|
"""Functions used by least-squares algorithms.""" |
|
from math import copysign |
|
|
|
import numpy as np |
|
from numpy.linalg import norm |
|
|
|
from scipy.linalg import cho_factor, cho_solve, LinAlgError |
|
from scipy.sparse import issparse |
|
from scipy.sparse.linalg import LinearOperator, aslinearoperator |
|
|
|
|
|
EPS = np.finfo(float).eps |
|
|
|
|
|
|
|
|
|
|
|
def intersect_trust_region(x, s, Delta): |
|
"""Find the intersection of a line with the boundary of a trust region. |
|
|
|
This function solves the quadratic equation with respect to t |
|
||(x + s*t)||**2 = Delta**2. |
|
|
|
Returns |
|
------- |
|
t_neg, t_pos : tuple of float |
|
Negative and positive roots. |
|
|
|
Raises |
|
------ |
|
ValueError |
|
If `s` is zero or `x` is not within the trust region. |
|
""" |
|
a = np.dot(s, s) |
|
if a == 0: |
|
raise ValueError("`s` is zero.") |
|
|
|
b = np.dot(x, s) |
|
|
|
c = np.dot(x, x) - Delta**2 |
|
if c > 0: |
|
raise ValueError("`x` is not within the trust region.") |
|
|
|
d = np.sqrt(b*b - a*c) |
|
|
|
|
|
q = -(b + copysign(d, b)) |
|
t1 = q / a |
|
t2 = c / q |
|
|
|
if t1 < t2: |
|
return t1, t2 |
|
else: |
|
return t2, t1 |
|
|
|
|
|
def solve_lsq_trust_region(n, m, uf, s, V, Delta, initial_alpha=None, |
|
rtol=0.01, max_iter=10): |
|
"""Solve a trust-region problem arising in least-squares minimization. |
|
|
|
This function implements a method described by J. J. More [1]_ and used |
|
in MINPACK, but it relies on a single SVD of Jacobian instead of series |
|
of Cholesky decompositions. Before running this function, compute: |
|
``U, s, VT = svd(J, full_matrices=False)``. |
|
|
|
Parameters |
|
---------- |
|
n : int |
|
Number of variables. |
|
m : int |
|
Number of residuals. |
|
uf : ndarray |
|
Computed as U.T.dot(f). |
|
s : ndarray |
|
Singular values of J. |
|
V : ndarray |
|
Transpose of VT. |
|
Delta : float |
|
Radius of a trust region. |
|
initial_alpha : float, optional |
|
Initial guess for alpha, which might be available from a previous |
|
iteration. If None, determined automatically. |
|
rtol : float, optional |
|
Stopping tolerance for the root-finding procedure. Namely, the |
|
solution ``p`` will satisfy ``abs(norm(p) - Delta) < rtol * Delta``. |
|
max_iter : int, optional |
|
Maximum allowed number of iterations for the root-finding procedure. |
|
|
|
Returns |
|
------- |
|
p : ndarray, shape (n,) |
|
Found solution of a trust-region problem. |
|
alpha : float |
|
Positive value such that (J.T*J + alpha*I)*p = -J.T*f. |
|
Sometimes called Levenberg-Marquardt parameter. |
|
n_iter : int |
|
Number of iterations made by root-finding procedure. Zero means |
|
that Gauss-Newton step was selected as the solution. |
|
|
|
References |
|
---------- |
|
.. [1] More, J. J., "The Levenberg-Marquardt Algorithm: Implementation |
|
and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes |
|
in Mathematics 630, Springer Verlag, pp. 105-116, 1977. |
|
""" |
|
def phi_and_derivative(alpha, suf, s, Delta): |
|
"""Function of which to find zero. |
|
|
|
It is defined as "norm of regularized (by alpha) least-squares |
|
solution minus `Delta`". Refer to [1]_. |
|
""" |
|
denom = s**2 + alpha |
|
p_norm = norm(suf / denom) |
|
