|
import pytest |
|
import numpy as np |
|
from numpy.testing import assert_, assert_array_equal, assert_allclose |
|
|
|
try: |
|
import matplotlib |
|
matplotlib.rcParams['backend'] = 'Agg' |
|
import matplotlib.pyplot as plt |
|
has_matplotlib = True |
|
except Exception: |
|
has_matplotlib = False |
|
|
|
from scipy.spatial import \ |
|
delaunay_plot_2d, voronoi_plot_2d, convex_hull_plot_2d, \ |
|
Delaunay, Voronoi, ConvexHull |
|
|
|
|
|
@pytest.mark.skipif(not has_matplotlib, reason="Matplotlib not available") |
|
class TestPlotting: |
|
points = [(0,0), (0,1), (1,0), (1,1)] |
|
|
|
def test_delaunay(self): |
|
|
|
fig = plt.figure() |
|
obj = Delaunay(self.points) |
|
s_before = obj.simplices.copy() |
|
r = delaunay_plot_2d(obj, ax=fig.gca()) |
|
assert_array_equal(obj.simplices, s_before) |
|
assert_(r is fig) |
|
delaunay_plot_2d(obj, ax=fig.gca()) |
|
|
|
def test_voronoi(self): |
|
|
|
fig = plt.figure() |
|
obj = Voronoi(self.points) |
|
r = voronoi_plot_2d(obj, ax=fig.gca()) |
|
assert_(r is fig) |
|
voronoi_plot_2d(obj) |
|
voronoi_plot_2d(obj, show_vertices=False) |
|
|
|
def test_convex_hull(self): |
|
|
|
fig = plt.figure() |
|
tri = ConvexHull(self.points) |
|
r = convex_hull_plot_2d(tri, ax=fig.gca()) |
|
assert_(r is fig) |
|
convex_hull_plot_2d(tri) |
|
|
|
def test_gh_19653(self): |
|
|
|
|
|
points = np.array([[245.059986986012, 10.971011721360075], |
|
[320.49044143557785, 10.970258360366753], |
|
[239.79023081978914, 13.108487516946218], |
|
[263.38325791238833, 12.93241352743668], |
|
[219.53334398353175, 13.346107628161008]]) |
|
vor = Voronoi(points) |
|
fig = voronoi_plot_2d(vor) |
|
ax = fig.gca() |
|
infinite_segments = ax.collections[1].get_segments() |
|
expected_segments = np.array([[[282.77256, -254.76904], |
|
[282.729714, -4544.744698]], |
|
[[282.77256014, -254.76904029], |
|
[430.08561382, 4032.67658742]], |
|
[[229.26733285, -20.39957514], |
|
[-168.17167404, -4291.92545966]], |
|
[[289.93433364, 5151.40412217], |
|
[330.40553385, 9441.18887532]]]) |
|
assert_allclose(infinite_segments, expected_segments) |
|
|
|
def test_gh_19653_smaller_aspect(self): |
|
|
|
|
|
points = np.array([[24.059986986012, 10.971011721360075], |
|
[32.49044143557785, 10.970258360366753], |
|
[23.79023081978914, 13.108487516946218], |
|
[26.38325791238833, 12.93241352743668], |
|
[21.53334398353175, 13.346107628161008]]) |
|
vor = Voronoi(points) |
|
fig = voronoi_plot_2d(vor) |
|
ax = fig.gca() |
|
infinite_segments = ax.collections[1].get_segments() |
|
expected_segments = np.array([[[28.274979, 8.335027], |
|
[28.270463, -42.19763338]], |
|
[[28.27497869, 8.33502697], |
|
[43.73223829, 56.44555501]], |
|
[[22.51805823, 11.8621754], |
|
[-12.09266506, -24.95694485]], |
|
[[29.53092448, 78.46952378], |
|
[33.82572726, 128.81934455]]]) |
|
assert_allclose(infinite_segments, expected_segments) |
|
|