/* Translated into C++ by SciPy developers in 2024. | |
* Original header with Copyright information appears below. | |
*/ | |
/* cbrt.c | |
* | |
* Cube root | |
* | |
* | |
* | |
* SYNOPSIS: | |
* | |
* double x, y, cbrt(); | |
* | |
* y = cbrt( x ); | |
* | |
* | |
* | |
* DESCRIPTION: | |
* | |
* Returns the cube root of the argument, which may be negative. | |
* | |
* Range reduction involves determining the power of 2 of | |
* the argument. A polynomial of degree 2 applied to the | |
* mantissa, and multiplication by the cube root of 1, 2, or 4 | |
* approximates the root to within about 0.1%. Then Newton's | |
* iteration is used three times to converge to an accurate | |
* result. | |
* | |
* | |
* | |
* ACCURACY: | |
* | |
* Relative error: | |
* arithmetic domain # trials peak rms | |
* IEEE 0,1e308 30000 1.5e-16 5.0e-17 | |
* | |
*/ | |
/* cbrt.c */ | |
/* | |
* Cephes Math Library Release 2.2: January, 1991 | |
* Copyright 1984, 1991 by Stephen L. Moshier | |
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140 | |
*/ | |
namespace xsf { | |
namespace cephes { | |
namespace detail { | |
constexpr double CBRT2 = 1.2599210498948731647672; | |
constexpr double CBRT4 = 1.5874010519681994747517; | |
constexpr double CBRT2I = 0.79370052598409973737585; | |
constexpr double CBRT4I = 0.62996052494743658238361; | |
XSF_HOST_DEVICE inline double cbrt(double x) { | |
int e, rem, sign; | |
double z; | |
if (!std::isfinite(x)) { | |
return x; | |
} | |
if (x == 0) { | |
return (x); | |
} | |
if (x > 0) { | |
sign = 1; | |
} else { | |
sign = -1; | |
x = -x; | |
} | |
z = x; | |
/* extract power of 2, leaving | |
* mantissa between 0.5 and 1 | |
*/ | |
x = std::frexp(x, &e); | |
/* Approximate cube root of number between .5 and 1, | |
* peak relative error = 9.2e-6 | |
*/ | |
x = (((-1.3466110473359520655053e-1 * x + 5.4664601366395524503440e-1) * x - 9.5438224771509446525043e-1) * | |
x + | |
1.1399983354717293273738e0) * | |
x + | |
4.0238979564544752126924e-1; | |
/* exponent divided by 3 */ | |
if (e >= 0) { | |
rem = e; | |
e /= 3; | |
rem -= 3 * e; | |
if (rem == 1) { | |
x *= CBRT2; | |
} else if (rem == 2) { | |
x *= CBRT4; | |
} | |
} | |
/* argument less than 1 */ | |
else { | |
e = -e; | |
rem = e; | |
e /= 3; | |
rem -= 3 * e; | |
if (rem == 1) { | |
x *= CBRT2I; | |
} else if (rem == 2) { | |
x *= CBRT4I; | |
} | |
e = -e; | |
} | |
/* multiply by power of 2 */ | |
x = std::ldexp(x, e); | |
/* Newton iteration */ | |
x -= (x - (z / (x * x))) * 0.33333333333333333333; | |
x -= (x - (z / (x * x))) * 0.33333333333333333333; | |
if (sign < 0) | |
x = -x; | |
return (x); | |
} | |
} // namespace detail | |
} // namespace cephes | |
} // namespace xsf | |