.x10, self.y210, kind=kind) | |
assert_array_almost_equal(interp210(1.), np.array([1., 11.])) | |
assert_array_almost_equal(interp210(np.array([1., 2.])), | |
np.array([[1., 2.], [11., 12.]])) | |
interp102 = interp1d(self.x10, self.y102, axis=0, kind=kind) | |
assert_array_almost_equal(interp102(1.), np.array([2.0, 3.0])) | |
assert_array_almost_equal(interp102(np.array([1., 3.])), | |
np.array([[2., 3.], [6., 7.]])) | |
# Both at the same time! | |
x_new = np.array([[3., 5.], [2., 7.]]) | |
assert_array_almost_equal(interp210(x_new), | |
np.array([[[3., 5.], [2., 7.]], | |
[[13., 15.], [12., 17.]]])) | |
assert_array_almost_equal(interp102(x_new), | |
np.array([[[6., 7.], [10., 11.]], | |
[[4., 5.], [14., 15.]]])) | |
def _nd_check_shape(self, kind='linear'): | |
# Check large N-D output shape | |
a = [4, 5, 6, 7] | |
y = np.arange(np.prod(a)).reshape(*a) | |
for n, s in enumerate(a): | |
x = np.arange(s) | |
z = interp1d(x, y, axis=n, kind=kind) | |
assert_array_almost_equal(z(x), y, err_msg=kind) | |
x2 = np.arange(2*3*1).reshape((2,3,1)) / 12. | |
b = list(a) | |
b[n:n+1] = [2, 3, 1] | |
assert z(x2).shape == tuple(b), kind | |
def test_nd(self): | |
for kind in ('linear', 'cubic', 'slinear', 'quadratic', 'nearest', | |
'zero', 'previous', 'next'): | |
self._nd_check_interp(kind) | |
self._nd_check_shape(kind) | |
def _check_complex(self, dtype=np.complex128, kind='linear'): | |
x = np.array([1, 2.5, 3, 3.1, 4, 6.4, 7.9, 8.0, 9.5, 10]) | |
y = x * x ** (1 + 2j) | |
y = y.astype(dtype) | |
# simple test | |
c = interp1d(x, y, kind=kind) | |
assert_array_almost_equal(y[:-1], c(x)[:-1]) | |
# check against interpolating real+imag separately | |
xi = np.linspace(1, 10, 31) | |
cr = interp1d(x, y.real, kind=kind) | |
ci = interp1d(x, y.imag, kind=kind) | |
assert_array_almost_equal(c(xi).real, cr(xi)) | |
assert_array_almost_equal(c(xi).imag, ci(xi)) | |
def test_complex(self): | |
for kind in ('linear', 'nearest', 'cubic', 'slinear', 'quadratic', | |
'zero', 'previous', 'next'): | |
self._check_complex(np.complex64, kind) | |
self._check_complex(np.complex128, kind) | |
def test_circular_refs(self): | |
# Test interp1d can be automatically garbage collected | |
x = np.linspace(0, 1) | |
y = np.linspace(0, 1) | |
# Confirm interp can be released from memory after use | |
with assert_deallocated(interp1d, x, y) as interp: | |
interp([0.1, 0.2]) | |
del interp | |
def test_overflow_nearest(self): | |
# Test that the x range doesn't overflow when given integers as input | |
for kind in ('nearest', 'previous', 'next'): | |
x = np.array([0, 50, 127], dtype=np.int8) | |
ii = interp1d(x, x, kind=kind) | |
assert_array_almost_equal(ii(x), x) | |
def test_local_nans(self): | |
# check that for local interpolation kinds (slinear, zero) a single nan | |
# only affects its local neighborhood | |
x = np.arange(10).astype(float) | |
y = x.copy() | |
y[6] = np.nan | |
for kind in ('zero', 'slinear'): | |
ir = interp1d(x, y, kind=kind) | |
vals = ir([4.9, 7.0]) | |
assert np.isfinite(vals).all() | |
def test_spline_nans(self): | |
# Backwards compat: a single nan makes the whole spline interpolation | |
# return nans in an array of the correct shape. And it doesn't raise, | |
# just quiet nans because of backcompat. | |
x = np.arange(8).astype(float) | |
y = x.copy() | |
yn = y.copy() | |
yn[3] = np.nan | |
for kind in ['quadratic', 'cubic']: | |
ir = interp1d(x, y, kind=kind) | |
irn = interp1d(x, yn, kind=kind) | |
for xnew in (6, [1, 6], [[1, 6], [3, 5]]): | |
xnew = np.asarray(xnew) | |
out, outn = ir(x), irn(x) | |
assert np.isnan(outn).all() | |
assert out.shape == outn.shape | |
def test_all_nans(self): | |
# regression test for gh-11637: interp1d core dumps with all-nan `x` | |
x = np.ones(10) * np.nan | |
y = np.arange(10) | |
with assert_raises(ValueError): | |
interp1d(x, y, kind='cubic') | |
def test_read_only(self): | |
x = np.arange(0, 10) | |
y = np.exp(-x / 3.0) | |
xnew = np.arange(0, 9, 0.1) | |
# Check both read-only and not read-only: | |
for xnew_writeable in (True, False): | |
xnew.flags.writeable = xnew_writeable | |
x.flags.writeable = False | |
for kind in ('linear', 'nearest', 'zero', 'slinear', 'quadratic', | |
'cubic'): | |
f = interp1d(x, y, kind=kind) | |
vals = f(xnew) | |
assert np.isfinite(vals).all() | |
def test_single_value(self, kind): | |
# https://github.com/scipy/scipy/issues/4043 | |
f = interp1d([1.5], [6], kind=kind, bounds_error=False, | |
fill_value=(2, 10)) | |
xp_assert_equal(f([1, 1.5, 2]), np.asarray([2.0, 6, 10])) | |
# check still error if bounds_error=True | |
f = interp1d([1.5], [6], kind=kind, bounds_error=True) | |
with assert_raises(ValueError, match="x_new is above"): | |
f(2.0) | |
class TestLagrange: | |
def test_lagrange(self): | |
p = poly1d([5,2,1,4,3]) | |
xs = np.arange(len(p.coeffs)) | |
ys = p(xs) | |
pl = lagrange(xs,ys) | |
assert_array_almost_equal(p.coeffs,pl.coeffs) | |
class TestAkima1DInterpolator: | |
def test_eval(self): | |
x = np.arange(0., 11.) | |
y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.]) | |
ak = Akima1DInterpolator(x, y) | |
xi = np.array([0., 0.5, 1., 1.5, 2.5, 3.5, 4.5, 5.1, 6.5, 7.2, | |
8.6, 9.9, 10.]) | |
yi = np.array([0., 1.375, 2., 1.5, 1.953125, 2.484375, | |
4.1363636363636366866103344, 5.9803623910336236590978842, | |
5.5067291516462386624652936, 5.2031367459745245795943447, | |
4.1796554159017080820603951, 3.4110386597938129327189927, | |
3.]) | |
xp_assert_close(ak(xi), yi) | |
def test_eval_mod(self): | |
# Reference values generated with the following MATLAB code: | |
# format longG | |
# x = 0:10; y = [0. 2. 1. 3. 2. 6. 5.5 5.5 2.7 5.1 3.]; | |
# xi = [0. 0.5 1. 1.5 2.5 3.5 4.5 5.1 6.5 7.2 8.6 9.9 10.]; | |
# makima(x, y, xi) | |
x = np.arange(0., 11.) | |
y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.]) | |
ak = Akima1DInterpolator(x, y, method="makima") | |
xi = np.array([0., 0.5, 1., 1.5, 2.5, 3.5, 4.5, 5.1, 6.5, 7.2, | |
8.6, 9.9, 10.]) | |
yi = np.array([ | |
0.0, 1.34471153846154, 2.0, 1.44375, 1.94375, 2.51939102564103, | |
4.10366931918656, 5.98501550899192, 5.51756330960439, 5.1757231914014, | |
4.12326636931311, 3.32931513157895, 3.0]) | |
xp_assert_close(ak(xi), yi) | |
def test_eval_2d(self): | |
x = np.arange(0., 11.) | |
y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.]) | |
y = np.column_stack((y, 2. * y)) | |
ak = Akima1DInterpolator(x, y) | |
xi = np.array([0., 0.5, 1., 1.5, 2.5, 3.5, 4.5, 5.1, 6.5, 7.2, | |
8.6, 9.9, 10.]) | |
yi = np.array([0., 1.375, 2., 1.5, 1.953125, 2.484375, | |
4.1363636363636366866103344, | |
5.9803623910336236590978842, | |
5.5067291516462386624652936, | |
5.2031367459745245795943447, | |
4.1796554159017080820603951, | |
3.4110386597938129327189927, 3.]) | |
yi = np.column_stack((yi, 2. * yi)) | |
xp_assert_close(ak(xi), yi) | |
def test_eval_3d(self): | |
x = np.arange(0., 11.) | |
y_ = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.]) | |