phi = p_norm - Delta |
|
phi_prime = -np.sum(suf ** 2 / denom**3) / p_norm |
|
return phi, phi_prime |
|
|
|
suf = s * uf |
|
|
|
|
|
if m >= n: |
|
threshold = EPS * m * s[0] |
|
full_rank = s[-1] > threshold |
|
else: |
|
full_rank = False |
|
|
|
if full_rank: |
|
p = -V.dot(uf / s) |
|
if norm(p) <= Delta: |
|
return p, 0.0, 0 |
|
|
|
alpha_upper = norm(suf) / Delta |
|
|
|
if full_rank: |
|
phi, phi_prime = phi_and_derivative(0.0, suf, s, Delta) |
|
alpha_lower = -phi / phi_prime |
|
else: |
|
alpha_lower = 0.0 |
|
|
|
if initial_alpha is None or not full_rank and initial_alpha == 0: |
|
alpha = max(0.001 * alpha_upper, (alpha_lower * alpha_upper)**0.5) |
|
else: |
|
alpha = initial_alpha |
|
|
|
for it in range(max_iter): |
|
if alpha < alpha_lower or alpha > alpha_upper: |
|
alpha = max(0.001 * alpha_upper, (alpha_lower * alpha_upper)**0.5) |
|
|
|
phi, phi_prime = phi_and_derivative(alpha, suf, s, Delta) |
|
|
|
if phi < 0: |
|
alpha_upper = alpha |
|
|
|
ratio = phi / phi_prime |
|
alpha_lower = max(alpha_lower, alpha - ratio) |
|
alpha -= (phi + Delta) * ratio / Delta |
|
|
|
if np.abs(phi) < rtol * Delta: |
|
break |
|
|
|
p = -V.dot(suf / (s**2 + alpha)) |
|
|
|
|
|
|
|
|
|
p *= Delta / norm(p) |
|
|
|
return p, alpha, it + 1 |
|
|
|
|
|
def solve_trust_region_2d(B, g, Delta): |
|
"""Solve a general trust-region problem in 2 dimensions. |
|
|
|
The problem is reformulated as a 4th order algebraic equation, |
|
the solution of which is found by numpy.roots. |
|
|
|
Parameters |
|
---------- |
|
B : ndarray, shape (2, 2) |
|
Symmetric matrix, defines a quadratic term of the function. |
|
g : ndarray, shape (2,) |
|
Defines a linear term of the function. |
|
Delta : float |
|
Radius of a trust region. |
|
|
|
Returns |
|
------- |
|
p : ndarray, shape (2,) |
|
Found solution. |
|
newton_step : bool |
|
Whether the returned solution is the Newton step which lies within |
|
the trust region. |
|
""" |
|
try: |
|
R, lower = cho_factor(B) |
|
p = -cho_solve((R, lower), g) |
|
if np.dot(p, p) <= Delta**2: |
|
return p, True |
|
except LinAlgError: |
|
pass |
|
|
|
a = B[0, 0] * Delta**2 |
|
b = B[0, 1] * Delta**2 |
|
c = B[1, 1] * Delta**2 |
|
|
|
d = g[0] * Delta |
|
f = g[1] * Delta |
|
|
|
coeffs = np.array( |
|
[-b + d, 2 * (a - c + f), 6 * b, 2 * (-a + c + f), -b - d]) |
|
t = np.roots(coeffs) |
|
t = np.real(t[np.isreal(t)]) |
|
|
|
p = Delta * np.vstack((2 * t / (1 + t**2), (1 - t**2) / (1 + t**2))) |
|
value = 0.5 * np.sum(p * B.dot(p), axis=0) + np.dot(g, p) |
|
i = np.argmin(value) |
|
p = p[:, i] |
|
|
|
return p, False |
|
|
|
|
|
def update_tr_radius(Delta, actual_reduction, predicted_reduction, |
|
step_norm, bound_hit): |
|
"""Update the radius of a trust region based on the cost reduction. |
|
|
|
Returns |
|
------- |
|
Delta : float |
|
New radius. |
|
ratio : float |
|
Ratio between actual and predicted reductions. |
|
""" |
|
if predicted_reduction > 0: |
|
ratio = actual_reduction / predicted_reduction |
|
elif predicted_reduction == actual_reduction == 0: |
|
ratio = 1 |
|
else: |
|
ratio = 0 |
|
|
|
if ratio < 0.25: |
|
Delta = 0.25 * step_norm |
|
elif ratio > 0.75 and bound_hit: |
|
Delta *= 2.0 |
|
|
|
return Delta, ratio |
|
|
|
|
|
|
|
|
|
|
|
