|
import os |
|
import os.path |
|
|
|
import numpy as np |
|
from numpy.testing import suppress_warnings |
|
|
|
from scipy._lib._array_api import ( |
|
is_jax, |
|
is_torch, |
|
array_namespace, |
|
xp_assert_equal, |
|
xp_assert_close, |
|
assert_array_almost_equal, |
|
assert_almost_equal, |
|
) |
|
|
|
import pytest |
|
from pytest import raises as assert_raises |
|
|
|
import scipy.ndimage as ndimage |
|
|
|
from . import types |
|
|
|
from scipy.conftest import array_api_compatible |
|
skip_xp_backends = pytest.mark.skip_xp_backends |
|
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_xp_backends"), |
|
skip_xp_backends(cpu_only=True, exceptions=['cupy', 'jax.numpy'],)] |
|
|
|
IS_WINDOWS_AND_NP1 = os.name == 'nt' and np.__version__ < '2' |
|
|
|
|
|
@skip_xp_backends(np_only=True, reason='test internal numpy-only helpers') |
|
class Test_measurements_stats: |
|
"""ndimage._measurements._stats() is a utility used by other functions. |
|
|
|
Since internal ndimage/_measurements.py code is NumPy-only, |
|
so is this this test class. |
|
""" |
|
def test_a(self, xp): |
|
x = [0, 1, 2, 6] |
|
labels = [0, 0, 1, 1] |
|
index = [0, 1] |
|
for shp in [(4,), (2, 2)]: |
|
x = np.array(x).reshape(shp) |
|
labels = np.array(labels).reshape(shp) |
|
counts, sums = ndimage._measurements._stats( |
|
x, labels=labels, index=index) |
|
|
|
dtype_arg = {'dtype': np.int64} if IS_WINDOWS_AND_NP1 else {} |
|
xp_assert_equal(counts, np.asarray([2, 2], **dtype_arg)) |
|
xp_assert_equal(sums, np.asarray([1.0, 8.0])) |
|
|
|
def test_b(self, xp): |
|
|
|
|
|
x = [0, 1, 2, 6] |
|
labels = [0, 0, 9, 9] |
|
index = [0, 9] |
|
for shp in [(4,), (2, 2)]: |
|
x = np.array(x).reshape(shp) |
|
labels = np.array(labels).reshape(shp) |
|
counts, sums = ndimage._measurements._stats( |
|
x, labels=labels, index=index) |
|
|
|
dtype_arg = {'dtype': np.int64} if IS_WINDOWS_AND_NP1 else {} |
|
xp_assert_equal(counts, np.asarray([2, 2], **dtype_arg)) |
|
xp_assert_equal(sums, np.asarray([1.0, 8.0])) |
|
|
|
def test_a_centered(self, xp): |
|
x = [0, 1, 2, 6] |
|
labels = [0, 0, 1, 1] |
|
index = [0, 1] |
|
for shp in [(4,), (2, 2)]: |
|
x = np.array(x).reshape(shp) |
|
labels = np.array(labels).reshape(shp) |
|
counts, sums, centers = ndimage._measurements._stats( |
|
x, labels=labels, index=index, centered=True) |
|
|
|
dtype_arg = {'dtype': np.int64} if IS_WINDOWS_AND_NP1 else {} |
|
xp_assert_equal(counts, np.asarray([2, 2], **dtype_arg)) |
|
xp_assert_equal(sums, np.asarray([1.0, 8.0])) |
|
xp_assert_equal(centers, np.asarray([0.5, 8.0])) |
|
|
|
def test_b_centered(self, xp): |
|
x = [0, 1, 2, 6] |
|
labels = [0, 0, 9, 9] |
|
index = [0, 9] |
|
for shp in [(4,), (2, 2)]: |
|
x = np.array(x).reshape(shp) |
|
labels = np.array(labels).reshape(shp) |
|
counts, sums, centers = ndimage._measurements._stats( |
|
x, labels=labels, index=index, centered=True) |
|
|
|
dtype_arg = {'dtype': np.int64} if IS_WINDOWS_AND_NP1 else {} |
|
xp_assert_equal(counts, np.asarray([2, 2], **dtype_arg)) |
|
xp_assert_equal(sums, np.asarray([1.0, 8.0])) |
|
xp_assert_equal(centers, np.asarray([0.5, 8.0])) |
|
|
|
def test_nonint_labels(self, xp): |
|
x = [0, 1, 2, 6] |
|
labels = [0.0, 0.0, 9.0, 9.0] |
|
index = [0.0, 9.0] |
|
for shp in [(4,), (2, 2)]: |
|
x = np.array(x).reshape(shp) |
|
labels = np.array(labels).reshape(shp) |
|
counts, sums, centers = ndimage._measurements._stats( |
|
x, labels=labels, index=index, centered=True) |
|
|
|
dtype_arg = {'dtype': np.int64} if IS_WINDOWS_AND_NP1 else {} |
|
xp_assert_equal(counts, np.asarray([2, 2], **dtype_arg)) |
|
xp_assert_equal(sums, np.asarray([1.0, 8.0])) |
|
xp_assert_equal(centers, np.asarray([0.5, 8.0])) |
|
|
|
|
|
class Test_measurements_select: |
|
"""ndimage._measurements._select() is a utility used by other functions.""" |
|
|
|
def test_basic(self, xp): |
|
x = [0, 1, 6, 2] |
|
cases = [ |
|
([0, 0, 1, 1], [0, 1]), |
|
([0, 0, 9, 9], [0, 9]), |
|
([0.0, 0.0, 7.0, 7.0], [0.0, 7.0]), |
|
] |
|
for labels, index in cases: |
|
result = ndimage._measurements._select( |
|
x, labels=labels, index=index) |
|
assert len(result) == 0 |
|
result = ndimage._measurements._select( |
|
x, labels=labels, index=index, find_max=True) |
|
assert len(result) == 1 |
|
xp_assert_equal(result[0], [1, 6]) |
|
result = ndimage._measurements._select( |
|
x, labels=labels, index=index, find_min=True) |
|
assert len(result) == 1 |
|
xp_assert_equal(result[0], [0, 2]) |
|
result = ndimage._measurements._select( |
|
x, labels=labels, index=index, find_min=True, |
|
find_min_positions=True) |
|
assert len(result) == 2 |
|
xp_assert_equal(result[0], [0, 2]) |
|
xp_assert_equal(result[1], [0, 3]) |
|
assert result[1].dtype.kind == 'i' |
|
result = ndimage._measurements._select( |
|
x, labels=labels, index=index, find_max=True, |
|
find_max_positions=True) |
|
assert len(result) == 2 |
|
xp_assert_equal(result[0], [1, 6]) |
|
xp_assert_equal(result[1], [1, 2]) |
|
assert result[1].dtype.kind == 'i' |
|
|
|
|
|
def test_label01(xp): |
|
data = xp.ones([]) |
|
out, n = ndimage.label(data) |
|
assert out == 1 |
|
assert n == 1 |
|
|
|
|
|
def test_label02(xp): |
|
data = xp.zeros([]) |
|
out, n = ndimage.label(data) |
|
assert out == 0 |
|
assert n == 0 |
|
|
|
|
|
@pytest.mark.thread_unsafe |
|
def test_label03(xp): |
|
data = xp.ones([1]) |
|
out, n = ndimage.label(data) |
|
assert_array_almost_equal(out, xp.asarray([1])) |
|
assert n == 1 |
|
|
|
|
|
def test_label04(xp): |
|
data = xp.zeros([1]) |
|
out, n = ndimage.label(data) |
|
assert_array_almost_equal(out, xp.asarray([0])) |
|
assert n == 0 |
|
|
|
|
|
def test_label05(xp): |
|
data = xp.ones([5]) |
|
out, n = ndimage.label(data) |
|
assert_array_almost_equal(out, xp.asarray([1, 1, 1, 1, 1])) |
|
assert n == 1 |
|
|
|
|
|
def test_label06(xp): |
|
