|
import math |
|
import pytest |
|
from pytest import raises as assert_raises |
|
|
|
import numpy as np |
|
|
|
from scipy import stats |
|
from scipy.stats import norm, expon |
|
from scipy.conftest import array_api_compatible |
|
from scipy._lib._array_api import array_namespace, is_array_api_strict, is_jax |
|
from scipy._lib._array_api_no_0d import (xp_assert_close, xp_assert_equal, |
|
xp_assert_less) |
|
|
|
class TestEntropy: |
|
@array_api_compatible |
|
def test_entropy_positive(self, xp): |
|
|
|
pk = xp.asarray([0.5, 0.2, 0.3]) |
|
qk = xp.asarray([0.1, 0.25, 0.65]) |
|
eself = stats.entropy(pk, pk) |
|
edouble = stats.entropy(pk, qk) |
|
xp_assert_equal(eself, xp.asarray(0.)) |
|
xp_assert_less(-edouble, xp.asarray(0.)) |
|
|
|
@array_api_compatible |
|
def test_entropy_base(self, xp): |
|
pk = xp.ones(16) |
|
S = stats.entropy(pk, base=2.) |
|
xp_assert_less(xp.abs(S - 4.), xp.asarray(1.e-5)) |
|
|
|
qk = xp.ones(16) |
|
qk = xp.where(xp.arange(16) < 8, xp.asarray(2.), qk) |
|
S = stats.entropy(pk, qk) |
|
S2 = stats.entropy(pk, qk, base=2.) |
|
xp_assert_less(xp.abs(S/S2 - math.log(2.)), xp.asarray(1.e-5)) |
|
|
|
@array_api_compatible |
|
def test_entropy_zero(self, xp): |
|
|
|
x = xp.asarray([0., 1., 2.]) |
|
xp_assert_close(stats.entropy(x), |
|
xp.asarray(0.63651416829481278)) |
|
|
|
@array_api_compatible |
|
def test_entropy_2d(self, xp): |
|
pk = xp.asarray([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]) |
|
qk = xp.asarray([[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]]) |
|
xp_assert_close(stats.entropy(pk, qk), |
|
xp.asarray([0.1933259, 0.18609809])) |
|
|
|
@array_api_compatible |
|
def test_entropy_2d_zero(self, xp): |
|
pk = xp.asarray([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]) |
|
qk = xp.asarray([[0.0, 0.1], [0.3, 0.6], [0.5, 0.3]]) |
|
xp_assert_close(stats.entropy(pk, qk), |
|
xp.asarray([xp.inf, 0.18609809])) |
|
|
|
pk = xp.asarray([[0.0, 0.2], [0.6, 0.3], [0.3, 0.5]]) |
|
xp_assert_close(stats.entropy(pk, qk), |
|
xp.asarray([0.17403988, 0.18609809])) |
|
|
|
@array_api_compatible |
|
def test_entropy_base_2d_nondefault_axis(self, xp): |
|
pk = xp.asarray([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]) |
|
xp_assert_close(stats.entropy(pk, axis=1), |
|
xp.asarray([0.63651417, 0.63651417, 0.66156324])) |
|
|
|
@array_api_compatible |
|
def test_entropy_2d_nondefault_axis(self, xp): |
|
pk = xp.asarray([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]) |
|
qk = xp.asarray([[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]]) |
|
xp_assert_close(stats.entropy(pk, qk, axis=1), |
|
xp.asarray([0.23104906, 0.23104906, 0.12770641])) |
|
|
|
@array_api_compatible |
|
def test_entropy_raises_value_error(self, xp): |
|
pk = xp.asarray([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]) |
|
qk = xp.asarray([[0.1, 0.2], [0.6, 0.3]]) |
|
message = "Array shapes are incompatible for broadcasting." |
|
with pytest.raises(ValueError, match=message): |
|
stats.entropy(pk, qk) |
|
|
|
@array_api_compatible |
|
def test_base_entropy_with_axis_0_is_equal_to_default(self, xp): |
|
pk = xp.asarray([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]) |
|
xp_assert_close(stats.entropy(pk, axis=0), |
|
stats.entropy(pk)) |
|
|
|
@array_api_compatible |
|
def test_entropy_with_axis_0_is_equal_to_default(self, xp): |
|
pk = xp.asarray([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]) |
|
qk = xp.asarray([[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]]) |
|
xp_assert_close(stats.entropy(pk, qk, axis=0), |
|
stats.entropy(pk, qk)) |
|
|
|
@array_api_compatible |
|
def test_base_entropy_transposed(self, xp): |
|
pk = xp.asarray([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]) |
|
xp_assert_close(stats.entropy(pk.T), |
|
stats.entropy(pk, axis=1)) |
|
|
|
@array_api_compatible |
|
def test_entropy_transposed(self, xp): |
|
pk = xp.asarray([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]) |
|
qk = xp.asarray([[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]]) |
