|
import sys |
|
import os |
|
import gc |
|
import threading |
|
|
|
import numpy as np |
|
from numpy.testing import assert_equal, assert_, assert_allclose |
|
from scipy.sparse import (_sparsetools, coo_matrix, csr_matrix, csc_matrix, |
|
bsr_matrix, dia_matrix) |
|
from scipy.sparse._sputils import supported_dtypes |
|
from scipy._lib._testutils import check_free_memory |
|
|
|
import pytest |
|
from pytest import raises as assert_raises |
|
|
|
|
|
def int_to_int8(n): |
|
""" |
|
Wrap an integer to the interval [-128, 127]. |
|
""" |
|
return (n + 128) % 256 - 128 |
|
|
|
|
|
def test_exception(): |
|
assert_raises(MemoryError, _sparsetools.test_throw_error) |
|
|
|
|
|
def test_threads(): |
|
|
|
|
|
|
|
nthreads = 10 |
|
niter = 100 |
|
|
|
n = 20 |
|
a = csr_matrix(np.ones([n, n])) |
|
bres = [] |
|
|
|
class Worker(threading.Thread): |
|
def run(self): |
|
b = a.copy() |
|
for j in range(niter): |
|
_sparsetools.csr_plus_csr(n, n, |
|
a.indptr, a.indices, a.data, |
|
a.indptr, a.indices, a.data, |
|
b.indptr, b.indices, b.data) |
|
bres.append(b) |
|
|
|
threads = [Worker() for _ in range(nthreads)] |
|
for thread in threads: |
|
thread.start() |
|
for thread in threads: |
|
thread.join() |
|
|
|
for b in bres: |
|
assert_(np.all(b.toarray() == 2)) |
|
|
|
|
|
def test_regression_std_vector_dtypes(): |
|
|
|
|
|
for dtype in supported_dtypes: |
|
ad = np.array([[1, 2], [3, 4]]).astype(dtype) |
|
a = csr_matrix(ad, dtype=dtype) |
|
|
|
|
|
assert_equal(a.getcol(0).toarray(), ad[:, :1]) |
|
|
|
|
|
@pytest.mark.slow |
|
@pytest.mark.xfail_on_32bit("Can't create large array for test") |
|
def test_nnz_overflow(): |
|
|
|
|
|
nnz = np.iinfo(np.int32).max + 1 |
|
|
|
check_free_memory((4 + 4 + 1) * nnz / 1e6 + 0.5) |
|
|
|
|
|
row = np.zeros(nnz, dtype=np.int32) |
|
col = np.zeros(nnz, dtype=np.int32) |
|
data = np.zeros(nnz, dtype=np.int8) |
|
data[-1] = 4 |
|
s = coo_matrix((data, (row, col)), shape=(1, 1), copy=False) |
|
|
|
d = s.toarray() |
|
|
|
assert_allclose(d, [[4]]) |
|
|
|
|
|
@pytest.mark.skipif( |
|
not (sys.platform.startswith('linux') and np.dtype(np.intp).itemsize >= 8), |
|
reason="test requires 64-bit Linux" |
|
) |
|
class TestInt32Overflow: |
|
""" |
|
Some of the sparsetools routines use dense 2D matrices whose |
|
total size is not bounded by the nnz of the sparse matrix. These |
|
routines used to suffer from int32 wraparounds; here, we try to |
|
check that the wraparounds don't occur any more. |
|
""" |
|
|
|
n = 50000 |
|
|
|
def setup_method(self): |
|
assert self.n**2 > np.iinfo(np.int32).max |
|
|
|
|
|
|
|
try: |
|
parallel_count = int(os.environ.get('PYTEST_XDIST_WORKER_COUNT', '1')) |
|
except ValueError: |
|
parallel_count = np.inf |
|
|
|
check_free_memory(3000 * parallel_count) |