y = np.empty((11, 2, 2)) | |
y[:, 0, 0] = y_ | |
y[:, 1, 0] = 2. * y_ | |
y[:, 0, 1] = 3. * y_ | |
y[:, 1, 1] = 4. * y_ | |
ak = Akima1DInterpolator(x, y) | |
xi = np.array([0., 0.5, 1., 1.5, 2.5, 3.5, 4.5, 5.1, 6.5, 7.2, | |
8.6, 9.9, 10.]) | |
yi = np.empty((13, 2, 2)) | |
yi_ = np.array([0., 1.375, 2., 1.5, 1.953125, 2.484375, | |
4.1363636363636366866103344, | |
5.9803623910336236590978842, | |
5.5067291516462386624652936, | |
5.2031367459745245795943447, | |
4.1796554159017080820603951, | |
3.4110386597938129327189927, 3.]) | |
yi[:, 0, 0] = yi_ | |
yi[:, 1, 0] = 2. * yi_ | |
yi[:, 0, 1] = 3. * yi_ | |
yi[:, 1, 1] = 4. * yi_ | |
xp_assert_close(ak(xi), yi) | |
def test_degenerate_case_multidimensional(self): | |
# This test is for issue #5683. | |
x = np.array([0, 1, 2]) | |
y = np.vstack((x, x**2)).T | |
ak = Akima1DInterpolator(x, y) | |
x_eval = np.array([0.5, 1.5]) | |
y_eval = ak(x_eval) | |
xp_assert_close(y_eval, np.vstack((x_eval, x_eval**2)).T) | |
def test_extend(self): | |
x = np.arange(0., 11.) | |
y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.]) | |
ak = Akima1DInterpolator(x, y) | |
match = "Extending a 1-D Akima interpolator is not yet implemented" | |
with pytest.raises(NotImplementedError, match=match): | |
ak.extend(None, None) | |
def test_mod_invalid_method(self): | |
x = np.arange(0., 11.) | |
y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.]) | |
match = "`method`=invalid is unsupported." | |
with pytest.raises(NotImplementedError, match=match): | |
Akima1DInterpolator(x, y, method="invalid") # type: ignore | |
def test_extrapolate_attr(self): | |
# | |
x = np.linspace(-5, 5, 11) | |
y = x**2 | |
x_ext = np.linspace(-10, 10, 17) | |
y_ext = x_ext**2 | |
# Testing all extrapolate cases. | |
ak_true = Akima1DInterpolator(x, y, extrapolate=True) | |
ak_false = Akima1DInterpolator(x, y, extrapolate=False) | |
ak_none = Akima1DInterpolator(x, y, extrapolate=None) | |
# None should default to False; extrapolated points are NaN. | |
xp_assert_close(ak_false(x_ext), ak_none(x_ext), atol=1e-15) | |
xp_assert_equal(ak_false(x_ext)[0:4], np.full(4, np.nan)) | |
xp_assert_equal(ak_false(x_ext)[-4:-1], np.full(3, np.nan)) | |
# Extrapolation on call and attribute should be equal. | |
xp_assert_close(ak_false(x_ext, extrapolate=True), ak_true(x_ext), atol=1e-15) | |
# Testing extrapoation to actual function. | |
xp_assert_close(y_ext, ak_true(x_ext), atol=1e-15) | |
def test_complex(method): | |
# Complex-valued data deprecated | |
x = np.arange(0., 11.) | |
y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.]) | |
y = y - 2j*y | |
msg = "real values" | |
with pytest.raises(ValueError, match=msg): | |
method(x, y) | |
def test_concurrency(self): | |
# Check that no segfaults appear with concurrent access to Akima1D | |
x = np.linspace(-5, 5, 11) | |
y = x**2 | |
x_ext = np.linspace(-10, 10, 17) | |
ak = Akima1DInterpolator(x, y, extrapolate=True) | |
def worker_fn(_, ak, x_ext): | |
ak(x_ext) | |
_run_concurrent_barrier(10, worker_fn, ak, x_ext) | |
class TestPPolyCommon: | |
# test basic functionality for PPoly and BPoly | |
def test_sort_check(self): | |
c = np.array([[1, 4], [2, 5], [3, 6]]) | |
x = np.array([0, 1, 0.5]) | |
assert_raises(ValueError, PPoly, c, x) | |
assert_raises(ValueError, BPoly, c, x) | |
def test_ctor_c(self): | |
# wrong shape: `c` must be at least 2D | |
with assert_raises(ValueError): | |
PPoly([1, 2], [0, 1]) | |
def test_extend(self): | |
# Test adding new points to the piecewise polynomial | |
np.random.seed(1234) | |
order = 3 | |
x = np.unique(np.r_[0, 10 * np.random.rand(30), 10]) | |
c = 2*np.random.rand(order+1, len(x)-1, 2, 3) - 1 | |
for cls in (PPoly, BPoly): | |
pp = cls(c[:,:9], x[:10]) | |
pp.extend(c[:,9:], x[10:]) | |
pp2 = cls(c[:, 10:], x[10:]) | |
pp2.extend(c[:, :10], x[:10]) | |
pp3 = cls(c, x) | |
xp_assert_equal(pp.c, pp3.c) | |
xp_assert_equal(pp.x, pp3.x) | |
xp_assert_equal(pp2.c, pp3.c) | |
xp_assert_equal(pp2.x, pp3.x) | |
def test_extend_diff_orders(self): | |
# Test extending polynomial with different order one | |
np.random.seed(1234) | |
x = np.linspace(0, 1, 6) | |
c = np.random.rand(2, 5) | |
x2 = np.linspace(1, 2, 6) | |
c2 = np.random.rand(4, 5) | |
for cls in (PPoly, BPoly): | |
pp1 = cls(c, x) | |
pp2 = cls(c2, x2) | |
pp_comb = cls(c, x) | |
pp_comb.extend(c2, x2[1:]) | |
# NB. doesn't match to pp1 at the endpoint, because pp1 is not | |
# continuous with pp2 as we took random coefs. | |
xi1 = np.linspace(0, 1, 300, endpoint=False) | |
xi2 = np.linspace(1, 2, 300) | |
xp_assert_close(pp1(xi1), pp_comb(xi1)) | |
xp_assert_close(pp2(xi2), pp_comb(xi2)) | |
def test_extend_descending(self): | |
np.random.seed(0) | |
order = 3 | |
x = np.sort(np.random.uniform(0, 10, 20)) | |
c = np.random.rand(order + 1, x.shape[0] - 1, 2, 3) | |
for cls in (PPoly, BPoly): | |
p = cls(c, x) | |
p1 = cls(c[:, :9], x[:10]) | |
p1.extend(c[:, 9:], x[10:]) | |
p2 = cls(c[:, 10:], x[10:]) | |
p2.extend(c[:, :10], x[:10]) | |
xp_assert_equal(p1.c, p.c) | |
xp_assert_equal(p1.x, p.x) | |
xp_assert_equal(p2.c, p.c) | |
xp_assert_equal(p2.x, p.x) | |
def test_shape(self): | |
np.random.seed(1234) | |
c = np.random.rand(8, 12, 5, 6, 7) | |
x = np.sort(np.random.rand(13)) | |
xp = np.random.rand(3, 4) | |
for cls in (PPoly, BPoly): | |
p = cls(c, x) | |
assert p(xp).shape == (3, 4, 5, 6, 7) | |
# 'scalars' | |
for cls in (PPoly, BPoly): | |
p = cls(c[..., 0, 0, 0], x) | |
assert np.shape(p(0.5)) == () | |
assert np.shape(p(np.array(0.5))) == () | |
assert_raises(ValueError, p, np.array([[0.1, 0.2], [0.4]], dtype=object)) | |
def test_concurrency(self): | |
# Check that no segfaults appear with concurrent access to BPoly, PPoly | |
c = np.random.rand(8, 12, 5, 6, 7) | |
x = np.sort(np.random.rand(13)) | |
xp = np.random.rand(3, 4) | |
for cls in (PPoly, BPoly): | |
interp = cls(c, x) | |
def worker_fn(_, interp, xp): | |
interp(xp) | |
_run_concurrent_barrier(10, worker_fn, interp, xp) | |
def test_complex_coef(self): | |
np.random.seed(12345) | |
x = np.sort(np.random.random(13)) | |
c = np.random.random((8, 12)) * (1. + 0.3j) | |
c_re, c_im = c.real, c.imag | |
xp = np.random.random(5) | |
for cls in (PPoly, BPoly): | |
p, p_re, p_im = cls(c, x), cls(c_re, x), cls(c_im, x) | |
for nu in [0, 1, 2]: | |
xp_assert_close(p(xp, nu).real, p_re(xp, nu)) | |
xp_assert_close(p(xp, nu).imag, p_im(xp, nu)) | |
def test_axis(self): | |
np.random.seed(12345) | |
c = np.random.rand(3, 4, 5, 6, 7, 8) | |
c_s = c.shape | |
xp = np.random.random((1, 2)) | |
for axis in (0, 1, 2, 3): | |
m = c.shape[axis+1] | |
x = np.sort(np.random.rand(m+1)) | |
for cls in (PPoly, BPoly): | |
p = cls(c, x, axis=axis) | |
assert p.c.shape == c_s[axis:axis+2] + c_s[:axis] + c_s[axis+2:] | |
res = p(xp) | |
targ_shape = c_s[:axis] + xp.shape + c_s[2+axis:] | |
assert res.shape == targ_shape | |
# deriv/antideriv does not drop the axis | |
for p1 in [cls(c, x, axis=axis).derivative(), | |