|
xp_assert_close(stats.entropy(pk.T, qk.T), |
|
stats.entropy(pk, qk, axis=1)) |
|
|
|
@array_api_compatible |
|
def test_entropy_broadcasting(self, xp): |
|
rng = np.random.default_rng(74187315492831452) |
|
x = xp.asarray(rng.random(3)) |
|
y = xp.asarray(rng.random((2, 1))) |
|
res = stats.entropy(x, y, axis=-1) |
|
xp_assert_equal(res[0], stats.entropy(x, y[0, ...])) |
|
xp_assert_equal(res[1], stats.entropy(x, y[1, ...])) |
|
|
|
@array_api_compatible |
|
def test_entropy_shape_mismatch(self, xp): |
|
x = xp.ones((10, 1, 12)) |
|
y = xp.ones((11, 2)) |
|
message = "Array shapes are incompatible for broadcasting." |
|
with pytest.raises(ValueError, match=message): |
|
stats.entropy(x, y) |
|
|
|
@array_api_compatible |
|
def test_input_validation(self, xp): |
|
x = xp.ones(10) |
|
message = "`base` must be a positive number." |
|
with pytest.raises(ValueError, match=message): |
|
stats.entropy(x, base=-2) |
|
|
|
|
|
@array_api_compatible |
|
@pytest.mark.usefixtures("skip_xp_backends") |
|
class TestDifferentialEntropy: |
|
""" |
|
Vasicek results are compared with the R package vsgoftest. |
|
|
|
# library(vsgoftest) |
|
# |
|
# samp <- c(<values>) |
|
# entropy.estimate(x = samp, window = <window_length>) |
|
|
|
""" |
|
|
|
def test_differential_entropy_vasicek(self, xp): |
|
|
|
random_state = np.random.RandomState(0) |
|
values = random_state.standard_normal(100) |
|
values = xp.asarray(values.tolist()) |
|
|
|
entropy = stats.differential_entropy(values, method='vasicek') |
|
xp_assert_close(entropy, xp.asarray(1.342551187000946)) |
|
|
|
entropy = stats.differential_entropy(values, window_length=1, |
|
method='vasicek') |
|
xp_assert_close(entropy, xp.asarray(1.122044177725947)) |
|
|
|
entropy = stats.differential_entropy(values, window_length=8, |
|
method='vasicek') |
|
xp_assert_close(entropy, xp.asarray(1.349401487550325)) |
|
|
|
def test_differential_entropy_vasicek_2d_nondefault_axis(self, xp): |
|
random_state = np.random.RandomState(0) |
|
values = random_state.standard_normal((3, 100)) |
|
values = xp.asarray(values.tolist()) |
|
|
|
entropy = stats.differential_entropy(values, axis=1, method='vasicek') |
|
ref = xp.asarray([1.342551187000946, 1.341825903922332, 1.293774601883585]) |
|
xp_assert_close(entropy, ref) |
|
|
|
entropy = stats.differential_entropy(values, axis=1, window_length=1, |
|
method='vasicek') |
|
ref = xp.asarray([1.122044177725947, 1.10294413850758, 1.129615790292772]) |
|
xp_assert_close(entropy, ref) |
|
|
|
entropy = stats.differential_entropy(values, axis=1, window_length=8, |
|
method='vasicek') |
|
ref = xp.asarray([1.349401487550325, 1.338514126301301, 1.292331889365405]) |
|
xp_assert_close(entropy, ref) |
|
|
|
|
|
def test_differential_entropy_raises_value_error(self, xp): |
|
random_state = np.random.RandomState(0) |
|
values = random_state.standard_normal((3, 100)) |
|
values = xp.asarray(values.tolist()) |
|
|
|
error_str = ( |
|
r"Window length \({window_length}\) must be positive and less " |
|
r"than half the sample size \({sample_size}\)." |
|
) |
|
|
|
sample_size = values.shape[1] |
|
|
|
for window_length in {-1, 0, sample_size//2, sample_size}: |
|
|
|
formatted_error_str = error_str.format( |
|
window_length=window_length, |
|
sample_size=sample_size, |
|
) |
|
|
|
with assert_raises(ValueError, match=formatted_error_str): |
|
stats.differential_entropy( |
|
values, |
|
window_length=window_length, |
|
axis=1, |
|
) |
|
|
|
@pytest.mark.skip_xp_backends('jax.numpy', |
|
reason="JAX doesn't support item assignment") |
|
def test_base_differential_entropy_with_axis_0_is_equal_to_default(self, xp): |
|
random_state = np.random.RandomState(0) |
|
values = random_state.standard_normal((100, 3)) |
|
values = xp.asarray(values.tolist()) |
|
|
|
entropy = stats.differential_entropy(values, axis=0) |
|
default_entropy = stats.differential_entropy(values) |
|
xp_assert_close(entropy, default_entropy) |
|
|
|
@pytest.mark.skip_xp_backends('jax.numpy', |
|
reason="JAX doesn't support item assignment") |