def build_quadratic_1d(J, g, s, diag=None, s0=None): |
|
"""Parameterize a multivariate quadratic function along a line. |
|
|
|
The resulting univariate quadratic function is given as follows:: |
|
|
|
f(t) = 0.5 * (s0 + s*t).T * (J.T*J + diag) * (s0 + s*t) + |
|
g.T * (s0 + s*t) |
|
|
|
Parameters |
|
---------- |
|
J : ndarray, sparse matrix or LinearOperator shape (m, n) |
|
Jacobian matrix, affects the quadratic term. |
|
g : ndarray, shape (n,) |
|
Gradient, defines the linear term. |
|
s : ndarray, shape (n,) |
|
Direction vector of a line. |
|
diag : None or ndarray with shape (n,), optional |
|
Addition diagonal part, affects the quadratic term. |
|
If None, assumed to be 0. |
|
s0 : None or ndarray with shape (n,), optional |
|
Initial point. If None, assumed to be 0. |
|
|
|
Returns |
|
------- |
|
a : float |
|
Coefficient for t**2. |
|
b : float |
|
Coefficient for t. |
|
c : float |
|
Free term. Returned only if `s0` is provided. |
|
""" |
|
v = J.dot(s) |
|
a = np.dot(v, v) |
|
if diag is not None: |
|
a += np.dot(s * diag, s) |
|
a *= 0.5 |
|
|
|
b = np.dot(g, s) |
|
|
|
if s0 is not None: |
|
u = J.dot(s0) |
|
b += np.dot(u, v) |
|
c = 0.5 * np.dot(u, u) + np.dot(g, s0) |
|
if diag is not None: |
|
b += np.dot(s0 * diag, s) |
|
c += 0.5 * np.dot(s0 * diag, s0) |
|
return a, b, c |
|
else: |
|
return a, b |
|
|
|
|
|
def minimize_quadratic_1d(a, b, lb, ub, c=0): |
|
"""Minimize a 1-D quadratic function subject to bounds. |
|
|
|
The free term `c` is 0 by default. Bounds must be finite. |
|
|
|
Returns |
|
------- |
|
t : float |
|
Minimum point. |
|
y : float |
|
Minimum value. |
|
""" |
|
t = [lb, ub] |
|
if a != 0: |
|
extremum = -0.5 * b / a |
|
if lb < extremum < ub: |
|
t.append(extremum) |
|
t = np.asarray(t) |
|
y = t * (a * t + b) + c |
|
min_index = np.argmin(y) |
|
return t[min_index], y[min_index] |
|
|
|
|
|
def evaluate_quadratic(J, g, s, diag=None): |
|
"""Compute values of a quadratic function arising in least squares. |
|
|
|
The function is 0.5 * s.T * (J.T * J + diag) * s + g.T * s. |
|
|
|
Parameters |
|
---------- |
|
J : ndarray, sparse matrix or LinearOperator, shape (m, n) |
|
Jacobian matrix, affects the quadratic term. |
|
g : ndarray, shape (n,) |
|
Gradient, defines the linear term. |
|
s : ndarray, shape (k, n) or (n,) |
|
Array containing steps as rows. |
|
diag : ndarray, shape (n,), optional |
|
Addition diagonal part, affects the quadratic term. |
|
If None, assumed to be 0. |
|
|
|
Returns |
|
------- |
|
values : ndarray with shape (k,) or float |
|
Values of the function. If `s` was 2-D, then ndarray is |
|
returned, otherwise, float is returned. |
|
""" |
|
if s.ndim == 1: |
|
Js = J.dot(s) |
|
q = np.dot(Js, Js) |
|
if diag is not None: |
|
q += np.dot(s * diag, s) |
|
else: |
|
Js = J.dot(s.T) |
|
q = np.sum(Js**2, axis=0) |
|
if diag is not None: |
|
q += np.sum(diag * s**2, axis=1) |
|
|
|
l = np.dot(s, g) |
|
|
|
return 0.5 * q + l |
|
|
|
|
|
|
|
|
|
|
|
def in_bounds(x, lb, ub): |
|
"""Check if a point lies within bounds.""" |
|
return np.all((x >= lb) & (x <= ub)) |
|
|
|
|
|
def step_size_to_bound(x, s, lb, ub): |
|
"""Compute a min_step size required to reach a bound. |
|
|
|
The function computes a positive scalar t, such that x + s * t is on |