cls(c, x, axis=axis).derivative(2), | |
cls(c, x, axis=axis).antiderivative(), | |
cls(c, x, axis=axis).antiderivative(2)]: | |
assert p1.axis == p.axis | |
# c array needs two axes for the coefficients and intervals, so | |
# 0 <= axis < c.ndim-1; raise otherwise | |
for axis in (-1, 4, 5, 6): | |
for cls in (BPoly, PPoly): | |
assert_raises(ValueError, cls, **dict(c=c, x=x, axis=axis)) | |
class TestPolySubclassing: | |
class P(PPoly): | |
pass | |
class B(BPoly): | |
pass | |
def _make_polynomials(self): | |
np.random.seed(1234) | |
x = np.sort(np.random.random(3)) | |
c = np.random.random((4, 2)) | |
return self.P(c, x), self.B(c, x) | |
def test_derivative(self): | |
pp, bp = self._make_polynomials() | |
for p in (pp, bp): | |
pd = p.derivative() | |
assert p.__class__ == pd.__class__ | |
ppa = pp.antiderivative() | |
assert pp.__class__ == ppa.__class__ | |
def test_from_spline(self): | |
np.random.seed(1234) | |
x = np.sort(np.r_[0, np.random.rand(11), 1]) | |
y = np.random.rand(len(x)) | |
spl = splrep(x, y, s=0) | |
pp = self.P.from_spline(spl) | |
assert pp.__class__ == self.P | |
def test_conversions(self): | |
pp, bp = self._make_polynomials() | |
pp1 = self.P.from_bernstein_basis(bp) | |
assert pp1.__class__ == self.P | |
bp1 = self.B.from_power_basis(pp) | |
assert bp1.__class__ == self.B | |
def test_from_derivatives(self): | |
x = [0, 1, 2] | |
y = [[1], [2], [3]] | |
bp = self.B.from_derivatives(x, y) | |
assert bp.__class__ == self.B | |
class TestPPoly: | |
def test_simple(self): | |
c = np.array([[1, 4], [2, 5], [3, 6]]) | |
x = np.array([0, 0.5, 1]) | |
p = PPoly(c, x) | |
xp_assert_close(p(0.3), np.asarray(1*0.3**2 + 2*0.3 + 3)) | |
xp_assert_close(p(0.7), np.asarray(4*(0.7-0.5)**2 + 5*(0.7-0.5) + 6)) | |
def test_periodic(self): | |
c = np.array([[1, 4], [2, 5], [3, 6]]) | |
x = np.array([0, 0.5, 1]) | |
p = PPoly(c, x, extrapolate='periodic') | |
xp_assert_close(p(1.3), | |
np.asarray(1 * 0.3 ** 2 + 2 * 0.3 + 3)) | |
xp_assert_close(p(-0.3), | |
np.asarray(4 * (0.7 - 0.5) ** 2 + 5 * (0.7 - 0.5) + 6)) | |
xp_assert_close(p(1.3, 1), np.asarray(2 * 0.3 + 2)) | |
xp_assert_close(p(-0.3, 1), np.asarray(8 * (0.7 - 0.5) + 5)) | |
def test_read_only(self): | |
c = np.array([[1, 4], [2, 5], [3, 6]]) | |
x = np.array([0, 0.5, 1]) | |
xnew = np.array([0, 0.1, 0.2]) | |
PPoly(c, x, extrapolate='periodic') | |
for writeable in (True, False): | |
x.flags.writeable = writeable | |
c.flags.writeable = writeable | |
f = PPoly(c, x) | |
vals = f(xnew) | |
assert np.isfinite(vals).all() | |
def test_descending(self): | |
def binom_matrix(power): | |
n = np.arange(power + 1).reshape(-1, 1) | |
k = np.arange(power + 1) | |
B = binom(n, k) | |
return B[::-1, ::-1] | |
rng = np.random.RandomState(0) | |
power = 3 | |
for m in [10, 20, 30]: | |
x = np.sort(rng.uniform(0, 10, m + 1)) | |
ca = rng.uniform(-2, 2, size=(power + 1, m)) | |
h = np.diff(x) | |
h_powers = h[None, :] ** np.arange(power + 1)[::-1, None] | |
B = binom_matrix(power) | |
cap = ca * h_powers | |
cdp = np.dot(B.T, cap) | |
cd = cdp / h_powers | |
pa = PPoly(ca, x, extrapolate=True) | |
pd = PPoly(cd[:, ::-1], x[::-1], extrapolate=True) | |
x_test = rng.uniform(-10, 20, 100) | |
xp_assert_close(pa(x_test), pd(x_test), rtol=1e-13) | |
xp_assert_close(pa(x_test, 1), pd(x_test, 1), rtol=1e-13) | |
pa_d = pa.derivative() | |
pd_d = pd.derivative() | |
xp_assert_close(pa_d(x_test), pd_d(x_test), rtol=1e-13) | |
# Antiderivatives won't be equal because fixing continuity is | |
# done in the reverse order, but surely the differences should be | |
# equal. | |
pa_i = pa.antiderivative() | |
pd_i = pd.antiderivative() | |
for a, b in rng.uniform(-10, 20, (5, 2)): | |
int_a = pa.integrate(a, b) | |
int_d = pd.integrate(a, b) | |
xp_assert_close(int_a, int_d, rtol=1e-13) | |
xp_assert_close(pa_i(b) - pa_i(a), pd_i(b) - pd_i(a), | |
rtol=1e-13) | |
roots_d = pd.roots() | |
roots_a = pa.roots() | |
xp_assert_close(roots_a, np.sort(roots_d), rtol=1e-12) | |
def test_multi_shape(self): | |
c = np.random.rand(6, 2, 1, 2, 3) | |
x = np.array([0, 0.5, 1]) | |
p = PPoly(c, x) | |
assert p.x.shape == x.shape | |
assert p.c.shape == c.shape | |
assert p(0.3).shape == c.shape[2:] | |
assert p(np.random.rand(5, 6)).shape == (5, 6) + c.shape[2:] | |
dp = p.derivative() | |
assert dp.c.shape == (5, 2, 1, 2, 3) | |
ip = p.antiderivative() | |
assert ip.c.shape == (7, 2, 1, 2, 3) | |
def test_construct_fast(self): | |
np.random.seed(1234) | |
c = np.array([[1, 4], [2, 5], [3, 6]], dtype=float) | |
x = np.array([0, 0.5, 1]) | |
p = PPoly.construct_fast(c, x) | |
xp_assert_close(p(0.3), np.asarray(1*0.3**2 + 2*0.3 + 3)) | |
xp_assert_close(p(0.7), np.asarray(4*(0.7-0.5)**2 + 5*(0.7-0.5) + 6)) | |
def test_vs_alternative_implementations(self): | |
rng = np.random.RandomState(1234) | |
c = rng.rand(3, 12, 22) | |
x = np.sort(np.r_[0, rng.rand(11), 1]) | |
p = PPoly(c, x) | |
xp = np.r_[0.3, 0.5, 0.33, 0.6] | |
expected = _ppoly_eval_1(c, x, xp) | |
xp_assert_close(p(xp), expected) | |
expected = _ppoly_eval_2(c[:,:,0], x, xp) | |
xp_assert_close(p(xp)[:, 0], expected) | |
def test_from_spline(self): | |
rng = np.random.RandomState(1234) | |
x = np.sort(np.r_[0, rng.rand(11), 1]) | |
y = rng.rand(len(x)) | |
spl = splrep(x, y, s=0) | |
pp = PPoly.from_spline(spl) | |
xi = np.linspace(0, 1, 200) | |
xp_assert_close(pp(xi), splev(xi, spl)) | |
# make sure .from_spline accepts BSpline objects | |
b = BSpline(*spl) | |
ppp = PPoly.from_spline(b) | |
xp_assert_close(ppp(xi), b(xi)) | |
# BSpline's extrapolate attribute propagates unless overridden | |
t, c, k = spl | |
for extrap in (None, True, False): | |
b = BSpline(t, c, k, extrapolate=extrap) | |
p = PPoly.from_spline(b) | |
assert p.extrapolate == b.extrapolate | |
def test_derivative_simple(self): | |
np.random.seed(1234) | |
c = np.array([[4, 3, 2, 1]]).T | |
dc = np.array([[3*4, 2*3, 2]]).T | |
ddc = np.array([[2*3*4, 1*2*3]]).T | |
x = np.array([0, 1]) | |
pp = PPoly(c, x) | |
dpp = PPoly(dc, x) | |
ddpp = PPoly(ddc, x) | |
xp_assert_close(pp.derivative().c, dpp.c) | |
xp_assert_close(pp.derivative(2).c, ddpp.c) | |
def test_derivative_eval(self): | |
rng = np.random.RandomState(1234) | |
x = np.sort(np.r_[0, rng.rand(11), 1]) | |
y = rng.rand(len(x)) | |
spl = splrep(x, y, s=0) | |
pp = PPoly.from_spline(spl) | |
xi = np.linspace(0, 1, 200) | |
for dx in range(0, 3): | |
xp_assert_close(pp(xi, dx), splev(xi, spl, dx)) | |
def test_derivative(self): | |
rng = np.random.RandomState(1234) | |
x = np.sort(np.r_[0, rng.rand(11), 1]) | |
y = rng.rand(len(x)) | |
spl = splrep(x, y, s=0, k=5) | |
pp = PPoly.from_spline(spl) | |
xi = np.linspace(0, 1, 200) | |
for dx in range(0, 10): | |
xp_assert_close(pp(xi, dx), pp.derivative(dx)(xi), | |
err_msg="dx=%d" % (dx,)) | |
def test_antiderivative_of_constant(self): | |
# https://github.com/scipy/scipy/issues/4216 | |
p = PPoly([[1.]], [0, 1]) | |
