Sam Chaudry
Upload folder using huggingface_hub
7885a28 verified
raw
history blame
2.38 kB
/*
* Pochhammer symbol (a)_m = gamma(a + m) / gamma(a)
*/
#pragma once
#include "../config.h"
#include "gamma.h"
namespace xsf {
namespace cephes {
namespace detail {
XSF_HOST_DEVICE inline double is_nonpos_int(double x) {
return x <= 0 && x == std::ceil(x) && std::abs(x) < 1e13;
}
} // namespace detail
XSF_HOST_DEVICE inline double poch(double a, double m) {
double r = 1.0;
/*
* 1. Reduce magnitude of `m` to |m| < 1 by using recurrence relations.
*
* This may end up in over/underflow, but then the function itself either
* diverges or goes to zero. In case the remainder goes to the opposite
* direction, we end up returning 0*INF = NAN, which is OK.
*/
/* Recurse down */
while (m >= 1.0) {
if (a + m == 1) {
break;
}
m -= 1.0;
r *= (a + m);
if (!std::isfinite(r) || r == 0) {
break;
}
}
/* Recurse up */
while (m <= -1.0) {
if (a + m == 0) {
break;
}
r /= (a + m);
m += 1.0;
if (!std::isfinite(r) || r == 0) {
break;
}
}
/*
* 2. Evaluate function with reduced `m`
*
* Now either `m` is not big, or the `r` product has over/underflown.
* If so, the function itself does similarly.
*/
if (m == 0) {
/* Easy case */
return r;
} else if (a > 1e4 && std::abs(m) <= 1) {
/* Avoid loss of precision */
return r * std::pow(a, m) *
(1 + m * (m - 1) / (2 * a) + m * (m - 1) * (m - 2) * (3 * m - 1) / (24 * a * a) +
m * m * (m - 1) * (m - 1) * (m - 2) * (m - 3) / (48 * a * a * a));
}
/* Check for infinity */
if (detail::is_nonpos_int(a + m) && !detail::is_nonpos_int(a) && a + m != m) {
return std::numeric_limits<double>::infinity();
}
/* Check for zero */
if (!detail::is_nonpos_int(a + m) && detail::is_nonpos_int(a)) {
return 0;
}
return r * std::exp(lgam(a + m) - lgam(a)) * gammasgn(a + m) * gammasgn(a);
}
} // namespace cephes
} // namespace xsf