|
the bound. |
|
|
|
Returns |
|
------- |
|
step : float |
|
Computed step. Non-negative value. |
|
hits : ndarray of int with shape of x |
|
Each element indicates whether a corresponding variable reaches the |
|
bound: |
|
|
|
* 0 - the bound was not hit. |
|
* -1 - the lower bound was hit. |
|
* 1 - the upper bound was hit. |
|
""" |
|
non_zero = np.nonzero(s) |
|
s_non_zero = s[non_zero] |
|
steps = np.empty_like(x) |
|
steps.fill(np.inf) |
|
with np.errstate(over='ignore'): |
|
steps[non_zero] = np.maximum((lb - x)[non_zero] / s_non_zero, |
|
(ub - x)[non_zero] / s_non_zero) |
|
min_step = np.min(steps) |
|
return min_step, np.equal(steps, min_step) * np.sign(s).astype(int) |
|
|
|
|
|
def find_active_constraints(x, lb, ub, rtol=1e-10): |
|
"""Determine which constraints are active in a given point. |
|
|
|
The threshold is computed using `rtol` and the absolute value of the |
|
closest bound. |
|
|
|
Returns |
|
------- |
|
active : ndarray of int with shape of x |
|
Each component shows whether the corresponding constraint is active: |
|
|
|
* 0 - a constraint is not active. |
|
* -1 - a lower bound is active. |
|
* 1 - a upper bound is active. |
|
""" |
|
active = np.zeros_like(x, dtype=int) |
|
|
|
if rtol == 0: |
|
active[x <= lb] = -1 |
|
active[x >= ub] = 1 |
|
return active |
|
|
|
lower_dist = x - lb |
|
upper_dist = ub - x |
|
|
|
lower_threshold = rtol * np.maximum(1, np.abs(lb)) |
|
upper_threshold = rtol * np.maximum(1, np.abs(ub)) |
|
|
|
lower_active = (np.isfinite(lb) & |
|
(lower_dist <= np.minimum(upper_dist, lower_threshold))) |
|
active[lower_active] = -1 |
|
|
|
upper_active = (np.isfinite(ub) & |
|
(upper_dist <= np.minimum(lower_dist, upper_threshold))) |
|
active[upper_active] = 1 |
|
|
|
return active |
|
|
|
|
|
def make_strictly_feasible(x, lb, ub, rstep=1e-10): |
|
"""Shift a point to the interior of a feasible region. |
|
|
|
Each element of the returned vector is at least at a relative distance |
|
`rstep` from the closest bound. If ``rstep=0`` then `np.nextafter` is used. |
|
""" |
|
x_new = x.copy() |
|
|
|
active = find_active_constraints(x, lb, ub, rstep) |
|
lower_mask = np.equal(active, -1) |
|
upper_mask = np.equal(active, 1) |
|
|
|
if rstep == 0: |
|
x_new[lower_mask] = np.nextafter(lb[lower_mask], ub[lower_mask]) |
|
x_new[upper_mask] = np.nextafter(ub[upper_mask], lb[upper_mask]) |
|
else: |
|
x_new[lower_mask] = (lb[lower_mask] + |
|
rstep * np.maximum(1, np.abs(lb[lower_mask]))) |
|
x_new[upper_mask] = (ub[upper_mask] - |
|
rstep * np.maximum(1, np.abs(ub[upper_mask]))) |
|
|
|
tight_bounds = (x_new < lb) | (x_new > ub) |
|
x_new[tight_bounds] = 0.5 * (lb[tight_bounds] + ub[tight_bounds]) |
|
|
|
return x_new |
|
|
|
|
|
def CL_scaling_vector(x, g, lb, ub): |
|
"""Compute Coleman-Li scaling vector and its derivatives. |
|
|
|
Components of a vector v are defined as follows:: |
|
|
|
| ub[i] - x[i], if g[i] < 0 and ub[i] < np.inf |
|
v[i] = | x[i] - lb[i], if g[i] > 0 and lb[i] > -np.inf |
|
| 1, otherwise |
|
|
|
According to this definition v[i] >= 0 for all i. It differs from the |
|
definition in paper [1]_ (eq. (2.2)), where the absolute value of v is |
|
used. Both definitions are equivalent down the line. |
