|
"""Testing for the VotingClassifier and VotingRegressor""" |
|
|
|
import re |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from sklearn import config_context, datasets |
|
from sklearn.base import BaseEstimator, ClassifierMixin, clone |
|
from sklearn.datasets import make_multilabel_classification |
|
from sklearn.dummy import DummyRegressor |
|
from sklearn.ensemble import ( |
|
RandomForestClassifier, |
|
RandomForestRegressor, |
|
VotingClassifier, |
|
VotingRegressor, |
|
) |
|
from sklearn.exceptions import NotFittedError |
|
from sklearn.linear_model import LinearRegression, LogisticRegression |
|
from sklearn.model_selection import GridSearchCV, cross_val_score, train_test_split |
|
from sklearn.multiclass import OneVsRestClassifier |
|
from sklearn.naive_bayes import GaussianNB |
|
from sklearn.neighbors import KNeighborsClassifier |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.svm import SVC |
|
from sklearn.tests.metadata_routing_common import ( |
|
ConsumingClassifier, |
|
ConsumingRegressor, |
|
_Registry, |
|
check_recorded_metadata, |
|
) |
|
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor |
|
from sklearn.utils._testing import ( |
|
assert_almost_equal, |
|
assert_array_almost_equal, |
|
assert_array_equal, |
|
) |
|
|
|
|
|
iris = datasets.load_iris() |
|
X, y = iris.data[:, 1:3], iris.target |
|
|
|
X_scaled = StandardScaler().fit_transform(X) |
|
|
|
X_r, y_r = datasets.load_diabetes(return_X_y=True) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"params, err_msg", |
|
[ |
|
( |
|
{"estimators": []}, |
|
"Invalid 'estimators' attribute, 'estimators' should be a non-empty list", |
|
), |
|
( |
|
{"estimators": [("lr", LogisticRegression())], "weights": [1, 2]}, |
|
"Number of `estimators` and weights must be equal", |
|
), |
|
], |
|
) |
|
def test_voting_classifier_estimator_init(params, err_msg): |
|
ensemble = VotingClassifier(**params) |
|
with pytest.raises(ValueError, match=err_msg): |
|
ensemble.fit(X, y) |
|
|
|
|
|
def test_predictproba_hardvoting(): |
|
eclf = VotingClassifier( |
|
estimators=[("lr1", LogisticRegression()), ("lr2", LogisticRegression())], |
|
voting="hard", |
|
) |
|
|
|
inner_msg = "predict_proba is not available when voting='hard'" |
|
outer_msg = "'VotingClassifier' has no attribute 'predict_proba'" |
|
with pytest.raises(AttributeError, match=outer_msg) as exec_info: |
|
eclf.predict_proba |
|
assert isinstance(exec_info.value.__cause__, AttributeError) |
|
assert inner_msg in str(exec_info.value.__cause__) |
|
|
|
assert not hasattr(eclf, "predict_proba") |
|
eclf.fit(X_scaled, y) |
|
assert not hasattr(eclf, "predict_proba") |
|
|
|
|
|
def test_notfitted(): |
|
eclf = VotingClassifier( |
|
estimators=[("lr1", LogisticRegression()), ("lr2", LogisticRegression())], |
|
voting="soft", |
|
) |
|
ereg = VotingRegressor([("dr", DummyRegressor())]) |
|
msg = ( |
|
"This %s instance is not fitted yet. Call 'fit'" |
|
" with appropriate arguments before using this estimator." |
|
) |
|
with pytest.raises(NotFittedError, match=msg % "VotingClassifier"): |
|
eclf.predict(X) |
|
with pytest.raises(NotFittedError, match=msg % "VotingClassifier"): |
|
eclf.predict_proba(X) |
|
with pytest.raises(NotFittedError, match=msg % "VotingClassifier"): |
|
eclf.transform(X) |
|
with pytest.raises(NotFittedError, match=msg % "VotingRegressor"): |
|
ereg.predict(X_r) |
|
with pytest.raises(NotFittedError, match=msg % "VotingRegressor"): |
|
ereg.transform(X_r) |
|
|
|
|
|
def test_majority_label_iris(global_random_seed): |
|
"""Check classification by majority label on dataset iris.""" |
|
clf1 = LogisticRegression(solver="liblinear", random_state=global_random_seed) |
|
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) |
|
clf3 = GaussianNB() |
|
eclf = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="hard" |
|
) |
|
scores = cross_val_score(eclf, X, y, scoring="accuracy") |
|
|
|
assert scores.mean() >= 0.9 |
|
|
|
|
|
def test_tie_situation(): |
|
"""Check voting classifier selects smaller class label in tie situation.""" |
|
clf1 = LogisticRegression(random_state=123, solver="liblinear") |
|
clf2 = RandomForestClassifier(random_state=123) |
|
eclf = VotingClassifier(estimators=[("lr", clf1), ("rf", clf2)], voting="hard") |
|
assert clf1.fit(X, y).predict(X)[73] == 2 |
|
assert clf2.fit(X, y).predict(X)[73] == 1 |
|
assert eclf.fit(X, y).predict(X)[73] == 1 |
|
|
|
|
|
def test_weights_iris(global_random_seed): |
|
"""Check classification by average probabilities on dataset iris.""" |
|
clf1 = LogisticRegression(random_state=global_random_seed) |
|
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) |
|
clf3 = GaussianNB() |
|