data = xp.asarray([1, 0, 1, 1, 0, 1]) |
|
out, n = ndimage.label(data) |
|
assert_array_almost_equal(out, xp.asarray([1, 0, 2, 2, 0, 3])) |
|
assert n == 3 |
|
|
|
|
|
def test_label07(xp): |
|
data = xp.asarray([[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0]]) |
|
out, n = ndimage.label(data) |
|
assert_array_almost_equal(out, xp.asarray( |
|
[[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0]])) |
|
assert n == 0 |
|
|
|
|
|
def test_label08(xp): |
|
data = xp.asarray([[1, 0, 0, 0, 0, 0], |
|
[0, 0, 1, 1, 0, 0], |
|
[0, 0, 1, 1, 1, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[0, 0, 0, 1, 1, 0]]) |
|
out, n = ndimage.label(data) |
|
assert_array_almost_equal(out, xp.asarray([[1, 0, 0, 0, 0, 0], |
|
[0, 0, 2, 2, 0, 0], |
|
[0, 0, 2, 2, 2, 0], |
|
[3, 3, 0, 0, 0, 0], |
|
[3, 3, 0, 0, 0, 0], |
|
[0, 0, 0, 4, 4, 0]])) |
|
assert n == 4 |
|
|
|
|
|
def test_label09(xp): |
|
data = xp.asarray([[1, 0, 0, 0, 0, 0], |
|
[0, 0, 1, 1, 0, 0], |
|
[0, 0, 1, 1, 1, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[0, 0, 0, 1, 1, 0]]) |
|
struct = ndimage.generate_binary_structure(2, 2) |
|
struct = xp.asarray(struct) |
|
out, n = ndimage.label(data, struct) |
|
assert_array_almost_equal(out, xp.asarray([[1, 0, 0, 0, 0, 0], |
|
[0, 0, 2, 2, 0, 0], |
|
[0, 0, 2, 2, 2, 0], |
|
[2, 2, 0, 0, 0, 0], |
|
[2, 2, 0, 0, 0, 0], |
|
[0, 0, 0, 3, 3, 0]])) |
|
assert n == 3 |
|
|
|
|
|
def test_label10(xp): |
|
data = xp.asarray([[0, 0, 0, 0, 0, 0], |
|
[0, 1, 1, 0, 1, 0], |
|
[0, 1, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 0]]) |
|
struct = ndimage.generate_binary_structure(2, 2) |
|
struct = xp.asarray(struct) |
|
out, n = ndimage.label(data, struct) |
|
assert_array_almost_equal(out, xp.asarray([[0, 0, 0, 0, 0, 0], |
|
[0, 1, 1, 0, 1, 0], |
|
[0, 1, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 0]])) |
|
assert n == 1 |
|
|
|
|
|
def test_label11(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
data = xp.asarray([[1, 0, 0, 0, 0, 0], |
|
[0, 0, 1, 1, 0, 0], |
|
[0, 0, 1, 1, 1, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[0, 0, 0, 1, 1, 0]], dtype=dtype) |
|
out, n = ndimage.label(data) |
|
expected = [[1, 0, 0, 0, 0, 0], |
|
[0, 0, 2, 2, 0, 0], |
|
[0, 0, 2, 2, 2, 0], |
|
[3, 3, 0, 0, 0, 0], |
|
[3, 3, 0, 0, 0, 0], |
|
[0, 0, 0, 4, 4, 0]] |
|
expected = xp.asarray(expected) |
|
assert_array_almost_equal(out, expected) |
|
assert n == 4 |
|
|
|
|
|
@skip_xp_backends(np_only=True, reason='inplace output is numpy-specific') |
|
def test_label11_inplace(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
data = xp.asarray([[1, 0, 0, 0, 0, 0], |
|
[0, 0, 1, 1, 0, 0], |
|
[0, 0, 1, 1, 1, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[0, 0, 0, 1, 1, 0]], dtype=dtype) |
|
n = ndimage.label(data, output=data) |
|
expected = [[1, 0, 0, 0, 0, 0], |
|
[0, 0, 2, 2, 0, 0], |
|
[0, 0, 2, 2, 2, 0], |
|
[3, 3, 0, 0, 0, 0], |
|
[3, 3, 0, 0, 0, 0], |
|
[0, 0, 0, 4, 4, 0]] |
|
expected = xp.asarray(expected) |
|
assert_array_almost_equal(data, expected) |
|
assert n == 4 |
|
|
|
|
|
def test_label12(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
data = xp.asarray([[0, 0, 0, 0, 1, 1], |
|
[0, 0, 0, 0, 0, 1], |
|
[0, 0, 1, 0, 1, 1], |
|
[0, 0, 1, 1, 1, 1], |
|
[0, 0, 0, 1, 1, 0]], dtype=dtype) |
|
out, n = ndimage.label(data) |
|
expected = [[0, 0, 0, 0, 1, 1], |
|
[0, 0, 0, 0, 0, 1], |
|
[0, 0, 1, 0, 1, 1], |
|
[0, 0, 1, 1, 1, 1], |
|
[0, 0, 0, 1, 1, 0]] |
|
expected = xp.asarray(expected) |
|
assert_array_almost_equal(out, expected) |
|
assert n == 1 |
|
|
|
|
|
def test_label13(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
data = xp.asarray([[1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1], |
|
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1], |
|
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], |
|
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], |
|
dtype=dtype) |
|
out, n = ndimage.label(data) |
|
expected = [[1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1], |
|
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1], |
|
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], |
|
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] |
|
expected = xp.asarray(expected) |
|
assert_array_almost_equal(out, expected) |
|
assert n == 1 |
|
|
|
|
|
@skip_xp_backends(np_only=True, reason='output=dtype is numpy-specific') |
|
def test_label_output_typed(xp): |
|
data = xp.ones([5]) |
|
for t in types: |
|
dtype = getattr(xp, t) |
|
output = xp.zeros([5], dtype=dtype) |
|
n = ndimage.label(data, output=output) |
|
assert_array_almost_equal(output, |
|
xp.ones(output.shape, dtype=output.dtype)) |
|
assert n == 1 |
|
|
|
|
|
@skip_xp_backends(np_only=True, reason='output=dtype is numpy-specific') |
|
def test_label_output_dtype(xp): |
|
data = xp.ones([5]) |
|
for t in types: |
|
dtype = getattr(xp, t) |
|
output, n = ndimage.label(data, output=dtype) |
|
assert_array_almost_equal(output, |
|
xp.ones(output.shape, dtype=output.dtype)) |
|
assert output.dtype == t |
|
|
|
|
|
def test_label_output_wrong_size(xp): |
|
if is_jax(xp): |
|
pytest.xfail("JAX does not raise") |
|
|
|
data = xp.ones([5]) |
|
for t in types: |
|
dtype = getattr(xp, t) |
|
output = xp.zeros([10], dtype=dtype) |
|
|
|
assert_raises((ValueError, TypeError), |
|
ndimage.label, data, output=output) |
|
|
|
|
|
def test_label_structuring_elements(xp): |
|
data = np.loadtxt(os.path.join(os.path.dirname( |
|
__file__), "data", "label_inputs.txt")) |
|
strels = np.loadtxt(os.path.join( |
|
os.path.dirname(__file__), "data", "label_strels.txt")) |
|
results = np.loadtxt(os.path.join( |
|
os.path.dirname(__file__), "data", "label_results.txt")) |
|
data = data.reshape((-1, 7, 7)) |
|
strels = strels.reshape((-1, 3, 3)) |
|
results = results.reshape((-1, 7, 7)) |
|
|
|
data = xp.asarray(data) |