xp_assert_equal(p.antiderivative().c, PPoly([[1], [0]], [0, 1]).c) | |
xp_assert_equal(p.antiderivative().x, PPoly([[1], [0]], [0, 1]).x) | |
def test_antiderivative_regression_4355(self): | |
# https://github.com/scipy/scipy/issues/4355 | |
p = PPoly([[1., 0.5]], [0, 1, 2]) | |
q = p.antiderivative() | |
xp_assert_equal(q.c, [[1, 0.5], [0, 1]]) | |
xp_assert_equal(q.x, [0.0, 1, 2]) | |
xp_assert_close(p.integrate(0, 2), np.asarray(1.5)) | |
xp_assert_close(np.asarray(q(2) - q(0)), | |
np.asarray(1.5)) | |
def test_antiderivative_simple(self): | |
np.random.seed(1234) | |
# [ p1(x) = 3*x**2 + 2*x + 1, | |
# p2(x) = 1.6875] | |
c = np.array([[3, 2, 1], [0, 0, 1.6875]]).T | |
# [ pp1(x) = x**3 + x**2 + x, | |
# pp2(x) = 1.6875*(x - 0.25) + pp1(0.25)] | |
ic = np.array([[1, 1, 1, 0], [0, 0, 1.6875, 0.328125]]).T | |
# [ ppp1(x) = (1/4)*x**4 + (1/3)*x**3 + (1/2)*x**2, | |
# ppp2(x) = (1.6875/2)*(x - 0.25)**2 + pp1(0.25)*x + ppp1(0.25)] | |
iic = np.array([[1/4, 1/3, 1/2, 0, 0], | |
[0, 0, 1.6875/2, 0.328125, 0.037434895833333336]]).T | |
x = np.array([0, 0.25, 1]) | |
pp = PPoly(c, x) | |
ipp = pp.antiderivative() | |
iipp = pp.antiderivative(2) | |
iipp2 = ipp.antiderivative() | |
xp_assert_close(ipp.x, x) | |
xp_assert_close(ipp.c.T, ic.T) | |
xp_assert_close(iipp.c.T, iic.T) | |
xp_assert_close(iipp2.c.T, iic.T) | |
def test_antiderivative_vs_derivative(self): | |
rng = np.random.RandomState(1234) | |
x = np.linspace(0, 1, 30)**2 | |
y = rng.rand(len(x)) | |
spl = splrep(x, y, s=0, k=5) | |
pp = PPoly.from_spline(spl) | |
for dx in range(0, 10): | |
ipp = pp.antiderivative(dx) | |
# check that derivative is inverse op | |
pp2 = ipp.derivative(dx) | |
xp_assert_close(pp.c, pp2.c) | |
# check continuity | |
for k in range(dx): | |
pp2 = ipp.derivative(k) | |
r = 1e-13 | |
endpoint = r*pp2.x[:-1] + (1 - r)*pp2.x[1:] | |
xp_assert_close(pp2(pp2.x[1:]), pp2(endpoint), | |
rtol=1e-7, err_msg="dx=%d k=%d" % (dx, k)) | |
def test_antiderivative_vs_spline(self): | |
rng = np.random.RandomState(1234) | |
x = np.sort(np.r_[0, rng.rand(11), 1]) | |
y = rng.rand(len(x)) | |
spl = splrep(x, y, s=0, k=5) | |
pp = PPoly.from_spline(spl) | |
for dx in range(0, 10): | |
pp2 = pp.antiderivative(dx) | |
spl2 = splantider(spl, dx) | |
xi = np.linspace(0, 1, 200) | |
xp_assert_close(pp2(xi), splev(xi, spl2), | |
rtol=1e-7) | |
def test_antiderivative_continuity(self): | |
c = np.array([[2, 1, 2, 2], [2, 1, 3, 3]]).T | |
x = np.array([0, 0.5, 1]) | |
p = PPoly(c, x) | |
ip = p.antiderivative() | |
# check continuity | |
xp_assert_close(ip(0.5 - 1e-9), ip(0.5 + 1e-9), rtol=1e-8) | |
# check that only lowest order coefficients were changed | |
p2 = ip.derivative() | |
xp_assert_close(p2.c, p.c) | |
def test_integrate(self): | |
rng = np.random.RandomState(1234) | |
x = np.sort(np.r_[0, rng.rand(11), 1]) | |
y = rng.rand(len(x)) | |
spl = splrep(x, y, s=0, k=5) | |
pp = PPoly.from_spline(spl) | |
a, b = 0.3, 0.9 | |
ig = pp.integrate(a, b) | |
ipp = pp.antiderivative() | |
xp_assert_close(ig, ipp(b) - ipp(a), check_0d=False) | |
xp_assert_close(ig, splint(a, b, spl), check_0d=False) | |
a, b = -0.3, 0.9 | |
ig = pp.integrate(a, b, extrapolate=True) | |
xp_assert_close(ig, ipp(b) - ipp(a), check_0d=False) | |
assert np.isnan(pp.integrate(a, b, extrapolate=False)).all() | |
def test_integrate_readonly(self): | |
x = np.array([1, 2, 4]) | |
c = np.array([[0., 0.], [-1., -1.], [2., -0.], [1., 2.]]) | |
for writeable in (True, False): | |
x.flags.writeable = writeable | |
P = PPoly(c, x) | |
vals = P.integrate(1, 4) | |
assert np.isfinite(vals).all() | |
def test_integrate_periodic(self): | |
x = np.array([1, 2, 4]) | |
c = np.array([[0., 0.], [-1., -1.], [2., -0.], [1., 2.]]) | |
P = PPoly(c, x, extrapolate='periodic') | |
I = P.antiderivative() | |
period_int = np.asarray(I(4) - I(1)) | |
xp_assert_close(P.integrate(1, 4), period_int) | |
xp_assert_close(P.integrate(-10, -7), period_int) | |
xp_assert_close(P.integrate(-10, -4), np.asarray(2 * period_int)) | |
xp_assert_close(P.integrate(1.5, 2.5), | |
np.asarray(I(2.5) - I(1.5))) | |
xp_assert_close(P.integrate(3.5, 5), | |
np.asarray(I(2) - I(1) + I(4) - I(3.5))) | |
xp_assert_close(P.integrate(3.5 + 12, 5 + 12), | |
np.asarray(I(2) - I(1) + I(4) - I(3.5))) | |
xp_assert_close(P.integrate(3.5, 5 + 12), | |
np.asarray(I(2) - I(1) + I(4) - I(3.5) + 4 * period_int)) | |
xp_assert_close(P.integrate(0, -1), | |
np.asarray(I(2) - I(3))) | |
xp_assert_close(P.integrate(-9, -10), | |
np.asarray(I(2) - I(3))) | |
xp_assert_close(P.integrate(0, -10), | |
np.asarray(I(2) - I(3) - 3 * period_int)) | |
def test_roots(self): | |
x = np.linspace(0, 1, 31)**2 | |
y = np.sin(30*x) | |
spl = splrep(x, y, s=0, k=3) | |
pp = PPoly.from_spline(spl) | |
r = pp.roots() | |
r = r[(r >= 0 - 1e-15) & (r <= 1 + 1e-15)] | |
xp_assert_close(r, sproot(spl), atol=1e-15) | |
def test_roots_idzero(self): | |
# Roots for piecewise polynomials with identically zero | |
# sections. | |
c = np.array([[-1, 0.25], [0, 0], [-1, 0.25]]).T | |
x = np.array([0, 0.4, 0.6, 1.0]) | |
pp = PPoly(c, x) | |
xp_assert_equal(pp.roots(), | |
[0.25, 0.4, np.nan, 0.6 + 0.25]) | |
# ditto for p.solve(const) with sections identically equal const | |
const = 2. | |
c1 = c.copy() | |
c1[1, :] += const | |
pp1 = PPoly(c1, x) | |
xp_assert_equal(pp1.solve(const), | |
[0.25, 0.4, np.nan, 0.6 + 0.25]) | |
def test_roots_all_zero(self): | |
# test the code path for the polynomial being identically zero everywhere | |
c = [[0], [0]] | |
x = [0, 1] | |
p = PPoly(c, x) | |
xp_assert_equal(p.roots(), [0, np.nan]) | |
xp_assert_equal(p.solve(0), [0, np.nan]) | |
xp_assert_equal(p.solve(1), []) | |
c = [[0, 0], [0, 0]] | |
x = [0, 1, 2] | |
p = PPoly(c, x) | |
xp_assert_equal(p.roots(), [0, np.nan, 1, np.nan]) | |
xp_assert_equal(p.solve(0), [0, np.nan, 1, np.nan]) | |
xp_assert_equal(p.solve(1), []) | |
def test_roots_repeated(self): | |
# Check roots repeated in multiple sections are reported only | |
# once. | |
# [(x + 1)**2 - 1, -x**2] ; x == 0 is a repeated root | |
c = np.array([[1, 0, -1], [-1, 0, 0]]).T | |
x = np.array([-1, 0, 1]) | |
pp = PPoly(c, x) | |
xp_assert_equal(pp.roots(), np.asarray([-2.0, 0.0])) | |
xp_assert_equal(pp.roots(extrapolate=False), np.asarray([0.0])) | |
def test_roots_discont(self): | |
# Check that a discontinuity across zero is reported as root | |
c = np.array([[1], [-1]]).T | |
x = np.array([0, 0.5, 1]) | |
pp = PPoly(c, x) | |
xp_assert_equal(pp.roots(), np.asarray([0.5])) | |
xp_assert_equal(pp.roots(discontinuity=False), np.asarray([])) | |
# ditto for a discontinuity across y: | |
xp_assert_equal(pp.solve(0.5), np.asarray([0.5])) | |
xp_assert_equal(pp.solve(0.5, discontinuity=False), np.asarray([])) | |
xp_assert_equal(pp.solve(1.5), np.asarray([])) | |
xp_assert_equal(pp.solve(1.5, discontinuity=False), np.asarray([])) | |
def test_roots_random(self): | |