|
def test_base_differential_entropy_transposed(self, xp): |
|
random_state = np.random.RandomState(0) |
|
values = random_state.standard_normal((3, 100)) |
|
values = xp.asarray(values.tolist()) |
|
|
|
xp_assert_close( |
|
stats.differential_entropy(values.T), |
|
stats.differential_entropy(values, axis=1), |
|
) |
|
|
|
def test_input_validation(self, xp): |
|
x = np.random.rand(10) |
|
x = xp.asarray(x.tolist()) |
|
|
|
message = "`base` must be a positive number or `None`." |
|
with pytest.raises(ValueError, match=message): |
|
stats.differential_entropy(x, base=-2) |
|
|
|
message = "`method` must be one of..." |
|
with pytest.raises(ValueError, match=message): |
|
stats.differential_entropy(x, method='ekki-ekki') |
|
|
|
@pytest.mark.parametrize('method', ['vasicek', 'van es', |
|
'ebrahimi', 'correa']) |
|
def test_consistency(self, method, xp): |
|
if is_jax(xp) and method == 'ebrahimi': |
|
pytest.xfail("Needs array assignment.") |
|
elif is_array_api_strict(xp) and method == 'correa': |
|
pytest.xfail("Needs fancy indexing.") |
|
|
|
n = 10000 if method == 'correa' else 1000000 |
|
rvs = stats.norm.rvs(size=n, random_state=0) |
|
rvs = xp.asarray(rvs.tolist()) |
|
expected = xp.asarray(float(stats.norm.entropy())) |
|
res = stats.differential_entropy(rvs, method=method) |
|
xp_assert_close(res, expected, rtol=0.005) |
|
|
|
|
|
norm_rmse_std_cases = { |
|
'vasicek': (0.198, 0.109), |
|
'van es': (0.212, 0.110), |
|
'correa': (0.135, 0.112), |
|
'ebrahimi': (0.128, 0.109) |
|
} |
|
|
|
|
|
expon_rmse_std_cases = { |
|
'vasicek': (0.194, 0.148), |
|
'van es': (0.179, 0.149), |
|
'correa': (0.155, 0.152), |
|
'ebrahimi': (0.151, 0.148) |
|
} |
|
|
|
rmse_std_cases = {norm: norm_rmse_std_cases, |
|
expon: expon_rmse_std_cases} |
|
|
|
@pytest.mark.parametrize('method', ['vasicek', 'van es', 'ebrahimi', 'correa']) |
|
@pytest.mark.parametrize('dist', [norm, expon]) |
|
def test_rmse_std(self, method, dist, xp): |
|
|
|
|
|
|
|
if is_jax(xp) and method == 'ebrahimi': |
|
pytest.xfail("Needs array assignment.") |
|
elif is_array_api_strict(xp) and method == 'correa': |
|
pytest.xfail("Needs fancy indexing.") |
|
|
|
reps, n, m = 10000, 50, 7 |
|
expected = self.rmse_std_cases[dist][method] |
|
rmse_expected, std_expected = xp.asarray(expected[0]), xp.asarray(expected[1]) |
|
rvs = dist.rvs(size=(reps, n), random_state=0) |
|
rvs = xp.asarray(rvs.tolist()) |
|
true_entropy = xp.asarray(float(dist.entropy())) |
|
res = stats.differential_entropy(rvs, window_length=m, |
|
method=method, axis=-1) |
|
xp_assert_close(xp.sqrt(xp.mean((res - true_entropy)**2)), |
|
rmse_expected, atol=0.005) |
|
xp_test = array_namespace(res) |
|
xp_assert_close(xp_test.std(res, correction=0), std_expected, atol=0.002) |
|
|
|
@pytest.mark.parametrize('n, method', [(8, 'van es'), |
|
(12, 'ebrahimi'), |
|
(1001, 'vasicek')]) |
|
def test_method_auto(self, n, method, xp): |
|
if is_jax(xp) and method == 'ebrahimi': |
|
pytest.xfail("Needs array assignment.") |
|
rvs = stats.norm.rvs(size=(n,), random_state=0) |
|
rvs = xp.asarray(rvs.tolist()) |
|
res1 = stats.differential_entropy(rvs) |
|
res2 = stats.differential_entropy(rvs, method=method) |
|
xp_assert_equal(res1, res2) |
|
|
|
@pytest.mark.skip_xp_backends('jax.numpy', |
|
reason="JAX doesn't support item assignment") |
|
@pytest.mark.parametrize('method', ["vasicek", "van es", "correa", "ebrahimi"]) |
|
@pytest.mark.parametrize('dtype', [None, 'float32', 'float64']) |
|
def test_dtypes_gh21192(self, xp, method, dtype): |
|
|
|
|
|
|
|
if is_array_api_strict(xp) and method == 'correa': |
|
pytest.xfail("Needs fancy indexing.") |
|
x = [1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11] |
|
dtype_in = getattr(xp, str(dtype), None) |
|
dtype_out = getattr(xp, str(dtype), xp.asarray(1.).dtype) |
|
res = stats.differential_entropy(xp.asarray(x, dtype=dtype_in), method=method) |
|
ref = stats.differential_entropy(xp.asarray(x, dtype=xp.float64), method=method) |
|
xp_assert_close(res, xp.asarray(ref, dtype=dtype_out)[()]) |
|
|