|
|
|
def teardown_method(self): |
|
gc.collect() |
|
|
|
def test_coo_todense(self): |
|
|
|
|
|
|
|
|
|
n = self.n |
|
|
|
i = np.array([0, n-1]) |
|
j = np.array([0, n-1]) |
|
data = np.array([1, 2], dtype=np.int8) |
|
m = coo_matrix((data, (i, j))) |
|
|
|
r = m.todense() |
|
assert_equal(r[0,0], 1) |
|
assert_equal(r[-1,-1], 2) |
|
del r |
|
gc.collect() |
|
|
|
@pytest.mark.slow |
|
def test_matvecs(self): |
|
|
|
n = self.n |
|
|
|
i = np.array([0, n-1]) |
|
j = np.array([0, n-1]) |
|
data = np.array([1, 2], dtype=np.int8) |
|
m = coo_matrix((data, (i, j))) |
|
|
|
b = np.ones((n, n), dtype=np.int8) |
|
for sptype in (csr_matrix, csc_matrix, bsr_matrix): |
|
m2 = sptype(m) |
|
r = m2.dot(b) |
|
assert_equal(r[0,0], 1) |
|
assert_equal(r[-1,-1], 2) |
|
del r |
|
gc.collect() |
|
|
|
del b |
|
gc.collect() |
|
|
|
@pytest.mark.slow |
|
def test_dia_matvec(self): |
|
|
|
n = self.n |
|
data = np.ones((n, n), dtype=np.int8) |
|
offsets = np.arange(n) |
|
m = dia_matrix((data, offsets), shape=(n, n)) |
|
v = np.ones(m.shape[1], dtype=np.int8) |
|
r = m.dot(v) |
|
assert_equal(r[0], int_to_int8(n)) |
|
del data, offsets, m, v, r |
|
gc.collect() |
|
|
|
_bsr_ops = [pytest.param("matmat", marks=pytest.mark.xslow), |
|
pytest.param("matvecs", marks=pytest.mark.xslow), |
|
"matvec", |
|
"diagonal", |
|
"sort_indices", |
|
pytest.param("transpose", marks=pytest.mark.xslow)] |
|
|
|
@pytest.mark.slow |
|
@pytest.mark.parametrize("op", _bsr_ops) |
|
def test_bsr_1_block(self, op): |
|
|
|
|
|
|
|
|
|
def get_matrix(): |
|
n = self.n |
|
data = np.ones((1, n, n), dtype=np.int8) |
|
indptr = np.array([0, 1], dtype=np.int32) |
|
indices = np.array([0], dtype=np.int32) |
|
m = bsr_matrix((data, indices, indptr), blocksize=(n, n), copy=False) |
|
del data, indptr, indices |
|
return m |
|
|
|
gc.collect() |
|
try: |
|
getattr(self, "_check_bsr_" + op)(get_matrix) |
|
finally: |
|
gc.collect() |
|
|
|
@pytest.mark.slow |
|
@pytest.mark.parametrize("op", _bsr_ops) |
|
def test_bsr_n_block(self, op): |
|
|
|
|
|
|
|
|
|
|
|
def get_matrix(): |
|
n = self.n |
|
data = np.ones((n, n, 1), dtype=np.int8) |
|
indptr = np.array([0, n], dtype=np.int32) |
|
indices = np.arange(n, dtype=np.int32) |
|
m = bsr_matrix((data, indices, indptr), blocksize=(n, 1), copy=False) |
|
del data, indptr, indices |
|
return m |
|
|
|
gc.collect() |
|
try: |
|
getattr(self, "_check_bsr_" + op)(get_matrix) |
|
finally: |
|
gc.collect() |
|
|
|
def _check_bsr_matvecs(self, m): |
|
m = m() |
|
n = self.n |
|
|
|
|
|
r = m.dot(np.ones((n, 2), dtype=np.int8)) |
|
assert_equal(r[0, 0], int_to_int8(n)) |
|
|
|
def _check_bsr_matvec(self, m): |
|
m = m() |
|
n = self.n |
|
|
|
|
|
r = m.dot(np.ones((n,), dtype=np.int8)) |
|