# Check high-order polynomials with random coefficients | |
rng = np.random.RandomState(1234) | |
num = 0 | |
for extrapolate in (True, False): | |
for order in range(0, 20): | |
x = np.unique(np.r_[0, 10 * rng.rand(30), 10]) | |
c = 2*rng.rand(order+1, len(x)-1, 2, 3) - 1 | |
pp = PPoly(c, x) | |
for y in [0, rng.random()]: | |
r = pp.solve(y, discontinuity=False, extrapolate=extrapolate) | |
for i in range(2): | |
for j in range(3): | |
rr = r[i,j] | |
if rr.size > 0: | |
# Check that the reported roots indeed are roots | |
num += rr.size | |
val = pp(rr, extrapolate=extrapolate)[:,i,j] | |
cmpval = pp(rr, nu=1, | |
extrapolate=extrapolate)[:,i,j] | |
msg = f"({extrapolate!r}) r = {repr(rr)}" | |
xp_assert_close((val-y) / cmpval, np.asarray(0.0), | |
atol=1e-7, | |
err_msg=msg, check_shape=False) | |
# Check that we checked a number of roots | |
assert num > 100, repr(num) | |
def test_roots_croots(self): | |
# Test the complex root finding algorithm | |
rng = np.random.RandomState(1234) | |
for k in range(1, 15): | |
c = rng.rand(k, 1, 130) | |
if k == 3: | |
# add a case with zero discriminant | |
c[:,0,0] = 1, 2, 1 | |
for y in [0, rng.random()]: | |
w = np.empty(c.shape, dtype=complex) | |
_ppoly._croots_poly1(c, w, y) | |
if k == 1: | |
assert np.isnan(w).all() | |
continue | |
res = -y | |
cres = 0 | |
for i in range(k): | |
res += c[i,None] * w**(k-1-i) | |
cres += abs(c[i,None] * w**(k-1-i)) | |
with np.errstate(invalid='ignore'): | |
res /= cres | |
res = res.ravel() | |
res = res[~np.isnan(res)] | |
xp_assert_close(res, np.zeros_like(res), atol=1e-10) | |
def test_extrapolate_attr(self): | |
# [ 1 - x**2 ] | |
c = np.array([[-1, 0, 1]]).T | |
x = np.array([0, 1]) | |
for extrapolate in [True, False, None]: | |
pp = PPoly(c, x, extrapolate=extrapolate) | |
pp_d = pp.derivative() | |
pp_i = pp.antiderivative() | |
if extrapolate is False: | |
assert np.isnan(pp([-0.1, 1.1])).all() | |
assert np.isnan(pp_i([-0.1, 1.1])).all() | |
assert np.isnan(pp_d([-0.1, 1.1])).all() | |
assert pp.roots() == [1] | |
else: | |
xp_assert_close(pp([-0.1, 1.1]), [1-0.1**2, 1-1.1**2]) | |
assert not np.isnan(pp_i([-0.1, 1.1])).any() | |
assert not np.isnan(pp_d([-0.1, 1.1])).any() | |
xp_assert_close(pp.roots(), np.asarray([1.0, -1.0])) | |
class TestBPoly: | |
def test_simple(self): | |
x = [0, 1] | |
c = [[3]] | |
bp = BPoly(c, x) | |
xp_assert_close(bp(0.1), np.asarray(3.)) | |
def test_simple2(self): | |
x = [0, 1] | |
c = [[3], [1]] | |
bp = BPoly(c, x) # 3*(1-x) + 1*x | |
xp_assert_close(bp(0.1), np.asarray(3*0.9 + 1.*0.1)) | |
def test_simple3(self): | |
x = [0, 1] | |
c = [[3], [1], [4]] | |
bp = BPoly(c, x) # 3 * (1-x)**2 + 2 * x (1-x) + 4 * x**2 | |
xp_assert_close(bp(0.2), | |
np.asarray(3 * 0.8*0.8 + 1 * 2*0.2*0.8 + 4 * 0.2*0.2)) | |
def test_simple4(self): | |
x = [0, 1] | |
c = [[1], [1], [1], [2]] | |
bp = BPoly(c, x) | |
xp_assert_close(bp(0.3), | |
np.asarray( 0.7**3 + | |
3 * 0.7**2 * 0.3 + | |
3 * 0.7 * 0.3**2 + | |
2 * 0.3**3) | |
) | |
def test_simple5(self): | |
x = [0, 1] | |
c = [[1], [1], [8], [2], [1]] | |
bp = BPoly(c, x) | |
xp_assert_close(bp(0.3), | |
np.asarray( 0.7**4 + | |
4 * 0.7**3 * 0.3 + | |
8 * 6 * 0.7**2 * 0.3**2 + | |
2 * 4 * 0.7 * 0.3**3 + | |
0.3**4) | |
) | |
def test_periodic(self): | |
x = [0, 1, 3] | |
c = [[3, 0], [0, 0], [0, 2]] | |
# [3*(1-x)**2, 2*((x-1)/2)**2] | |
bp = BPoly(c, x, extrapolate='periodic') | |
xp_assert_close(bp(3.4), np.asarray(3 * 0.6**2)) | |
xp_assert_close(bp(-1.3), np.asarray(2 * (0.7/2)**2)) | |
xp_assert_close(bp(3.4, 1), np.asarray(-6 * 0.6)) | |
xp_assert_close(bp(-1.3, 1), np.asarray(2 * (0.7/2))) | |
def test_descending(self): | |
rng = np.random.RandomState(0) | |
power = 3 | |
for m in [10, 20, 30]: | |
x = np.sort(rng.uniform(0, 10, m + 1)) | |
ca = rng.uniform(-0.1, 0.1, size=(power + 1, m)) | |
# We need only to flip coefficients to get it right! | |
cd = ca[::-1].copy() | |
pa = BPoly(ca, x, extrapolate=True) | |
pd = BPoly(cd[:, ::-1], x[::-1], extrapolate=True) | |
x_test = rng.uniform(-10, 20, 100) | |
xp_assert_close(pa(x_test), pd(x_test), rtol=1e-13) | |
xp_assert_close(pa(x_test, 1), pd(x_test, 1), rtol=1e-13) | |
pa_d = pa.derivative() | |
pd_d = pd.derivative() | |
xp_assert_close(pa_d(x_test), pd_d(x_test), rtol=1e-13) | |
# Antiderivatives won't be equal because fixing continuity is | |
# done in the reverse order, but surely the differences should be | |
# equal. | |
pa_i = pa.antiderivative() | |
pd_i = pd.antiderivative() | |
for a, b in rng.uniform(-10, 20, (5, 2)): | |
int_a = pa.integrate(a, b) | |
int_d = pd.integrate(a, b) | |
xp_assert_close(int_a, int_d, rtol=1e-12) | |
xp_assert_close(pa_i(b) - pa_i(a), pd_i(b) - pd_i(a), | |
rtol=1e-12) | |
def test_multi_shape(self): | |
rng = np.random.RandomState(1234) | |
c = rng.rand(6, 2, 1, 2, 3) | |
x = np.array([0, 0.5, 1]) | |
p = BPoly(c, x) | |
assert p.x.shape == x.shape | |
assert p.c.shape == c.shape | |
assert p(0.3).shape == c.shape[2:] | |
assert p(rng.rand(5, 6)).shape == (5, 6) + c.shape[2:] | |
dp = p.derivative() | |
assert dp.c.shape == (5, 2, 1, 2, 3) | |
def test_interval_length(self): | |
x = [0, 2] | |
c = [[3], [1], [4]] | |
bp = BPoly(c, x) | |
xval = 0.1 | |
s = xval / 2 # s = (x - xa) / (xb - xa) | |
xp_assert_close(bp(xval), | |
np.asarray(3 * (1-s)*(1-s) + 1 * 2*s*(1-s) + 4 * s*s) | |
) | |
def test_two_intervals(self): | |
x = [0, 1, 3] | |
c = [[3, 0], [0, 0], [0, 2]] | |
bp = BPoly(c, x) # [3*(1-x)**2, 2*((x-1)/2)**2] | |
xp_assert_close(bp(0.4), np.asarray(3 * 0.6*0.6)) | |
xp_assert_close(bp(1.7), np.asarray(2 * (0.7/2)**2)) | |
def test_extrapolate_attr(self): | |
x = [0, 2] | |
c = [[3], [1], [4]] | |
bp = BPoly(c, x) | |
for extrapolate in (True, False, None): | |
bp = BPoly(c, x, extrapolate=extrapolate) | |
bp_d = bp.derivative() | |
if extrapolate is False: | |
assert np.isnan(bp([-0.1, 2.1])).all() | |
assert np.isnan(bp_d([-0.1, 2.1])).all() | |
else: | |
assert not np.isnan(bp([-0.1, 2.1])).any() | |
assert not np.isnan(bp_d([-0.1, 2.1])).any() | |
class TestBPolyCalculus: | |
def test_derivative(self): | |
x = [0, 1, 3] | |
c = [[3, 0], [0, 0], [0, 2]] | |
bp = BPoly(c, x) # [3*(1-x)**2, 2*((x-1)/2)**2] | |
bp_der = bp.derivative() | |
xp_assert_close(bp_der(0.4), np.asarray(-6*(0.6))) | |
xp_assert_close(bp_der(1.7), np.asarray(0.7)) | |
# derivatives in-place | |
xp_assert_close(np.asarray([bp(0.4, nu) for nu in [1, 2, 3]]), | |
np.asarray([-6*(1-0.4), 6., 0.]) | |
) | |
xp_assert_close(np.asarray([bp(1.7, nu) for nu in [1, 2, 3]]), | |
np.asarray([0.7, 1., 0]) | |
) | |
def test_derivative_ppoly(self): | |
# make sure it's consistent w/ power basis | |
rng = np.random.RandomState(1234) | |
m, k = 5, 8 # number of intervals, order | |
x = np.sort(rng.random(m)) | |
c = rng.random((k, m-1)) | |
bp = BPoly(c, x) | |
pp = PPoly.from_bernstein_basis(bp) | |
for d in range(k): | |
bp = bp.derivative() | |
pp = pp.derivative() | |