|
strels = xp.asarray(strels) |
|
results = xp.asarray(results) |
|
r = 0 |
|
for i in range(data.shape[0]): |
|
d = data[i, :, :] |
|
for j in range(strels.shape[0]): |
|
s = strels[j, :, :] |
|
xp_assert_equal(ndimage.label(d, s)[0], results[r, :, :], check_dtype=False) |
|
r += 1 |
|
|
|
@skip_xp_backends("cupy", |
|
reason="`cupyx.scipy.ndimage` does not have `find_objects`" |
|
) |
|
def test_ticket_742(xp): |
|
def SE(img, thresh=.7, size=4): |
|
mask = img > thresh |
|
rank = len(mask.shape) |
|
struct = ndimage.generate_binary_structure(rank, rank) |
|
struct = xp.asarray(struct) |
|
la, co = ndimage.label(mask, |
|
struct) |
|
_ = ndimage.find_objects(la) |
|
|
|
if np.dtype(np.intp) != np.dtype('i'): |
|
shape = (3, 1240, 1240) |
|
a = np.random.rand(np.prod(shape)).reshape(shape) |
|
a = xp.asarray(a) |
|
|
|
SE(a) |
|
|
|
|
|
def test_gh_issue_3025(xp): |
|
"""Github issue #3025 - improper merging of labels""" |
|
d = np.zeros((60, 320)) |
|
d[:, :257] = 1 |
|
d[:, 260:] = 1 |
|
d[36, 257] = 1 |
|
d[35, 258] = 1 |
|
d[35, 259] = 1 |
|
d = xp.asarray(d) |
|
assert ndimage.label(d, xp.ones((3, 3)))[1] == 1 |
|
|
|
|
|
@skip_xp_backends("cupy", reason="cupyx.scipy.ndimage does not have find_object") |
|
class TestFindObjects: |
|
def test_label_default_dtype(self, xp): |
|
test_array = np.random.rand(10, 10) |
|
test_array = xp.asarray(test_array) |
|
label, no_features = ndimage.label(test_array > 0.5) |
|
assert label.dtype in (xp.int32, xp.int64) |
|
|
|
ndimage.find_objects(label) |
|
|
|
|
|
def test_find_objects01(self, xp): |
|
data = xp.ones([], dtype=xp.int64) |
|
out = ndimage.find_objects(data) |
|
assert out == [()] |
|
|
|
|
|
def test_find_objects02(self, xp): |
|
data = xp.zeros([], dtype=xp.int64) |
|
out = ndimage.find_objects(data) |
|
assert out == [] |
|
|
|
|
|
def test_find_objects03(self, xp): |
|
data = xp.ones([1], dtype=xp.int64) |
|
out = ndimage.find_objects(data) |
|
assert out == [(slice(0, 1, None),)] |
|
|
|
|
|
def test_find_objects04(self, xp): |
|
data = xp.zeros([1], dtype=xp.int64) |
|
out = ndimage.find_objects(data) |
|
assert out == [] |
|
|
|
|
|
def test_find_objects05(self, xp): |
|
data = xp.ones([5], dtype=xp.int64) |
|
out = ndimage.find_objects(data) |
|
assert out == [(slice(0, 5, None),)] |
|
|
|
|
|
def test_find_objects06(self, xp): |
|
data = xp.asarray([1, 0, 2, 2, 0, 3]) |
|
out = ndimage.find_objects(data) |
|
assert out == [(slice(0, 1, None),), |
|
(slice(2, 4, None),), |
|
(slice(5, 6, None),)] |
|
|
|
|
|
def test_find_objects07(self, xp): |
|
data = xp.asarray([[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0]]) |
|
out = ndimage.find_objects(data) |
|
assert out == [] |
|
|
|
|
|
def test_find_objects08(self, xp): |
|
data = xp.asarray([[1, 0, 0, 0, 0, 0], |
|
[0, 0, 2, 2, 0, 0], |
|
[0, 0, 2, 2, 2, 0], |
|
[3, 3, 0, 0, 0, 0], |
|
[3, 3, 0, 0, 0, 0], |
|
[0, 0, 0, 4, 4, 0]]) |
|
out = ndimage.find_objects(data) |
|
assert out == [(slice(0, 1, None), slice(0, 1, None)), |
|
(slice(1, 3, None), slice(2, 5, None)), |
|
(slice(3, 5, None), slice(0, 2, None)), |
|
(slice(5, 6, None), slice(3, 5, None))] |
|
|
|
|
|
def test_find_objects09(self, xp): |
|
data = xp.asarray([[1, 0, 0, 0, 0, 0], |
|
[0, 0, 2, 2, 0, 0], |
|
[0, 0, 2, 2, 2, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 4, 4, 0]]) |
|
out = ndimage.find_objects(data) |
|
assert out == [(slice(0, 1, None), slice(0, 1, None)), |
|
(slice(1, 3, None), slice(2, 5, None)), |
|
None, |
|
(slice(5, 6, None), slice(3, 5, None))] |
|
|
|
|
|
def test_value_indices01(xp): |
|
"Test dictionary keys and entries" |
|
data = xp.asarray([[1, 0, 0, 0, 0, 0], |
|
[0, 0, 2, 2, 0, 0], |
|
[0, 0, 2, 2, 2, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 4, 4, 0]]) |
|
vi = ndimage.value_indices(data, ignore_value=0) |
|
true_keys = [1, 2, 4] |
|
assert list(vi.keys()) == true_keys |
|
|
|
nnz_kwd = {'as_tuple': True} if is_torch(xp) else {} |
|
|
|
truevi = {} |
|
for k in true_keys: |
|
truevi[k] = xp.nonzero(data == k, **nnz_kwd) |
|
|
|
vi = ndimage.value_indices(data, ignore_value=0) |
|
assert vi.keys() == truevi.keys() |
|
for key in vi.keys(): |
|
assert len(vi[key]) == len(truevi[key]) |
|
for v, true_v in zip(vi[key], truevi[key]): |
|
xp_assert_equal(v, true_v) |
|
|
|
|
|
def test_value_indices02(xp): |
|
"Test input checking" |
|
data = xp.zeros((5, 4), dtype=xp.float32) |
|
msg = "Parameter 'arr' must be an integer array" |
|
with assert_raises(ValueError, match=msg): |
|
ndimage.value_indices(data) |
|
|
|
|
|
def test_value_indices03(xp): |
|
"Test different input array shapes, from 1-D to 4-D" |
|
for shape in [(36,), (18, 2), (3, 3, 4), (3, 3, 2, 2)]: |
|
a = xp.asarray((12*[1]+12*[2]+12*[3]), dtype=xp.int32) |
|
a = xp.reshape(a, shape) |
|
|
|
nnz_kwd = {'as_tuple': True} if is_torch(xp) else {} |
|
|
|
unique_values = array_namespace(a).unique_values |
|
trueKeys = unique_values(a) |
|
vi = ndimage.value_indices(a) |
|
assert list(vi.keys()) == list(trueKeys) |
|
for k in [int(x) for x in trueKeys]: |
|
trueNdx = xp.nonzero(a == k, **nnz_kwd) |
|
assert len(vi[k]) == len(trueNdx) |
|
for vik, true_vik in zip(vi[k], trueNdx): |
|
xp_assert_equal(vik, true_vik) |
|
|
|
|
|
def test_sum01(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([], dtype=dtype) |
|
output = ndimage.sum(input) |
|
assert output == 0 |
|
|
|
|
|
def test_sum02(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.zeros([0, 4], dtype=dtype) |
|
output = ndimage.sum(input) |
|
assert output == 0 |
|
|
|
|
|
def test_sum03(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.ones([], dtype=dtype) |
|
output = ndimage.sum(input) |
|
assert_almost_equal(output, xp.asarray(1.0), check_0d=False) |
|
|
|
|
|
def test_sum04(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([1, 2], dtype=dtype) |