|
Derivatives of v with respect to x take value 1, -1 or 0 depending on a |
|
case. |
|
|
|
Returns |
|
------- |
|
v : ndarray with shape of x |
|
Scaling vector. |
|
dv : ndarray with shape of x |
|
Derivatives of v[i] with respect to x[i], diagonal elements of v's |
|
Jacobian. |
|
|
|
References |
|
---------- |
|
.. [1] M.A. Branch, T.F. Coleman, and Y. Li, "A Subspace, Interior, |
|
and Conjugate Gradient Method for Large-Scale Bound-Constrained |
|
Minimization Problems," SIAM Journal on Scientific Computing, |
|
Vol. 21, Number 1, pp 1-23, 1999. |
|
""" |
|
v = np.ones_like(x) |
|
dv = np.zeros_like(x) |
|
|
|
mask = (g < 0) & np.isfinite(ub) |
|
v[mask] = ub[mask] - x[mask] |
|
dv[mask] = -1 |
|
|
|
mask = (g > 0) & np.isfinite(lb) |
|
v[mask] = x[mask] - lb[mask] |
|
dv[mask] = 1 |
|
|
|
return v, dv |
|
|
|
|
|
def reflective_transformation(y, lb, ub): |
|
"""Compute reflective transformation and its gradient.""" |
|
if in_bounds(y, lb, ub): |
|
return y, np.ones_like(y) |
|
|
|
lb_finite = np.isfinite(lb) |
|
ub_finite = np.isfinite(ub) |
|
|
|
x = y.copy() |
|
g_negative = np.zeros_like(y, dtype=bool) |
|
|
|
mask = lb_finite & ~ub_finite |
|
x[mask] = np.maximum(y[mask], 2 * lb[mask] - y[mask]) |
|
g_negative[mask] = y[mask] < lb[mask] |
|
|
|
mask = ~lb_finite & ub_finite |
|
x[mask] = np.minimum(y[mask], 2 * ub[mask] - y[mask]) |
|
g_negative[mask] = y[mask] > ub[mask] |
|
|
|
mask = lb_finite & ub_finite |
|
d = ub - lb |
|
t = np.remainder(y[mask] - lb[mask], 2 * d[mask]) |
|
x[mask] = lb[mask] + np.minimum(t, 2 * d[mask] - t) |
|
g_negative[mask] = t > d[mask] |
|
|
|
g = np.ones_like(y) |
|
g[g_negative] = -1 |
|
|
|
return x, g |
|
|
|
|
|
|
|
|
|
|
|
def print_header_nonlinear(): |
|
print("{:^15}{:^15}{:^15}{:^15}{:^15}{:^15}" |
|
.format("Iteration", "Total nfev", "Cost", "Cost reduction", |
|
"Step norm", "Optimality")) |
|
|
|
|
|
def print_iteration_nonlinear(iteration, nfev, cost, cost_reduction, |
|
step_norm, optimality): |
|
if cost_reduction is None: |
|
cost_reduction = " " * 15 |
|
else: |
|
cost_reduction = f"{cost_reduction:^15.2e}" |
|
|
|
if step_norm is None: |
|
step_norm = " " * 15 |
|
else: |
|
step_norm = f"{step_norm:^15.2e}" |
|
|
|
print(f"{iteration:^15}{nfev:^15}{cost:^15.4e}{cost_reduction}{step_norm}{optimality:^15.2e}") |
|
|
|
|
|
def print_header_linear(): |
|
print("{:^15}{:^15}{:^15}{:^15}{:^15}" |
|
.format("Iteration", "Cost", "Cost reduction", "Step norm", |
|
"Optimality")) |
|
|
|
|
|
def print_iteration_linear(iteration, cost, cost_reduction, step_norm, |
|
optimality): |
|
if cost_reduction is None: |
|
cost_reduction = " " * 15 |
|
else: |
|
cost_reduction = f"{cost_reduction:^15.2e}" |
|
|
|
if step_norm is None: |
|
step_norm = " " * 15 |
|
else: |
|
step_norm = f"{step_norm:^15.2e}" |
|
|
|
print(f"{iteration:^15}{cost:^15.4e}{cost_reduction}{step_norm}{optimality:^15.2e}") |
|
|
|
|
|
|
|
|
|
|
|
def compute_grad(J, f): |
|
"""Compute gradient of the least-squares cost function.""" |
|
if isinstance(J, LinearOperator): |
|
return J.rmatvec(f) |
|
else: |
|
return J.T.dot(f) |
|
|
|
|
|
def compute_jac_scale(J, scale_inv_old=None): |
|
"""Compute variables scale based on the Jacobian matrix.""" |