xp = np.linspace(x[0], x[-1], 21) | |
xp_assert_close(bp(xp), pp(xp)) | |
def test_deriv_inplace(self): | |
rng = np.random.RandomState(1234) | |
m, k = 5, 8 # number of intervals, order | |
x = np.sort(rng.random(m)) | |
c = rng.random((k, m-1)) | |
# test both real and complex coefficients | |
for cc in [c.copy(), c*(1. + 2.j)]: | |
bp = BPoly(cc, x) | |
xp = np.linspace(x[0], x[-1], 21) | |
for i in range(k): | |
xp_assert_close(bp(xp, i), bp.derivative(i)(xp)) | |
def test_antiderivative_simple(self): | |
# f(x) = x for x \in [0, 1), | |
# (x-1)/2 for x \in [1, 3] | |
# | |
# antiderivative is then | |
# F(x) = x**2 / 2 for x \in [0, 1), | |
# 0.5*x*(x/2 - 1) + A for x \in [1, 3] | |
# where A = 3/4 for continuity at x = 1. | |
x = [0, 1, 3] | |
c = [[0, 0], [1, 1]] | |
bp = BPoly(c, x) | |
bi = bp.antiderivative() | |
xx = np.linspace(0, 3, 11) | |
xp_assert_close(bi(xx), | |
np.where(xx < 1, xx**2 / 2., | |
0.5 * xx * (xx/2. - 1) + 3./4), | |
atol=1e-12, rtol=1e-12) | |
def test_der_antider(self): | |
rng = np.random.RandomState(1234) | |
x = np.sort(rng.random(11)) | |
c = rng.random((4, 10, 2, 3)) | |
bp = BPoly(c, x) | |
xx = np.linspace(x[0], x[-1], 100) | |
xp_assert_close(bp.antiderivative().derivative()(xx), | |
bp(xx), atol=1e-12, rtol=1e-12) | |
def test_antider_ppoly(self): | |
rng = np.random.RandomState(1234) | |
x = np.sort(rng.random(11)) | |
c = rng.random((4, 10, 2, 3)) | |
bp = BPoly(c, x) | |
pp = PPoly.from_bernstein_basis(bp) | |
xx = np.linspace(x[0], x[-1], 10) | |
xp_assert_close(bp.antiderivative(2)(xx), | |
pp.antiderivative(2)(xx), atol=1e-12, rtol=1e-12) | |
def test_antider_continuous(self): | |
rng = np.random.RandomState(1234) | |
x = np.sort(rng.random(11)) | |
c = rng.random((4, 10)) | |
bp = BPoly(c, x).antiderivative() | |
xx = bp.x[1:-1] | |
xp_assert_close(bp(xx - 1e-14), | |
bp(xx + 1e-14), atol=1e-12, rtol=1e-12) | |
def test_integrate(self): | |
rng = np.random.RandomState(1234) | |
x = np.sort(rng.random(11)) | |
c = rng.random((4, 10)) | |
bp = BPoly(c, x) | |
pp = PPoly.from_bernstein_basis(bp) | |
xp_assert_close(bp.integrate(0, 1), | |
pp.integrate(0, 1), atol=1e-12, rtol=1e-12, check_0d=False) | |
def test_integrate_extrap(self): | |
c = [[1]] | |
x = [0, 1] | |
b = BPoly(c, x) | |
# default is extrapolate=True | |
xp_assert_close(b.integrate(0, 2), np.asarray(2.), | |
atol=1e-14, check_0d=False) | |
# .integrate argument overrides self.extrapolate | |
b1 = BPoly(c, x, extrapolate=False) | |
assert np.isnan(b1.integrate(0, 2)) | |
xp_assert_close(b1.integrate(0, 2, extrapolate=True), | |
np.asarray(2.), atol=1e-14, check_0d=False) | |
def test_integrate_periodic(self): | |
x = np.array([1, 2, 4]) | |
c = np.array([[0., 0.], [-1., -1.], [2., -0.], [1., 2.]]) | |
P = BPoly.from_power_basis(PPoly(c, x), extrapolate='periodic') | |
I = P.antiderivative() | |
period_int = I(4) - I(1) | |
xp_assert_close(P.integrate(1, 4), period_int) #, check_0d=False) | |
xp_assert_close(P.integrate(-10, -7), period_int) | |
xp_assert_close(P.integrate(-10, -4), 2 * period_int) | |
xp_assert_close(P.integrate(1.5, 2.5), I(2.5) - I(1.5)) | |
xp_assert_close(P.integrate(3.5, 5), I(2) - I(1) + I(4) - I(3.5)) | |
xp_assert_close(P.integrate(3.5 + 12, 5 + 12), | |
I(2) - I(1) + I(4) - I(3.5)) | |
xp_assert_close(P.integrate(3.5, 5 + 12), | |
I(2) - I(1) + I(4) - I(3.5) + 4 * period_int) | |
xp_assert_close(P.integrate(0, -1), I(2) - I(3)) | |
xp_assert_close(P.integrate(-9, -10), I(2) - I(3)) | |
xp_assert_close(P.integrate(0, -10), I(2) - I(3) - 3 * period_int) | |
def test_antider_neg(self): | |
# .derivative(-nu) ==> .andiderivative(nu) and vice versa | |
c = [[1]] | |
x = [0, 1] | |
b = BPoly(c, x) | |
xx = np.linspace(0, 1, 21) | |
xp_assert_close(b.derivative(-1)(xx), b.antiderivative()(xx), | |
atol=1e-12, rtol=1e-12) | |
xp_assert_close(b.derivative(1)(xx), b.antiderivative(-1)(xx), | |
atol=1e-12, rtol=1e-12) | |
class TestPolyConversions: | |
def test_bp_from_pp(self): | |
x = [0, 1, 3] | |
c = [[3, 2], [1, 8], [4, 3]] | |
pp = PPoly(c, x) | |
bp = BPoly.from_power_basis(pp) | |
pp1 = PPoly.from_bernstein_basis(bp) | |
xp = [0.1, 1.4] | |
xp_assert_close(pp(xp), bp(xp)) | |
xp_assert_close(pp(xp), pp1(xp)) | |
def test_bp_from_pp_random(self): | |
rng = np.random.RandomState(1234) | |
m, k = 5, 8 # number of intervals, order | |
x = np.sort(rng.random(m)) | |
c = rng.random((k, m-1)) | |
pp = PPoly(c, x) | |
bp = BPoly.from_power_basis(pp) | |
pp1 = PPoly.from_bernstein_basis(bp) | |
xp = np.linspace(x[0], x[-1], 21) | |
xp_assert_close(pp(xp), bp(xp)) | |
xp_assert_close(pp(xp), pp1(xp)) | |
def test_pp_from_bp(self): | |
x = [0, 1, 3] | |
c = [[3, 3], [1, 1], [4, 2]] | |
bp = BPoly(c, x) | |
pp = PPoly.from_bernstein_basis(bp) | |
bp1 = BPoly.from_power_basis(pp) | |
xp = [0.1, 1.4] | |
xp_assert_close(bp(xp), pp(xp)) | |
xp_assert_close(bp(xp), bp1(xp)) | |
def test_broken_conversions(self): | |
# regression test for gh-10597: from_power_basis only accepts PPoly etc. | |
x = [0, 1, 3] | |
c = [[3, 3], [1, 1], [4, 2]] | |
pp = PPoly(c, x) | |
with assert_raises(TypeError): | |
PPoly.from_bernstein_basis(pp) | |
bp = BPoly(c, x) | |
with assert_raises(TypeError): | |
BPoly.from_power_basis(bp) | |
class TestBPolyFromDerivatives: | |
def test_make_poly_1(self): | |
c1 = BPoly._construct_from_derivatives(0, 1, [2], [3]) | |
xp_assert_close(c1, [2., 3.]) | |
def test_make_poly_2(self): | |
c1 = BPoly._construct_from_derivatives(0, 1, [1, 0], [1]) | |
xp_assert_close(c1, [1., 1., 1.]) | |
# f'(0) = 3 | |
c2 = BPoly._construct_from_derivatives(0, 1, [2, 3], [1]) | |
xp_assert_close(c2, [2., 7./2, 1.]) | |
# f'(1) = 3 | |
c3 = BPoly._construct_from_derivatives(0, 1, [2], [1, 3]) | |
xp_assert_close(c3, [2., -0.5, 1.]) | |
def test_make_poly_3(self): | |
# f'(0)=2, f''(0)=3 | |
c1 = BPoly._construct_from_derivatives(0, 1, [1, 2, 3], [4]) | |
xp_assert_close(c1, [1., 5./3, 17./6, 4.]) | |
# f'(1)=2, f''(1)=3 | |
c2 = BPoly._construct_from_derivatives(0, 1, [1], [4, 2, 3]) | |
xp_assert_close(c2, [1., 19./6, 10./3, 4.]) | |
# f'(0)=2, f'(1)=3 | |
c3 = BPoly._construct_from_derivatives(0, 1, [1, 2], [4, 3]) | |
xp_assert_close(c3, [1., 5./3, 3., 4.]) | |
def test_make_poly_12(self): | |
rng = np.random.RandomState(12345) | |
ya = np.r_[0, rng.random(5)] | |
yb = np.r_[0, rng.random(5)] | |
c = BPoly._construct_from_derivatives(0, 1, ya, yb) | |
pp = BPoly(c[:, None], [0, 1]) | |
for j in range(6): | |
xp_assert_close(pp(0.), ya[j], check_0d=False) | |
xp_assert_close(pp(1.), yb[j], check_0d=False) | |
pp = pp.derivative() | |
def test_raise_degree(self): | |
rng = np.random.RandomState(12345) | |
x = [0, 1] | |
k, d = 8, 5 | |
c = rng.random((k, 1, 2, 3, 4)) | |
bp = BPoly(c, x) | |
c1 = BPoly._raise_degree(c, d) | |
bp1 = BPoly(c1, x) | |
xp = np.linspace(0, 1, 11) | |
xp_assert_close(bp(xp), bp1(xp)) | |
def test_xi_yi(self): | |