|
output = ndimage.sum(input) |
|
assert_almost_equal(output, xp.asarray(3.0), check_0d=False) |
|
|
|
|
|
def test_sum05(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.sum(input) |
|
assert_almost_equal(output, xp.asarray(10.0), check_0d=False) |
|
|
|
|
|
def test_sum06(xp): |
|
labels = np.asarray([], dtype=bool) |
|
labels = xp.asarray(labels) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([], dtype=dtype) |
|
output = ndimage.sum(input, labels=labels) |
|
assert output == 0 |
|
|
|
|
|
def test_sum07(xp): |
|
labels = np.ones([0, 4], dtype=bool) |
|
labels = xp.asarray(labels) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.zeros([0, 4], dtype=dtype) |
|
output = ndimage.sum(input, labels=labels) |
|
assert output == 0 |
|
|
|
|
|
def test_sum08(xp): |
|
labels = np.asarray([1, 0], dtype=bool) |
|
labels = xp.asarray(labels) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([1, 2], dtype=dtype) |
|
output = ndimage.sum(input, labels=labels) |
|
assert output == 1 |
|
|
|
|
|
def test_sum09(xp): |
|
labels = np.asarray([1, 0], dtype=bool) |
|
labels = xp.asarray(labels) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.sum(input, labels=labels) |
|
assert_almost_equal(output, xp.asarray(4.0), check_0d=False) |
|
|
|
|
|
def test_sum10(xp): |
|
labels = np.asarray([1, 0], dtype=bool) |
|
input = np.asarray([[1, 2], [3, 4]], dtype=bool) |
|
|
|
labels = xp.asarray(labels) |
|
input = xp.asarray(input) |
|
output = ndimage.sum(input, labels=labels) |
|
assert_almost_equal(output, xp.asarray(2.0), check_0d=False) |
|
|
|
|
|
def test_sum11(xp): |
|
labels = xp.asarray([1, 2], dtype=xp.int8) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.sum(input, labels=labels, |
|
index=2) |
|
assert_almost_equal(output, xp.asarray(6.0), check_0d=False) |
|
|
|
|
|
def test_sum12(xp): |
|
labels = xp.asarray([[1, 2], [2, 4]], dtype=xp.int8) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.sum(input, labels=labels, index=xp.asarray([4, 8, 2])) |
|
assert_array_almost_equal(output, xp.asarray([4.0, 0.0, 5.0])) |
|
|
|
|
|
def test_sum_labels(xp): |
|
labels = xp.asarray([[1, 2], [2, 4]], dtype=xp.int8) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output_sum = ndimage.sum(input, labels=labels, index=xp.asarray([4, 8, 2])) |
|
output_labels = ndimage.sum_labels( |
|
input, labels=labels, index=xp.asarray([4, 8, 2])) |
|
|
|
assert xp.all(output_sum == output_labels) |
|
assert_array_almost_equal(output_labels, xp.asarray([4.0, 0.0, 5.0])) |
|
|
|
|
|
def test_mean01(xp): |
|
labels = np.asarray([1, 0], dtype=bool) |
|
labels = xp.asarray(labels) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.mean(input, labels=labels) |
|
assert_almost_equal(output, xp.asarray(2.0), check_0d=False) |
|
|
|
|
|
def test_mean02(xp): |
|
labels = np.asarray([1, 0], dtype=bool) |
|
input = np.asarray([[1, 2], [3, 4]], dtype=bool) |
|
|
|
labels = xp.asarray(labels) |
|
input = xp.asarray(input) |
|
output = ndimage.mean(input, labels=labels) |
|
assert_almost_equal(output, xp.asarray(1.0), check_0d=False) |
|
|
|
|
|
def test_mean03(xp): |
|
labels = xp.asarray([1, 2]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.mean(input, labels=labels, |
|
index=2) |
|
assert_almost_equal(output, xp.asarray(3.0), check_0d=False) |
|
|
|
|
|
def test_mean04(xp): |
|
labels = xp.asarray([[1, 2], [2, 4]], dtype=xp.int8) |
|
with np.errstate(all='ignore'): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.mean(input, labels=labels, |
|
index=xp.asarray([4, 8, 2])) |
|
|
|
|
|
assert output[0] == 4.0 |
|
assert output[2] == 2.5 |
|
assert xp.isnan(output[1]) |
|
|
|
|
|
def test_minimum01(xp): |
|
labels = np.asarray([1, 0], dtype=bool) |
|
labels = xp.asarray(labels) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.minimum(input, labels=labels) |
|
assert_almost_equal(output, xp.asarray(1.0), check_0d=False) |
|
|
|
|
|
def test_minimum02(xp): |
|
labels = np.asarray([1, 0], dtype=bool) |
|
input = np.asarray([[2, 2], [2, 4]], dtype=bool) |
|
|
|
labels = xp.asarray(labels) |
|
input = xp.asarray(input) |
|
output = ndimage.minimum(input, labels=labels) |
|
assert_almost_equal(output, xp.asarray(1.0), check_0d=False) |
|
|
|
|
|
def test_minimum03(xp): |
|
labels = xp.asarray([1, 2]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
|
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.minimum(input, labels=labels, |
|
index=2) |
|
assert_almost_equal(output, xp.asarray(2.0), check_0d=False) |
|
|
|
|
|
def test_minimum04(xp): |
|
labels = xp.asarray([[1, 2], [2, 3]]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.minimum(input, labels=labels, |
|
index=xp.asarray([2, 3, 8])) |
|
assert_array_almost_equal(output, xp.asarray([2.0, 4.0, 0.0])) |
|
|
|
|
|
def test_maximum01(xp): |
|
labels = np.asarray([1, 0], dtype=bool) |
|
labels = xp.asarray(labels) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.maximum(input, labels=labels) |
|
assert_almost_equal(output, xp.asarray(3.0), check_0d=False) |
|
|
|
|
|
def test_maximum02(xp): |
|
labels = np.asarray([1, 0], dtype=bool) |
|
input = np.asarray([[2, 2], [2, 4]], dtype=bool) |
|
labels = xp.asarray(labels) |
|
input = xp.asarray(input) |
|
output = ndimage.maximum(input, labels=labels) |
|
assert_almost_equal(output, xp.asarray(1.0), check_0d=False) |
|
|
|
|
|
def test_maximum03(xp): |
|
labels = xp.asarray([1, 2]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.maximum(input, labels=labels, |
|
index=2) |
|
assert_almost_equal(output, xp.asarray(4.0), check_0d=False) |
|
|
|
|
|
def test_maximum04(xp): |
|
labels = xp.asarray([[1, 2], [2, 3]]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.maximum(input, labels=labels, |
|
index=xp.asarray([2, 3, 8])) |
|
assert_array_almost_equal(output, xp.asarray([3.0, 4.0, 0.0])) |