assert_equal(r[0], int_to_int8(n)) |
|
|
|
def _check_bsr_diagonal(self, m): |
|
m = m() |
|
n = self.n |
|
|
|
|
|
r = m.diagonal() |
|
assert_equal(r, np.ones(n)) |
|
|
|
def _check_bsr_sort_indices(self, m): |
|
|
|
m = m() |
|
m.sort_indices() |
|
|
|
def _check_bsr_transpose(self, m): |
|
|
|
m = m() |
|
m.transpose() |
|
|
|
def _check_bsr_matmat(self, m): |
|
m = m() |
|
n = self.n |
|
|
|
|
|
m2 = bsr_matrix(np.ones((n, 2), dtype=np.int8), blocksize=(m.blocksize[1], 2)) |
|
m.dot(m2) |
|
del m2 |
|
|
|
|
|
m2 = bsr_matrix(np.ones((2, n), dtype=np.int8), blocksize=(2, m.blocksize[0])) |
|
m2.dot(m) |
|
|
|
|
|
@pytest.mark.skip(reason="64-bit indices in sparse matrices not available") |
|
def test_csr_matmat_int64_overflow(): |
|
n = 3037000500 |
|
assert n**2 > np.iinfo(np.int64).max |
|
|
|
|
|
check_free_memory(n * (8*2 + 1) * 3 / 1e6) |
|
|
|
|
|
data = np.ones((n,), dtype=np.int8) |
|
indptr = np.arange(n+1, dtype=np.int64) |
|
indices = np.zeros(n, dtype=np.int64) |
|
a = csr_matrix((data, indices, indptr)) |
|
b = a.T |
|
|
|
assert_raises(RuntimeError, a.dot, b) |
|
|
|
|
|
def test_upcast(): |
|
a0 = csr_matrix([[np.pi, np.pi*1j], [3, 4]], dtype=complex) |
|
b0 = np.array([256+1j, 2**32], dtype=complex) |
|
|
|
for a_dtype in supported_dtypes: |
|
for b_dtype in supported_dtypes: |
|
msg = f"({a_dtype!r}, {b_dtype!r})" |
|
|
|
if np.issubdtype(a_dtype, np.complexfloating): |
|
a = a0.copy().astype(a_dtype) |
|
else: |
|
a = a0.real.copy().astype(a_dtype) |
|
|
|
if np.issubdtype(b_dtype, np.complexfloating): |
|
b = b0.copy().astype(b_dtype) |
|
else: |
|
with np.errstate(invalid="ignore"): |
|
|
|
|
|
b = b0.real.copy().astype(b_dtype) |
|
|
|
if not (a_dtype == np.bool_ and b_dtype == np.bool_): |
|
c = np.zeros((2,), dtype=np.bool_) |
|
assert_raises(ValueError, _sparsetools.csr_matvec, |
|
2, 2, a.indptr, a.indices, a.data, b, c) |
|
|
|
if ((np.issubdtype(a_dtype, np.complexfloating) and |
|
not np.issubdtype(b_dtype, np.complexfloating)) or |
|
(not np.issubdtype(a_dtype, np.complexfloating) and |
|
np.issubdtype(b_dtype, np.complexfloating))): |
|
c = np.zeros((2,), dtype=np.float64) |
|
assert_raises(ValueError, _sparsetools.csr_matvec, |
|
2, 2, a.indptr, a.indices, a.data, b, c) |
|
|
|
c = np.zeros((2,), dtype=np.result_type(a_dtype, b_dtype)) |
|
_sparsetools.csr_matvec(2, 2, a.indptr, a.indices, a.data, b, c) |
|
assert_allclose(c, np.dot(a.toarray(), b), err_msg=msg) |
|
|
|
|
|
def test_endianness(): |
|
d = np.ones((3,4)) |
|
offsets = [-1,0,1] |
|
|
|
a = dia_matrix((d.astype('<f8'), offsets), (4, 4)) |
|
b = dia_matrix((d.astype('>f8'), offsets), (4, 4)) |
|
v = np.arange(4) |
|
|
|
assert_allclose(a.dot(v), [1, 3, 6, 5]) |
|
assert_allclose(b.dot(v), [1, 3, 6, 5]) |
|
|