assert_raises(ValueError, BPoly.from_derivatives, [0, 1], [0]) | |
def test_coords_order(self): | |
xi = [0, 0, 1] | |
yi = [[0], [0], [0]] | |
assert_raises(ValueError, BPoly.from_derivatives, xi, yi) | |
def test_zeros(self): | |
xi = [0, 1, 2, 3] | |
yi = [[0, 0], [0], [0, 0], [0, 0]] # NB: will have to raise the degree | |
pp = BPoly.from_derivatives(xi, yi) | |
assert pp.c.shape == (4, 3) | |
ppd = pp.derivative() | |
for xp in [0., 0.1, 1., 1.1, 1.9, 2., 2.5]: | |
xp_assert_close(pp(xp), np.asarray(0.0)) | |
xp_assert_close(ppd(xp), np.asarray(0.0)) | |
def _make_random_mk(self, m, k): | |
# k derivatives at each breakpoint | |
rng = np.random.RandomState(1234) | |
xi = np.asarray([1. * j**2 for j in range(m+1)]) | |
yi = [rng.random(k) for j in range(m+1)] | |
return xi, yi | |
def test_random_12(self): | |
m, k = 5, 12 | |
xi, yi = self._make_random_mk(m, k) | |
pp = BPoly.from_derivatives(xi, yi) | |
for order in range(k//2): | |
xp_assert_close(pp(xi), [yy[order] for yy in yi]) | |
pp = pp.derivative() | |
def test_order_zero(self): | |
m, k = 5, 12 | |
xi, yi = self._make_random_mk(m, k) | |
assert_raises(ValueError, BPoly.from_derivatives, | |
**dict(xi=xi, yi=yi, orders=0)) | |
def test_orders_too_high(self): | |
m, k = 5, 12 | |
xi, yi = self._make_random_mk(m, k) | |
BPoly.from_derivatives(xi, yi, orders=2*k-1) # this is still ok | |
assert_raises(ValueError, BPoly.from_derivatives, # but this is not | |
**dict(xi=xi, yi=yi, orders=2*k)) | |
def test_orders_global(self): | |
m, k = 5, 12 | |
xi, yi = self._make_random_mk(m, k) | |
# ok, this is confusing. Local polynomials will be of the order 5 | |
# which means that up to the 2nd derivatives will be used at each point | |
order = 5 | |
pp = BPoly.from_derivatives(xi, yi, orders=order) | |
for j in range(order//2+1): | |
xp_assert_close(pp(xi[1:-1] - 1e-12), pp(xi[1:-1] + 1e-12)) | |
pp = pp.derivative() | |
assert not np.allclose(pp(xi[1:-1] - 1e-12), pp(xi[1:-1] + 1e-12)) | |
# now repeat with `order` being even: on each interval, it uses | |
# order//2 'derivatives' @ the right-hand endpoint and | |
# order//2+1 @ 'derivatives' the left-hand endpoint | |
order = 6 | |
pp = BPoly.from_derivatives(xi, yi, orders=order) | |
for j in range(order//2): | |
xp_assert_close(pp(xi[1:-1] - 1e-12), pp(xi[1:-1] + 1e-12)) | |
pp = pp.derivative() | |
assert not np.allclose(pp(xi[1:-1] - 1e-12), pp(xi[1:-1] + 1e-12)) | |
def test_orders_local(self): | |
m, k = 7, 12 | |
xi, yi = self._make_random_mk(m, k) | |
orders = [o + 1 for o in range(m)] | |
for i, x in enumerate(xi[1:-1]): | |
pp = BPoly.from_derivatives(xi, yi, orders=orders) | |
for j in range(orders[i] // 2 + 1): | |
xp_assert_close(pp(x - 1e-12), pp(x + 1e-12)) | |
pp = pp.derivative() | |
assert not np.allclose(pp(x - 1e-12), pp(x + 1e-12)) | |
def test_yi_trailing_dims(self): | |
rng = np.random.RandomState(1234) | |
m, k = 7, 5 | |
xi = np.sort(rng.random(m+1)) | |
yi = rng.random((m+1, k, 6, 7, 8)) | |
pp = BPoly.from_derivatives(xi, yi) | |
assert pp.c.shape == (2*k, m, 6, 7, 8) | |
def test_gh_5430(self): | |
# At least one of these raises an error unless gh-5430 is | |
# fixed. In py2k an int is implemented using a C long, so | |
# which one fails depends on your system. In py3k there is only | |
# one arbitrary precision integer type, so both should fail. | |
orders = np.int32(1) | |
p = BPoly.from_derivatives([0, 1], [[0], [0]], orders=orders) | |
assert_almost_equal(p(0), np.asarray(0)) | |
orders = np.int64(1) | |
p = BPoly.from_derivatives([0, 1], [[0], [0]], orders=orders) | |
assert_almost_equal(p(0), np.asarray(0)) | |
orders = 1 | |
# This worked before; make sure it still works | |
p = BPoly.from_derivatives([0, 1], [[0], [0]], orders=orders) | |
assert_almost_equal(p(0), np.asarray(0)) | |
orders = 1 | |
class TestNdPPoly: | |
def test_simple_1d(self): | |
rng = np.random.RandomState(1234) | |
c = rng.rand(4, 5) | |
x = np.linspace(0, 1, 5+1) | |
xi = rng.rand(200) | |
p = NdPPoly(c, (x,)) | |
v1 = p((xi,)) | |
v2 = _ppoly_eval_1(c[:,:,None], x, xi).ravel() | |
xp_assert_close(v1, v2) | |
def test_simple_2d(self): | |
rng = np.random.RandomState(1234) | |
c = rng.rand(4, 5, 6, 7) | |
x = np.linspace(0, 1, 6+1) | |
y = np.linspace(0, 1, 7+1)**2 | |
xi = rng.rand(200) | |
yi = rng.rand(200) | |
v1 = np.empty([len(xi), 1], dtype=c.dtype) | |
v1.fill(np.nan) | |
_ppoly.evaluate_nd(c.reshape(4*5, 6*7, 1), | |
(x, y), | |
np.array([4, 5], dtype=np.intc), | |
np.c_[xi, yi], | |
np.array([0, 0], dtype=np.intc), | |
1, | |
v1) | |
v1 = v1.ravel() | |
v2 = _ppoly2d_eval(c, (x, y), xi, yi) | |
xp_assert_close(v1, v2) | |
p = NdPPoly(c, (x, y)) | |
for nu in (None, (0, 0), (0, 1), (1, 0), (2, 3), (9, 2)): | |
v1 = p(np.c_[xi, yi], nu=nu) | |
v2 = _ppoly2d_eval(c, (x, y), xi, yi, nu=nu) | |
xp_assert_close(v1, v2, err_msg=repr(nu)) | |
def test_simple_3d(self): | |
rng = np.random.RandomState(1234) | |
c = rng.rand(4, 5, 6, 7, 8, 9) | |
x = np.linspace(0, 1, 7+1) | |
y = np.linspace(0, 1, 8+1)**2 | |
z = np.linspace(0, 1, 9+1)**3 | |
xi = rng.rand(40) | |
yi = rng.rand(40) | |
zi = rng.rand(40) | |
p = NdPPoly(c, (x, y, z)) | |
for nu in (None, (0, 0, 0), (0, 1, 0), (1, 0, 0), (2, 3, 0), | |
(6, 0, 2)): | |
v1 = p((xi, yi, zi), nu=nu) | |
v2 = _ppoly3d_eval(c, (x, y, z), xi, yi, zi, nu=nu) | |
xp_assert_close(v1, v2, err_msg=repr(nu)) | |
def test_simple_4d(self): | |
rng = np.random.RandomState(1234) | |
c = rng.rand(4, 5, 6, 7, 8, 9, 10, 11) | |
x = np.linspace(0, 1, 8+1) | |
y = np.linspace(0, 1, 9+1)**2 | |
z = np.linspace(0, 1, 10+1)**3 | |
u = np.linspace(0, 1, 11+1)**4 | |
xi = rng.rand(20) | |
yi = rng.rand(20) | |
zi = rng.rand(20) | |
ui = rng.rand(20) | |
p = NdPPoly(c, (x, y, z, u)) | |
v1 = p((xi, yi, zi, ui)) | |
v2 = _ppoly4d_eval(c, (x, y, z, u), xi, yi, zi, ui) | |
xp_assert_close(v1, v2) | |
def test_deriv_1d(self): | |
rng = np.random.RandomState(1234) | |
c = rng.rand(4, 5) | |
x = np.linspace(0, 1, 5+1) | |
p = NdPPoly(c, (x,)) | |
# derivative | |
dp = p.derivative(nu=[1]) | |
p1 = PPoly(c, x) | |
dp1 = p1.derivative() | |
xp_assert_close(dp.c, dp1.c) | |
# antiderivative | |
dp = p.antiderivative(nu=[2]) | |
p1 = PPoly(c, x) | |
dp1 = p1.antiderivative(2) | |
xp_assert_close(dp.c, dp1.c) | |
def test_deriv_3d(self): | |
rng = np.random.RandomState(1234) | |
c = rng.rand(4, 5, 6, 7, 8, 9) | |
x = np.linspace(0, 1, 7+1) | |
y = np.linspace(0, 1, 8+1)**2 | |
z = np.linspace(0, 1, 9+1)**3 | |
p = NdPPoly(c, (x, y, z)) | |
# differentiate vs x | |
p1 = PPoly(c.transpose(0, 3, 1, 2, 4, 5), x) | |
dp = p.derivative(nu=[2]) | |
dp1 = p1.derivative(2) | |
xp_assert_close(dp.c, | |
dp1.c.transpose(0, 2, 3, 1, 4, 5)) | |
# antidifferentiate vs y | |
p1 = PPoly(c.transpose(1, 4, 0, 2, 3, 5), y) | |
dp = p.antiderivative(nu=[0, 1, 0]) | |
dp1 = p1.antiderivative(1) | |
xp_assert_close(dp.c, | |
dp1.c.transpose(2, 0, 3, 4, 1, 5)) | |
# differentiate vs z | |
p1 = PPoly(c.transpose(2, 5, 0, 1, 3, 4), z) | |