|
|
|
|
|
def test_maximum05(xp): |
|
|
|
x = xp.asarray([-3, -2, -1]) |
|
assert ndimage.maximum(x) == -1 |
|
|
|
|
|
def test_median01(xp): |
|
a = xp.asarray([[1, 2, 0, 1], |
|
[5, 3, 0, 4], |
|
[0, 0, 0, 7], |
|
[9, 3, 0, 0]]) |
|
labels = xp.asarray([[1, 1, 0, 2], |
|
[1, 1, 0, 2], |
|
[0, 0, 0, 2], |
|
[3, 3, 0, 0]]) |
|
output = ndimage.median(a, labels=labels, index=xp.asarray([1, 2, 3])) |
|
assert_array_almost_equal(output, xp.asarray([2.5, 4.0, 6.0])) |
|
|
|
|
|
def test_median02(xp): |
|
a = xp.asarray([[1, 2, 0, 1], |
|
[5, 3, 0, 4], |
|
[0, 0, 0, 7], |
|
[9, 3, 0, 0]]) |
|
output = ndimage.median(a) |
|
assert_almost_equal(output, xp.asarray(1.0), check_0d=False) |
|
|
|
|
|
def test_median03(xp): |
|
a = xp.asarray([[1, 2, 0, 1], |
|
[5, 3, 0, 4], |
|
[0, 0, 0, 7], |
|
[9, 3, 0, 0]]) |
|
labels = xp.asarray([[1, 1, 0, 2], |
|
[1, 1, 0, 2], |
|
[0, 0, 0, 2], |
|
[3, 3, 0, 0]]) |
|
output = ndimage.median(a, labels=labels) |
|
assert_almost_equal(output, xp.asarray(3.0), check_0d=False) |
|
|
|
|
|
def test_median_gh12836_bool(xp): |
|
|
|
a = np.asarray([1, 1], dtype=bool) |
|
a = xp.asarray(a) |
|
output = ndimage.median(a, labels=xp.ones((2,)), index=xp.asarray([1])) |
|
assert_array_almost_equal(output, xp.asarray([1.0])) |
|
|
|
|
|
def test_median_no_int_overflow(xp): |
|
|
|
a = xp.asarray([65, 70], dtype=xp.int8) |
|
output = ndimage.median(a, labels=xp.ones((2,)), index=xp.asarray([1])) |
|
assert_array_almost_equal(output, xp.asarray([67.5])) |
|
|
|
|
|
def test_variance01(xp): |
|
with np.errstate(all='ignore'): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([], dtype=dtype) |
|
with suppress_warnings() as sup: |
|
sup.filter(RuntimeWarning, "Mean of empty slice") |
|
output = ndimage.variance(input) |
|
assert xp.isnan(output) |
|
|
|
|
|
def test_variance02(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([1], dtype=dtype) |
|
output = ndimage.variance(input) |
|
assert_almost_equal(output, xp.asarray(0.0), check_0d=False) |
|
|
|
|
|
def test_variance03(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([1, 3], dtype=dtype) |
|
output = ndimage.variance(input) |
|
assert_almost_equal(output, xp.asarray(1.0), check_0d=False) |
|
|
|
|
|
def test_variance04(xp): |
|
input = np.asarray([1, 0], dtype=bool) |
|
input = xp.asarray(input) |
|
output = ndimage.variance(input) |
|
assert_almost_equal(output, xp.asarray(0.25), check_0d=False) |
|
|
|
|
|
def test_variance05(xp): |
|
labels = xp.asarray([2, 2, 3]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
|
|
input = xp.asarray([1, 3, 8], dtype=dtype) |
|
output = ndimage.variance(input, labels, 2) |
|
assert_almost_equal(output, xp.asarray(1.0), check_0d=False) |
|
|
|
|
|
def test_variance06(xp): |
|
labels = xp.asarray([2, 2, 3, 3, 4]) |
|
with np.errstate(all='ignore'): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([1, 3, 8, 10, 8], dtype=dtype) |
|
output = ndimage.variance(input, labels, xp.asarray([2, 3, 4])) |
|
assert_array_almost_equal(output, xp.asarray([1.0, 1.0, 0.0])) |
|
|
|
|
|
def test_standard_deviation01(xp): |
|
with np.errstate(all='ignore'): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([], dtype=dtype) |
|
with suppress_warnings() as sup: |
|
sup.filter(RuntimeWarning, "Mean of empty slice") |
|
output = ndimage.standard_deviation(input) |
|
assert xp.isnan(output) |
|
|
|
|
|
def test_standard_deviation02(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([1], dtype=dtype) |
|
output = ndimage.standard_deviation(input) |
|
assert_almost_equal(output, xp.asarray(0.0), check_0d=False) |
|
|
|
|
|
def test_standard_deviation03(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([1, 3], dtype=dtype) |
|
output = ndimage.standard_deviation(input) |
|
assert_almost_equal(output, xp.asarray(1.0), check_0d=False) |
|
|
|
|
|
def test_standard_deviation04(xp): |
|
input = np.asarray([1, 0], dtype=bool) |
|
input = xp.asarray(input) |
|
output = ndimage.standard_deviation(input) |
|
assert_almost_equal(output, xp.asarray(0.5), check_0d=False) |
|
|
|
|
|
def test_standard_deviation05(xp): |
|
labels = xp.asarray([2, 2, 3]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([1, 3, 8], dtype=dtype) |
|
output = ndimage.standard_deviation(input, labels, 2) |
|
assert_almost_equal(output, xp.asarray(1.0), check_0d=False) |
|
|
|
|
|
def test_standard_deviation06(xp): |
|
labels = xp.asarray([2, 2, 3, 3, 4]) |
|
with np.errstate(all='ignore'): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([1, 3, 8, 10, 8], dtype=dtype) |
|
output = ndimage.standard_deviation( |
|
input, labels, xp.asarray([2, 3, 4]) |
|
) |
|
assert_array_almost_equal(output, xp.asarray([1.0, 1.0, 0.0])) |
|
|
|
|
|
def test_standard_deviation07(xp): |
|
labels = xp.asarray([1]) |
|
with np.errstate(all='ignore'): |
|
for type in types: |
|
if is_torch(xp) and type == 'uint8': |
|
pytest.xfail("value cannot be converted to type uint8 " |
|
"without overflow") |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([-0.00619519], dtype=dtype) |
|
output = ndimage.standard_deviation(input, labels, xp.asarray([1])) |
|
assert_array_almost_equal(output, xp.asarray([0])) |
|
|
|
|
|
def test_minimum_position01(xp): |
|
labels = np.asarray([1, 0], dtype=bool) |
|
labels = xp.asarray(labels) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.minimum_position(input, labels=labels) |
|
assert output == (0, 0) |
|
|
|
|
|
def test_minimum_position02(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[5, 4, 2, 5], |
|
[3, 7, 0, 2], |
|
[1, 5, 1, 1]], dtype=dtype) |
|
output = ndimage.minimum_position(input) |
|
assert output == (1, 2) |
|
|
|
|
|
def test_minimum_position03(xp): |
|
input = np.asarray([[5, 4, 2, 5], |
|
[3, 7, 0, 2], |
|
[1, 5, 1, 1]], dtype=bool) |
|
input = xp.asarray(input) |
|