|
if issparse(J): |
|
scale_inv = np.asarray(J.power(2).sum(axis=0)).ravel()**0.5 |
|
else: |
|
scale_inv = np.sum(J**2, axis=0)**0.5 |
|
|
|
if scale_inv_old is None: |
|
scale_inv[scale_inv == 0] = 1 |
|
else: |
|
scale_inv = np.maximum(scale_inv, scale_inv_old) |
|
|
|
return 1 / scale_inv, scale_inv |
|
|
|
|
|
def left_multiplied_operator(J, d): |
|
"""Return diag(d) J as LinearOperator.""" |
|
J = aslinearoperator(J) |
|
|
|
def matvec(x): |
|
return d * J.matvec(x) |
|
|
|
def matmat(X): |
|
return d[:, np.newaxis] * J.matmat(X) |
|
|
|
def rmatvec(x): |
|
return J.rmatvec(x.ravel() * d) |
|
|
|
return LinearOperator(J.shape, matvec=matvec, matmat=matmat, |
|
rmatvec=rmatvec) |
|
|
|
|
|
def right_multiplied_operator(J, d): |
|
"""Return J diag(d) as LinearOperator.""" |
|
J = aslinearoperator(J) |
|
|
|
def matvec(x): |
|
return J.matvec(np.ravel(x) * d) |
|
|
|
def matmat(X): |
|
return J.matmat(X * d[:, np.newaxis]) |
|
|
|
def rmatvec(x): |
|
return d * J.rmatvec(x) |
|
|
|
return LinearOperator(J.shape, matvec=matvec, matmat=matmat, |
|
rmatvec=rmatvec) |
|
|
|
|
|
def regularized_lsq_operator(J, diag): |
|
"""Return a matrix arising in regularized least squares as LinearOperator. |
|
|
|
The matrix is |
|
[ J ] |
|
[ D ] |
|
where D is diagonal matrix with elements from `diag`. |
|
""" |
|
J = aslinearoperator(J) |
|
m, n = J.shape |
|
|
|
def matvec(x): |
|
return np.hstack((J.matvec(x), diag * x)) |
|
|
|
def rmatvec(x): |
|
x1 = x[:m] |
|
x2 = x[m:] |
|
return J.rmatvec(x1) + diag * x2 |
|
|
|
return LinearOperator((m + n, n), matvec=matvec, rmatvec=rmatvec) |
|
|
|
|
|
def right_multiply(J, d, copy=True): |
|
"""Compute J diag(d). |
|
|
|
If `copy` is False, `J` is modified in place (unless being LinearOperator). |
|
""" |
|
if copy and not isinstance(J, LinearOperator): |
|
J = J.copy() |
|
|
|
if issparse(J): |
|
J.data *= d.take(J.indices, mode='clip') |
|
elif isinstance(J, LinearOperator): |
|
J = right_multiplied_operator(J, d) |
|
else: |
|
J *= d |
|
|
|
return J |
|
|
|
|
|
def left_multiply(J, d, copy=True): |
|
"""Compute diag(d) J. |
|
|
|
If `copy` is False, `J` is modified in place (unless being LinearOperator). |
|
""" |
|
if copy and not isinstance(J, LinearOperator): |
|
J = J.copy() |
|
|
|
if issparse(J): |
|
J.data *= np.repeat(d, np.diff(J.indptr)) |
|
elif isinstance(J, LinearOperator): |
|
J = left_multiplied_operator(J, d) |
|
else: |
|
J *= d[:, np.newaxis] |
|
|
|
return J |
|
|
|
|
|
def check_termination(dF, F, dx_norm, x_norm, ratio, ftol, xtol): |
|
"""Check termination condition for nonlinear least squares.""" |
|
ftol_satisfied = dF < ftol * F and ratio > 0.25 |
|
xtol_satisfied = dx_norm < xtol * (xtol + x_norm) |
|
|
|
if ftol_satisfied and xtol_satisfied: |
|
return 4 |
|
elif ftol_satisfied: |
|
return 2 |
|
elif xtol_satisfied: |
|
return 3 |
|
else: |
|
return None |
|
|
|
|
|
def scale_for_robust_loss_function(J, f, rho): |
|
"""Scale Jacobian and residuals for a robust loss function. |
|
|
|
Arrays are modified in place. |
|
""" |
|
J_scale = rho[1] + 2 * rho[2] * f**2 |
|
J_scale[J_scale < EPS] = EPS |
|
J_scale **= 0.5 |
|
|
|
f *= rho[1] / J_scale |
|
|
|
return left_multiply(J, J_scale, copy=False), f |
|
|