|
import math |
|
|
|
import numpy as np |
|
from numpy.testing import assert_allclose, assert_, assert_array_equal |
|
import pytest |
|
|
|
from scipy.optimize import fmin_cobyla, minimize, Bounds |
|
|
|
|
|
class TestCobyla: |
|
def setup_method(self): |
|
self.x0 = [4.95, 0.66] |
|
self.solution = [math.sqrt(25 - (2.0/3)**2), 2.0/3] |
|
self.opts = {'disp': False, 'rhobeg': 1, 'tol': 1e-5, |
|
'maxiter': 100} |
|
|
|
def fun(self, x): |
|
return x[0]**2 + abs(x[1])**3 |
|
|
|
def con1(self, x): |
|
return x[0]**2 + x[1]**2 - 25 |
|
|
|
def con2(self, x): |
|
return -self.con1(x) |
|
|
|
@pytest.mark.xslow(True, reason='not slow, but noisy so only run rarely') |
|
def test_simple(self, capfd): |
|
|
|
x = fmin_cobyla(self.fun, self.x0, [self.con1, self.con2], rhobeg=1, |
|
rhoend=1e-5, maxfun=100, disp=True) |
|
assert_allclose(x, self.solution, atol=1e-4) |
|
|
|
def test_minimize_simple(self): |
|
class Callback: |
|
def __init__(self): |
|
self.n_calls = 0 |
|
self.last_x = None |
|
|
|
def __call__(self, x): |
|
self.n_calls += 1 |
|
self.last_x = x |
|
|
|
callback = Callback() |
|
|
|
|
|
cons = ({'type': 'ineq', 'fun': self.con1}, |
|
{'type': 'ineq', 'fun': self.con2}) |
|
sol = minimize(self.fun, self.x0, method='cobyla', constraints=cons, |
|
callback=callback, options=self.opts) |
|
assert_allclose(sol.x, self.solution, atol=1e-4) |
|
assert_(sol.success, sol.message) |
|
assert_(sol.maxcv < 1e-5, sol) |
|
assert_(sol.nfev < 70, sol) |
|
assert_(sol.fun < self.fun(self.solution) + 1e-3, sol) |
|
assert_(sol.nfev == callback.n_calls, |
|
"Callback is not called exactly once for every function eval.") |
|
assert_array_equal( |
|
sol.x, |
|
callback.last_x, |
|
"Last design vector sent to the callback is not equal to returned value.", |
|
) |
|
|
|
def test_minimize_constraint_violation(self): |
|
rng = np.random.RandomState(1234) |
|
pb = rng.rand(10, 10) |
|
spread = rng.rand(10) |
|
|
|
def p(w): |
|
return pb.dot(w) |
|
|
|
def f(w): |
|
return -(w * spread).sum() |
|
|
|
def c1(w): |
|
return 500 - abs(p(w)).sum() |
|
|
|
def c2(w): |
|
return 5 - abs(p(w).sum()) |
|
|
|
def c3(w): |
|
return 5 - abs(p(w)).max() |
|
|
|
cons = ({'type': 'ineq', 'fun': c1}, |
|
{'type': 'ineq', 'fun': c2}, |
|
{'type': 'ineq', 'fun': c3}) |
|
w0 = np.zeros((10,)) |
|
sol = minimize(f, w0, method='cobyla', constraints=cons, |
|
options={'catol': 1e-6}) |
|
assert_(sol.maxcv > 1e-6) |
|
assert_(not sol.success) |
|
|
|
|
|
def test_vector_constraints(): |
|
|
|
|
|
def fun(x): |
|
return (x[0] - 1)**2 + (x[1] - 2.5)**2 |
|
|
|
def fmin(x): |
|
return fun(x) - 1 |
|
|
|
def cons1(x): |
|
a = np.array([[1, -2, 2], [-1, -2, 6], [-1, 2, 2]]) |
|
return np.array([a[i, 0] * x[0] + a[i, 1] * x[1] + |
|
a[i, 2] for i in range(len(a))]) |
|
|
|
def cons2(x): |
|
return x |
|
|
|
x0 = np.array([2, 0]) |
|
cons_list = [fun, cons1, cons2] |
|
|
|
xsol = [1.4, 1.7] |
|
fsol = 0.8 |
|
|
|
|
|
sol = fmin_cobyla(fun, x0, cons_list, rhoend=1e-5) |
|
assert_allclose(sol, xsol, atol=1e-4) |
|
|
|
sol = fmin_cobyla(fun, x0, fmin, rhoend=1e-5) |
|
assert_allclose(fun(sol), 1, atol=1e-4) |
|
|
|
|
|
constraints = [{'type': 'ineq', 'fun': cons} for cons in cons_list] |
|
sol = minimize(fun, x0, constraints=constraints, tol=1e-5) |
|
assert_allclose(sol.x, xsol, atol=1e-4) |
|
assert_(sol.success, sol.message) |
|
assert_allclose(sol.fun, fsol, atol=1e-4) |
|
|
|
constraints = {'type': 'ineq', 'fun': fmin} |
|
sol = minimize(fun, x0, constraints=constraints, tol=1e-5) |
|
assert_allclose(sol.fun, 1, atol=1e-4) |
|
|
|
|
|
class TestBounds: |
|
|
|
|
|
|
|
|
|
def test_basic(self): |
|
def f(x): |
|
return np.sum(x**2) |
|
|
|
lb = [-1, None, 1, None, -0.5] |
|
ub = [-0.5, -0.5, None, None, -0.5] |
|
bounds = [(a, b) for a, b in zip(lb, ub)] |
|
|
|
|
|
res = minimize(f, x0=[1, 2, 3, 4, 5], method='cobyla', bounds=bounds) |
|
ref = [-0.5, -0.5, 1, 0, -0.5] |
|
assert res.success |
|
assert_allclose(res.x, ref, atol=1e-3) |
|
|
|
def test_unbounded(self): |
|
def f(x): |
|
return np.sum(x**2) |
|
|
|
bounds = Bounds([-np.inf, -np.inf], [np.inf, np.inf]) |
|
res = minimize(f, x0=[1, 2], method='cobyla', bounds=bounds) |
|
assert res.success |
|
assert_allclose(res.x, 0, atol=1e-3) |
|
|
|
bounds = Bounds([1, -np.inf], [np.inf, np.inf]) |
|
res = minimize(f, x0=[1, 2], method='cobyla', bounds=bounds) |
|
assert res.success |
|
assert_allclose(res.x, [1, 0], atol=1e-3) |
|
|