output = ndimage.minimum_position(input) |
|
assert output == (1, 2) |
|
|
|
|
|
def test_minimum_position04(xp): |
|
input = np.asarray([[5, 4, 2, 5], |
|
[3, 7, 1, 2], |
|
[1, 5, 1, 1]], dtype=bool) |
|
input = xp.asarray(input) |
|
output = ndimage.minimum_position(input) |
|
assert output == (0, 0) |
|
|
|
|
|
def test_minimum_position05(xp): |
|
labels = xp.asarray([1, 2, 0, 4]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[5, 4, 2, 5], |
|
[3, 7, 0, 2], |
|
[1, 5, 2, 3]], dtype=dtype) |
|
output = ndimage.minimum_position(input, labels) |
|
assert output == (2, 0) |
|
|
|
|
|
def test_minimum_position06(xp): |
|
labels = xp.asarray([1, 2, 3, 4]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[5, 4, 2, 5], |
|
[3, 7, 0, 2], |
|
[1, 5, 1, 1]], dtype=dtype) |
|
output = ndimage.minimum_position(input, labels, 2) |
|
assert output == (0, 1) |
|
|
|
|
|
def test_minimum_position07(xp): |
|
labels = xp.asarray([1, 2, 3, 4]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[5, 4, 2, 5], |
|
[3, 7, 0, 2], |
|
[1, 5, 1, 1]], dtype=dtype) |
|
output = ndimage.minimum_position(input, labels, |
|
xp.asarray([2, 3])) |
|
assert output[0] == (0, 1) |
|
assert output[1] == (1, 2) |
|
|
|
|
|
def test_maximum_position01(xp): |
|
labels = np.asarray([1, 0], dtype=bool) |
|
labels = xp.asarray(labels) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output = ndimage.maximum_position(input, |
|
labels=labels) |
|
assert output == (1, 0) |
|
|
|
|
|
def test_maximum_position02(xp): |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[5, 4, 2, 5], |
|
[3, 7, 8, 2], |
|
[1, 5, 1, 1]], dtype=dtype) |
|
output = ndimage.maximum_position(input) |
|
assert output == (1, 2) |
|
|
|
|
|
def test_maximum_position03(xp): |
|
input = np.asarray([[5, 4, 2, 5], |
|
[3, 7, 8, 2], |
|
[1, 5, 1, 1]], dtype=bool) |
|
input = xp.asarray(input) |
|
output = ndimage.maximum_position(input) |
|
assert output == (0, 0) |
|
|
|
|
|
def test_maximum_position04(xp): |
|
labels = xp.asarray([1, 2, 0, 4]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[5, 4, 2, 5], |
|
[3, 7, 8, 2], |
|
[1, 5, 1, 1]], dtype=dtype) |
|
output = ndimage.maximum_position(input, labels) |
|
assert output == (1, 1) |
|
|
|
|
|
def test_maximum_position05(xp): |
|
labels = xp.asarray([1, 2, 0, 4]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[5, 4, 2, 5], |
|
[3, 7, 8, 2], |
|
[1, 5, 1, 1]], dtype=dtype) |
|
output = ndimage.maximum_position(input, labels, 1) |
|
assert output == (0, 0) |
|
|
|
|
|
def test_maximum_position06(xp): |
|
labels = xp.asarray([1, 2, 0, 4]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[5, 4, 2, 5], |
|
[3, 7, 8, 2], |
|
[1, 5, 1, 1]], dtype=dtype) |
|
output = ndimage.maximum_position(input, labels, |
|
xp.asarray([1, 2])) |
|
assert output[0] == (0, 0) |
|
assert output[1] == (1, 1) |
|
|
|
|
|
def test_maximum_position07(xp): |
|
|
|
if is_torch(xp): |
|
pytest.xfail("output[1] is wrong on pytorch") |
|
|
|
labels = xp.asarray([1.0, 2.5, 0.0, 4.5]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[5, 4, 2, 5], |
|
[3, 7, 8, 2], |
|
[1, 5, 1, 1]], dtype=dtype) |
|
output = ndimage.maximum_position(input, labels, |
|
xp.asarray([1.0, 4.5])) |
|
assert output[0] == (0, 0) |
|
assert output[1] == (0, 3) |
|
|
|
|
|
def test_extrema01(xp): |
|
labels = np.asarray([1, 0], dtype=bool) |
|
labels = xp.asarray(labels) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output1 = ndimage.extrema(input, labels=labels) |
|
output2 = ndimage.minimum(input, labels=labels) |
|
output3 = ndimage.maximum(input, labels=labels) |
|
output4 = ndimage.minimum_position(input, |
|
labels=labels) |
|
output5 = ndimage.maximum_position(input, |
|
labels=labels) |
|
assert output1 == (output2, output3, output4, output5) |
|
|
|
|
|
def test_extrema02(xp): |
|
labels = xp.asarray([1, 2]) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output1 = ndimage.extrema(input, labels=labels, |
|
index=2) |
|
output2 = ndimage.minimum(input, labels=labels, |
|
index=2) |
|
output3 = ndimage.maximum(input, labels=labels, |
|
index=2) |
|
output4 = ndimage.minimum_position(input, |
|
labels=labels, index=2) |
|
output5 = ndimage.maximum_position(input, |
|
labels=labels, index=2) |
|
assert output1 == (output2, output3, output4, output5) |
|
|
|
|
|
def test_extrema03(xp): |
|
labels = xp.asarray([[1, 2], [2, 3]]) |
|
for type in types: |
|
if is_torch(xp) and type in ("uint16", "uint32", "uint64"): |
|
pytest.xfail("https://github.com/pytorch/pytorch/issues/58734") |
|
|
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 2], [3, 4]], dtype=dtype) |
|
output1 = ndimage.extrema(input, |
|
labels=labels, |
|
index=xp.asarray([2, 3, 8])) |
|
output2 = ndimage.minimum(input, |
|
labels=labels, |
|
index=xp.asarray([2, 3, 8])) |
|
output3 = ndimage.maximum(input, labels=labels, |
|
index=xp.asarray([2, 3, 8])) |
|
output4 = ndimage.minimum_position(input, |
|
labels=labels, |
|
index=xp.asarray([2, 3, 8])) |
|
output5 = ndimage.maximum_position(input, |
|
labels=labels, |
|
index=xp.asarray([2, 3, 8])) |
|
assert_array_almost_equal(output1[0], output2) |
|
assert_array_almost_equal(output1[1], output3) |
|
assert output1[2] == output4 |
|
assert output1[3] == output5 |
|
|
|
|
|
def test_extrema04(xp): |
|
labels = xp.asarray([1, 2, 0, 4]) |
|
for type in types: |
|
if is_torch(xp) and type in ("uint16", "uint32", "uint64"): |
|
pytest.xfail("https://github.com/pytorch/pytorch/issues/58734") |
|
|
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[5, 4, 2, 5], |
|
[3, 7, 8, 2], |
|
[1, 5, 1, 1]], dtype=dtype) |
|
output1 = ndimage.extrema(input, labels, xp.asarray([1, 2])) |
|
output2 = ndimage.minimum(input, labels, xp.asarray([1, 2])) |
|
output3 = ndimage.maximum(input, labels, xp.asarray([1, 2])) |
|
output4 = ndimage.minimum_position(input, labels, |