dp = p.derivative(nu=[0, 0, 3]) | |
dp1 = p1.derivative(3) | |
xp_assert_close(dp.c, | |
dp1.c.transpose(2, 3, 0, 4, 5, 1)) | |
def test_deriv_3d_simple(self): | |
# Integrate to obtain function x y**2 z**4 / (2! 4!) | |
rng = np.random.RandomState(1234) | |
c = np.ones((1, 1, 1, 3, 4, 5)) | |
x = np.linspace(0, 1, 3+1)**1 | |
y = np.linspace(0, 1, 4+1)**2 | |
z = np.linspace(0, 1, 5+1)**3 | |
p = NdPPoly(c, (x, y, z)) | |
ip = p.antiderivative((1, 0, 4)) | |
ip = ip.antiderivative((0, 2, 0)) | |
xi = rng.rand(20) | |
yi = rng.rand(20) | |
zi = rng.rand(20) | |
xp_assert_close(ip((xi, yi, zi)), | |
xi * yi**2 * zi**4 / (gamma(3)*gamma(5))) | |
def test_integrate_2d(self): | |
rng = np.random.RandomState(1234) | |
c = rng.rand(4, 5, 16, 17) | |
x = np.linspace(0, 1, 16+1)**1 | |
y = np.linspace(0, 1, 17+1)**2 | |
# make continuously differentiable so that nquad() has an | |
# easier time | |
c = c.transpose(0, 2, 1, 3) | |
cx = c.reshape(c.shape[0], c.shape[1], -1).copy() | |
_ppoly.fix_continuity(cx, x, 2) | |
c = cx.reshape(c.shape) | |
c = c.transpose(0, 2, 1, 3) | |
c = c.transpose(1, 3, 0, 2) | |
cx = c.reshape(c.shape[0], c.shape[1], -1).copy() | |
_ppoly.fix_continuity(cx, y, 2) | |
c = cx.reshape(c.shape) | |
c = c.transpose(2, 0, 3, 1).copy() | |
# Check integration | |
p = NdPPoly(c, (x, y)) | |
for ranges in [[(0, 1), (0, 1)], | |
[(0, 0.5), (0, 1)], | |
[(0, 1), (0, 0.5)], | |
[(0.3, 0.7), (0.6, 0.2)]]: | |
ig = p.integrate(ranges) | |
ig2, err2 = nquad(lambda x, y: p((x, y)), ranges, | |
opts=[dict(epsrel=1e-5, epsabs=1e-5)]*2) | |
xp_assert_close(ig, ig2, rtol=1e-5, atol=1e-5, check_0d=False, | |
err_msg=repr(ranges)) | |
def test_integrate_1d(self): | |
rng = np.random.RandomState(1234) | |
c = rng.rand(4, 5, 6, 16, 17, 18) | |
x = np.linspace(0, 1, 16+1)**1 | |
y = np.linspace(0, 1, 17+1)**2 | |
z = np.linspace(0, 1, 18+1)**3 | |
# Check 1-D integration | |
p = NdPPoly(c, (x, y, z)) | |
u = rng.rand(200) | |
v = rng.rand(200) | |
a, b = 0.2, 0.7 | |
px = p.integrate_1d(a, b, axis=0) | |
pax = p.antiderivative((1, 0, 0)) | |
xp_assert_close(px((u, v)), pax((b, u, v)) - pax((a, u, v))) | |
py = p.integrate_1d(a, b, axis=1) | |
pay = p.antiderivative((0, 1, 0)) | |
xp_assert_close(py((u, v)), pay((u, b, v)) - pay((u, a, v))) | |
pz = p.integrate_1d(a, b, axis=2) | |
paz = p.antiderivative((0, 0, 1)) | |
xp_assert_close(pz((u, v)), paz((u, v, b)) - paz((u, v, a))) | |
def test_concurrency(self): | |
rng = np.random.default_rng(12345) | |
c = rng.uniform(size=(4, 5, 6, 7, 8, 9)) | |
x = np.linspace(0, 1, 7+1) | |
y = np.linspace(0, 1, 8+1)**2 | |
z = np.linspace(0, 1, 9+1)**3 | |
p = NdPPoly(c, (x, y, z)) | |
def worker_fn(_, spl): | |
xi = rng.uniform(size=40) | |
yi = rng.uniform(size=40) | |
zi = rng.uniform(size=40) | |
spl((xi, yi, zi)) | |
_run_concurrent_barrier(10, worker_fn, p) | |
def _ppoly_eval_1(c, x, xps): | |
"""Evaluate piecewise polynomial manually""" | |
out = np.zeros((len(xps), c.shape[2])) | |
for i, xp in enumerate(xps): | |
if xp < 0 or xp > 1: | |
out[i,:] = np.nan | |
continue | |
j = np.searchsorted(x, xp) - 1 | |
d = xp - x[j] | |
assert x[j] <= xp < x[j+1] | |
r = sum(c[k,j] * d**(c.shape[0]-k-1) | |
for k in range(c.shape[0])) | |
out[i,:] = r | |
return out | |
def _ppoly_eval_2(coeffs, breaks, xnew, fill=np.nan): | |
"""Evaluate piecewise polynomial manually (another way)""" | |
a = breaks[0] | |
b = breaks[-1] | |
K = coeffs.shape[0] | |
saveshape = np.shape(xnew) | |
xnew = np.ravel(xnew) | |
res = np.empty_like(xnew) | |
mask = (xnew >= a) & (xnew <= b) | |
res[~mask] = fill | |
xx = xnew.compress(mask) | |
indxs = np.searchsorted(breaks, xx)-1 | |
indxs = indxs.clip(0, len(breaks)) | |
pp = coeffs | |
diff = xx - breaks.take(indxs) | |
V = np.vander(diff, N=K) | |
values = np.array([np.dot(V[k, :], pp[:, indxs[k]]) for k in range(len(xx))]) | |
res[mask] = values | |
res.shape = saveshape | |
return res | |
def _dpow(x, y, n): | |
""" | |
d^n (x**y) / dx^n | |
""" | |
if n < 0: | |
raise ValueError("invalid derivative order") | |
elif n > y: | |
return 0 | |
else: | |
return poch(y - n + 1, n) * x**(y - n) | |
def _ppoly2d_eval(c, xs, xnew, ynew, nu=None): | |
""" | |
Straightforward evaluation of 2-D piecewise polynomial | |
""" | |
if nu is None: | |
nu = (0, 0) | |
out = np.empty((len(xnew),), dtype=c.dtype) | |
nx, ny = c.shape[:2] | |
for jout, (x, y) in enumerate(zip(xnew, ynew)): | |
if not ((xs[0][0] <= x <= xs[0][-1]) and | |
(xs[1][0] <= y <= xs[1][-1])): | |
out[jout] = np.nan | |
continue | |
j1 = np.searchsorted(xs[0], x) - 1 | |
j2 = np.searchsorted(xs[1], y) - 1 | |
s1 = x - xs[0][j1] | |
s2 = y - xs[1][j2] | |
val = 0 | |
for k1 in range(c.shape[0]): | |
for k2 in range(c.shape[1]): | |
val += (c[nx-k1-1,ny-k2-1,j1,j2] | |
* _dpow(s1, k1, nu[0]) | |
* _dpow(s2, k2, nu[1])) | |
out[jout] = val | |
return out | |
def _ppoly3d_eval(c, xs, xnew, ynew, znew, nu=None): | |
""" | |
Straightforward evaluation of 3-D piecewise polynomial | |
""" | |
if nu is None: | |
nu = (0, 0, 0) | |
out = np.empty((len(xnew),), dtype=c.dtype) | |
nx, ny, nz = c.shape[:3] | |
for jout, (x, y, z) in enumerate(zip(xnew, ynew, znew)): | |
if not ((xs[0][0] <= x <= xs[0][-1]) and | |
(xs[1][0] <= y <= xs[1][-1]) and | |
(xs[2][0] <= z <= xs[2][-1])): | |
out[jout] = np.nan | |
continue | |
j1 = np.searchsorted(xs[0], x) - 1 | |
j2 = np.searchsorted(xs[1], y) - 1 | |
j3 = np.searchsorted(xs[2], z) - 1 | |
s1 = x - xs[0][j1] | |
s2 = y - xs[1][j2] | |
s3 = z - xs[2][j3] | |
val = 0 | |
for k1 in range(c.shape[0]): | |
for k2 in range(c.shape[1]): | |
for k3 in range(c.shape[2]): | |
val += (c[nx-k1-1,ny-k2-1,nz-k3-1,j1,j2,j3] | |
* _dpow(s1, k1, nu[0]) | |
* _dpow(s2, k2, nu[1]) | |
* _dpow(s3, k3, nu[2])) | |
out[jout] = val | |
return out | |
def _ppoly4d_eval(c, xs, xnew, ynew, znew, unew, nu=None): | |
""" | |
Straightforward evaluation of 4-D piecewise polynomial | |
""" | |
if nu is None: | |
nu = (0, 0, 0, 0) | |
out = np.empty((len(xnew),), dtype=c.dtype) | |
mx, my, mz, mu = c.shape[:4] | |
for jout, (x, y, z, u) in enumerate(zip(xnew, ynew, znew, unew)): | |
if not ((xs[0][0] <= x <= xs[0][-1]) and | |
(xs[1][0] <= y <= xs[1][-1]) and | |
(xs[2][0] <= z <= xs[2][-1]) and | |
(xs[3][0] <= u <= xs[3][-1])): | |
out[jout] = np.nan | |
continue | |
j1 = np.searchsorted(xs[0], x) - 1 | |
j2 = np.searchsorted(xs[1], y) - 1 | |
j3 = np.searchsorted(xs[2], z) - 1 | |
j4 = np.searchsorted(xs[3], u) - 1 | |
s1 = x - xs[0][j1] | |
s2 = y - xs[1][j2] | |
s3 = z - xs[2][j3] | |
s4 = u - xs[3][j4] | |
val = 0 | |
for k1 in range(c.shape[0]): | |
for k2 in range(c.shape[1]): | |
for k3 in range(c.shape[2]): | |
for k4 in range(c.shape[3]): | |
val += (c[mx-k1-1,my-k2-1,mz-k3-1,mu-k4-1,j1,j2,j3,j4] | |
* _dpow(s1, k1, nu[0]) | |
* _dpow(s2, k2, nu[1]) | |
* _dpow(s3, k3, nu[2]) | |
* _dpow(s4, k4, nu[3])) | |
out[jout] = val | |
return out | |