|
xp.asarray([1, 2])) |
|
output5 = ndimage.maximum_position(input, labels, |
|
xp.asarray([1, 2])) |
|
assert_array_almost_equal(output1[0], output2) |
|
assert_array_almost_equal(output1[1], output3) |
|
assert output1[2] == output4 |
|
assert output1[3] == output5 |
|
|
|
|
|
def test_center_of_mass01(xp): |
|
expected = (0.0, 0.0) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 0], [0, 0]], dtype=dtype) |
|
output = ndimage.center_of_mass(input) |
|
assert output == expected |
|
|
|
|
|
def test_center_of_mass02(xp): |
|
expected = (1, 0) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[0, 0], [1, 0]], dtype=dtype) |
|
output = ndimage.center_of_mass(input) |
|
assert output == expected |
|
|
|
|
|
def test_center_of_mass03(xp): |
|
expected = (0, 1) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[0, 1], [0, 0]], dtype=dtype) |
|
output = ndimage.center_of_mass(input) |
|
assert output == expected |
|
|
|
|
|
def test_center_of_mass04(xp): |
|
expected = (1, 1) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[0, 0], [0, 1]], dtype=dtype) |
|
output = ndimage.center_of_mass(input) |
|
assert output == expected |
|
|
|
|
|
def test_center_of_mass05(xp): |
|
expected = (0.5, 0.5) |
|
for type in types: |
|
dtype = getattr(xp, type) |
|
input = xp.asarray([[1, 1], [1, 1]], dtype=dtype) |
|
output = ndimage.center_of_mass(input) |
|
assert output == expected |
|
|
|
|
|
def test_center_of_mass06(xp): |
|
expected = (0.5, 0.5) |
|
input = np.asarray([[1, 2], [3, 1]], dtype=bool) |
|
input = xp.asarray(input) |
|
output = ndimage.center_of_mass(input) |
|
assert output == expected |
|
|
|
|
|
def test_center_of_mass07(xp): |
|
labels = xp.asarray([1, 0]) |
|
expected = (0.5, 0.0) |
|
input = np.asarray([[1, 2], [3, 1]], dtype=bool) |
|
input = xp.asarray(input) |
|
output = ndimage.center_of_mass(input, labels) |
|
assert output == expected |
|
|
|
|
|
def test_center_of_mass08(xp): |
|
labels = xp.asarray([1, 2]) |
|
expected = (0.5, 1.0) |
|
input = np.asarray([[5, 2], [3, 1]], dtype=bool) |
|
input = xp.asarray(input) |
|
output = ndimage.center_of_mass(input, labels, 2) |
|
assert output == expected |
|
|
|
|
|
def test_center_of_mass09(xp): |
|
labels = xp.asarray((1, 2)) |
|
expected = xp.asarray([(0.5, 0.0), (0.5, 1.0)], dtype=xp.float64) |
|
input = np.asarray([[1, 2], [1, 1]], dtype=bool) |
|
input = xp.asarray(input) |
|
output = ndimage.center_of_mass(input, labels, xp.asarray([1, 2])) |
|
xp_assert_equal(xp.asarray(output), xp.asarray(expected)) |
|
|
|
|
|
def test_histogram01(xp): |
|
expected = xp.ones(10) |
|
input = xp.arange(10) |
|
output = ndimage.histogram(input, 0, 10, 10) |
|
assert_array_almost_equal(output, expected) |
|
|
|
|
|
def test_histogram02(xp): |
|
labels = xp.asarray([1, 1, 1, 1, 2, 2, 2, 2]) |
|
expected = xp.asarray([0, 2, 0, 1, 1]) |
|
input = xp.asarray([1, 1, 3, 4, 3, 3, 3, 3]) |
|
output = ndimage.histogram(input, 0, 4, 5, labels, 1) |
|
assert_array_almost_equal(output, expected) |
|
|
|
|
|
@skip_xp_backends(np_only=True, reason='object arrays') |
|
def test_histogram03(xp): |
|
labels = xp.asarray([1, 0, 1, 1, 2, 2, 2, 2]) |
|
expected1 = xp.asarray([0, 1, 0, 1, 1]) |
|
expected2 = xp.asarray([0, 0, 0, 3, 0]) |
|
input = xp.asarray([1, 1, 3, 4, 3, 5, 3, 3]) |
|
|
|
output = ndimage.histogram(input, 0, 4, 5, labels, (1, 2)) |
|
|
|
assert_array_almost_equal(output[0], expected1) |
|
assert_array_almost_equal(output[1], expected2) |
|
|
|
|
|
def test_stat_funcs_2d(xp): |
|
a = xp.asarray([[5, 6, 0, 0, 0], [8, 9, 0, 0, 0], [0, 0, 0, 3, 5]]) |
|
lbl = xp.asarray([[1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 0, 2, 2]]) |
|
|
|
mean = ndimage.mean(a, labels=lbl, index=xp.asarray([1, 2])) |
|
xp_assert_equal(mean, xp.asarray([7.0, 4.0], dtype=xp.float64)) |
|
|
|
var = ndimage.variance(a, labels=lbl, index=xp.asarray([1, 2])) |
|
xp_assert_equal(var, xp.asarray([2.5, 1.0], dtype=xp.float64)) |
|
|
|
std = ndimage.standard_deviation(a, labels=lbl, index=xp.asarray([1, 2])) |
|
assert_array_almost_equal(std, xp.sqrt(xp.asarray([2.5, 1.0], dtype=xp.float64))) |
|
|
|
med = ndimage.median(a, labels=lbl, index=xp.asarray([1, 2])) |
|
xp_assert_equal(med, xp.asarray([7.0, 4.0], dtype=xp.float64)) |
|
|
|
min = ndimage.minimum(a, labels=lbl, index=xp.asarray([1, 2])) |
|
xp_assert_equal(min, xp.asarray([5, 3]), check_dtype=False) |
|
|
|
max = ndimage.maximum(a, labels=lbl, index=xp.asarray([1, 2])) |
|
xp_assert_equal(max, xp.asarray([9, 5]), check_dtype=False) |
|
|
|
|
|
@skip_xp_backends("cupy", reason="no watershed_ift on CuPy") |
|
class TestWatershedIft: |
|
|
|
def test_watershed_ift01(self, xp): |
|
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0], |
|
[0, 1, 1, 1, 1, 1, 0], |
|
[0, 1, 0, 0, 0, 1, 0], |
|
[0, 1, 0, 0, 0, 1, 0], |
|
[0, 1, 0, 0, 0, 1, 0], |
|
[0, 1, 1, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0]], dtype=xp.uint8) |
|
markers = xp.asarray([[-1, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 1, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0]], dtype=xp.int8) |
|
structure=xp.asarray([[1, 1, 1], |
|
[1, 1, 1], |
|
[1, 1, 1]]) |
|
out = ndimage.watershed_ift(data, markers, structure=structure) |
|
expected = [[-1, -1, -1, -1, -1, -1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, -1, -1, -1, -1, -1, -1], |
|
[-1, -1, -1, -1, -1, -1, -1]] |
|
assert_array_almost_equal(out, xp.asarray(expected)) |
|
|
|
def test_watershed_ift02(self, xp): |
|
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0], |
|
[0, 1, 1, 1, 1, 1, 0], |
|
[0, 1, 0, 0, 0, 1, 0], |
|
[0, 1, 0, 0, 0, 1, 0], |
|
[0, 1, 0, 0, 0, 1, 0], |
|
[0, 1, 1, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0]], dtype=xp.uint8) |
|
markers = xp.asarray([[-1, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 1, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0]], dtype=xp.int8) |
|
out = ndimage.watershed_ift(data, markers) |
|
expected = [[-1, -1, -1, -1, -1, -1, -1], |
|
[-1, -1, 1, 1, 1, -1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, -1, 1, 1, 1, -1, -1], |
|
[-1, -1, -1, -1, -1, -1, -1], |
|
[-1, -1, -1, -1, -1, -1, -1]] |
|
assert_array_almost_equal(out, xp.asarray(expected)) |
|
|
|
def test_watershed_ift03(self, xp): |
|
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0], |
|
[0, 1, 1, 1, 1, 1, 0], |
|
[0, 1, 0, 1, 0, 1, 0], |
|
[0, 1, 0, 1, 0, 1, 0], |
|
[0, 1, 0, 1, 0, 1, 0], |
|
[0, 1, 1, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 0, 0]], dtype=xp.uint8) |
|
markers = xp.asarray([[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 2, 0, 3, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, -1]], dtype=xp.int8) |
|
out = ndimage.watershed_ift(data, markers) |
|
expected = [[-1, -1, -1, -1, -1, -1, -1], |
|
[-1, -1, 2, -1, 3, -1, -1], |
|
[-1, 2, 2, 3, 3, 3, -1], |
|
[-1, 2, 2, 3, 3, 3, -1], |
|
[-1, 2, 2, 3, 3, 3, -1], |
|
[-1, -1, 2, -1, 3, -1, -1], |
|
[-1, -1, -1, -1, -1, -1, -1]] |
|
assert_array_almost_equal(out, xp.asarray(expected)) |
|
|
|
def test_watershed_ift04(self, xp): |
|
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0], |
|
[0, 1, 1, 1, 1, 1, 0], |
|
[0, 1, 0, 1, 0, 1, 0], |
|
[0, 1, 0, 1, 0, 1, 0], |
|
[0, 1, 0, 1, 0, 1, 0], |
|
[0, 1, 1, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 0, 0]], dtype=xp.uint8) |
|
markers = xp.asarray([[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 2, 0, 3, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, -1]], |
|
dtype=xp.int8) |
|
|
|
structure=xp.asarray([[1, 1, 1], |
|
[1, 1, 1], |
|
[1, 1, 1]]) |
|
out = ndimage.watershed_ift(data, markers, structure=structure) |
|
expected = [[-1, -1, -1, -1, -1, -1, -1], |
|
[-1, 2, 2, 3, 3, 3, -1], |
|
[-1, 2, 2, 3, 3, 3, -1], |
|
[-1, 2, 2, 3, 3, 3, -1], |
|
[-1, 2, 2, 3, 3, 3, -1], |
|
[-1, 2, 2, 3, 3, 3, -1], |
|
[-1, -1, -1, -1, -1, -1, -1]] |
|
assert_array_almost_equal(out, xp.asarray(expected)) |
|
|
|
def test_watershed_ift05(self, xp): |
|
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0], |
|
[0, 1, 1, 1, 1, 1, 0], |
|
[0, 1, 0, 1, 0, 1, 0], |
|
[0, 1, 0, 1, 0, 1, 0], |
|
[0, 1, 0, 1, 0, 1, 0], |
|
[0, 1, 1, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 0, 0]], dtype=xp.uint8) |
|
markers = xp.asarray([[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 3, 0, 2, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, -1]], |
|
dtype=xp.int8) |
|
structure = xp.asarray([[1, 1, 1], |
|
[1, 1, 1], |
|
[1, 1, 1]]) |
|
out = ndimage.watershed_ift(data, markers, structure=structure) |
|
expected = [[-1, -1, -1, -1, -1, -1, -1], |
|
[-1, 3, 3, 2, 2, 2, -1], |
|
[-1, 3, 3, 2, 2, 2, -1], |
|
[-1, 3, 3, 2, 2, 2, -1], |
|
[-1, 3, 3, 2, 2, 2, -1], |
|
[-1, 3, 3, 2, 2, 2, -1], |
|
[-1, -1, -1, -1, -1, -1, -1]] |
|
assert_array_almost_equal(out, xp.asarray(expected)) |
|
|
|
def test_watershed_ift06(self, xp): |
|
data = xp.asarray([[0, 1, 0, 0, 0, 1, 0], |
|
[0, 1, 0, 0, 0, 1, 0], |
|
[0, 1, 0, 0, 0, 1, 0], |
|
[0, 1, 1, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0]], dtype=xp.uint8) |
|
markers = xp.asarray([[-1, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 1, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0]], dtype=xp.int8) |
|
structure=xp.asarray([[1, 1, 1], |
|
[1, 1, 1], |
|
[1, 1, 1]]) |
|
out = ndimage.watershed_ift(data, markers, structure=structure) |
|
expected = [[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, -1, -1, -1, -1, -1, -1], |
|
[-1, -1, -1, -1, -1, -1, -1]] |
|
assert_array_almost_equal(out, xp.asarray(expected)) |
|
|
|
@skip_xp_backends(np_only=True, reason="inplace ops are numpy-specific") |
|
def test_watershed_ift07(self, xp): |
|
shape = (7, 6) |
|
data = np.zeros(shape, dtype=np.uint8) |
|
data = data.transpose() |
|
data[...] = np.asarray([[0, 1, 0, 0, 0, 1, 0], |
|
[0, 1, 0, 0, 0, 1, 0], |
|
[0, 1, 0, 0, 0, 1, 0], |
|
[0, 1, 1, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8) |
|
data = xp.asarray(data) |
|
markers = xp.asarray([[-1, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 1, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0]], dtype=xp.int8) |
|
out = xp.zeros(shape, dtype=xp.int16) |
|
out = out.T |
|
structure=xp.asarray([[1, 1, 1], |
|
[1, 1, 1], |
|
[1, 1, 1]]) |
|
ndimage.watershed_ift(data, markers, structure=structure, |
|
output=out) |
|
expected = [[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, 1, 1, 1, 1, 1, -1], |
|
[-1, -1, -1, -1, -1, -1, -1], |
|
[-1, -1, -1, -1, -1, -1, -1]] |
|
assert_array_almost_equal(out, xp.asarray(expected)) |
|
|
|
@skip_xp_backends("cupy", reason="no watershed_ift on CuPy") |
|
def test_watershed_ift08(self, xp): |
|
|
|
data = xp.asarray([[256, 0], |
|
[0, 0]], dtype=xp.uint16) |
|
markers = xp.asarray([[1, 0], |
|
[0, 0]], dtype=xp.int8) |
|
out = ndimage.watershed_ift(data, markers) |
|
expected = [[1, 1], |
|
[1, 1]] |
|
assert_array_almost_equal(out, xp.asarray(expected)) |
|
|
|
@skip_xp_backends("cupy", reason="no watershed_ift on CuPy" ) |
|
def test_watershed_ift09(self, xp): |
|
|
|
data = xp.asarray([[xp.iinfo(xp.uint16).max, 0], |
|
[0, 0]], dtype=xp.uint16) |
|
markers = xp.asarray([[1, 0], |
|
[0, 0]], dtype=xp.int8) |
|
out = ndimage.watershed_ift(data, markers) |
|
expected = [[1, 1], |
|
[1, 1]] |
|
xp_assert_close(out, xp.asarray(expected), check_dtype=False) |
|
|
|
|
|
@skip_xp_backends(np_only=True) |
|
@pytest.mark.parametrize("dt", [np.intc, np.uintc]) |
|
def test_gh_19423(dt, xp): |
|
rng = np.random.default_rng(123) |
|
max_val = 8 |
|
image = rng.integers(low=0, high=max_val, size=(10, 12)).astype(dtype=dt) |
|
val_idx = ndimage.value_indices(image) |
|
assert len(val_idx.keys()) == max_val |
|
|