eclf = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], |
|
voting="soft", |
|
weights=[1, 2, 10], |
|
) |
|
scores = cross_val_score(eclf, X_scaled, y, scoring="accuracy") |
|
assert scores.mean() >= 0.9 |
|
|
|
|
|
def test_weights_regressor(): |
|
"""Check weighted average regression prediction on diabetes dataset.""" |
|
reg1 = DummyRegressor(strategy="mean") |
|
reg2 = DummyRegressor(strategy="median") |
|
reg3 = DummyRegressor(strategy="quantile", quantile=0.2) |
|
ereg = VotingRegressor( |
|
[("mean", reg1), ("median", reg2), ("quantile", reg3)], weights=[1, 2, 10] |
|
) |
|
|
|
X_r_train, X_r_test, y_r_train, y_r_test = train_test_split( |
|
X_r, y_r, test_size=0.25 |
|
) |
|
|
|
reg1_pred = reg1.fit(X_r_train, y_r_train).predict(X_r_test) |
|
reg2_pred = reg2.fit(X_r_train, y_r_train).predict(X_r_test) |
|
reg3_pred = reg3.fit(X_r_train, y_r_train).predict(X_r_test) |
|
ereg_pred = ereg.fit(X_r_train, y_r_train).predict(X_r_test) |
|
|
|
avg = np.average( |
|
np.asarray([reg1_pred, reg2_pred, reg3_pred]), axis=0, weights=[1, 2, 10] |
|
) |
|
assert_almost_equal(ereg_pred, avg, decimal=2) |
|
|
|
ereg_weights_none = VotingRegressor( |
|
[("mean", reg1), ("median", reg2), ("quantile", reg3)], weights=None |
|
) |
|
ereg_weights_equal = VotingRegressor( |
|
[("mean", reg1), ("median", reg2), ("quantile", reg3)], weights=[1, 1, 1] |
|
) |
|
ereg_weights_none.fit(X_r_train, y_r_train) |
|
ereg_weights_equal.fit(X_r_train, y_r_train) |
|
ereg_none_pred = ereg_weights_none.predict(X_r_test) |
|
ereg_equal_pred = ereg_weights_equal.predict(X_r_test) |
|
assert_almost_equal(ereg_none_pred, ereg_equal_pred, decimal=2) |
|
|
|
|
|
def test_predict_on_toy_problem(global_random_seed): |
|
"""Manually check predicted class labels for toy dataset.""" |
|
clf1 = LogisticRegression(random_state=global_random_seed) |
|
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) |
|
clf3 = GaussianNB() |
|
|
|
X = np.array( |
|
[[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2], [2.1, 1.4], [3.1, 2.3]] |
|
) |
|
|
|
y = np.array([1, 1, 1, 2, 2, 2]) |
|
|
|
assert_array_equal(clf1.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) |
|
assert_array_equal(clf2.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) |
|
assert_array_equal(clf3.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) |
|
|
|
eclf = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], |
|
voting="hard", |
|
weights=[1, 1, 1], |
|
) |
|
assert_array_equal(eclf.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) |
|
|
|
eclf = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], |
|
voting="soft", |
|
weights=[1, 1, 1], |
|
) |
|
assert_array_equal(eclf.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2]) |
|
|
|
|
|
def test_predict_proba_on_toy_problem(): |
|
"""Calculate predicted probabilities on toy dataset.""" |
|
clf1 = LogisticRegression(random_state=123) |
|
clf2 = RandomForestClassifier(random_state=123) |
|
clf3 = GaussianNB() |
|
X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) |
|
y = np.array([1, 1, 2, 2]) |
|
|
|
clf1_res = np.array( |
|
[ |
|
[0.59790391, 0.40209609], |
|
[0.57622162, 0.42377838], |
|
[0.50728456, 0.49271544], |
|
[0.40241774, 0.59758226], |
|
] |
|
) |
|
|
|
clf2_res = np.array([[0.8, 0.2], [0.8, 0.2], [0.2, 0.8], [0.3, 0.7]]) |
|
|
|
clf3_res = np.array( |
|
[[0.9985082, 0.0014918], [0.99845843, 0.00154157], [0.0, 1.0], [0.0, 1.0]] |
|
) |
|
|
|
t00 = (2 * clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4 |
|
t11 = (2 * clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4 |
|
t21 = (2 * clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4 |
|
t31 = (2 * clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4 |
|
|
|
eclf = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], |
|
voting="soft", |
|
weights=[2, 1, 1], |
|
) |
|
eclf_res = eclf.fit(X, y).predict_proba(X) |
|
|
|
assert_almost_equal(t00, eclf_res[0][0], decimal=1) |
|
assert_almost_equal(t11, eclf_res[1][1], decimal=1) |
|
assert_almost_equal(t21, eclf_res[2][1], decimal=1) |
|
assert_almost_equal(t31, eclf_res[3][1], decimal=1) |
|
|
|
inner_msg = "predict_proba is not available when voting='hard'" |
|
outer_msg = "'VotingClassifier' has no attribute 'predict_proba'" |
|
with pytest.raises(AttributeError, match=outer_msg) as exec_info: |
|
eclf = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="hard" |
|
) |
|
eclf.fit(X, y).predict_proba(X) |
|
|
|
assert isinstance(exec_info.value.__cause__, AttributeError) |
|
assert inner_msg in str(exec_info.value.__cause__) |
|
|
|
|
|
def test_multilabel(): |
|
"""Check if error is raised for multilabel classification.""" |
|
X, y = make_multilabel_classification( |
|
n_classes=2, n_labels=1, allow_unlabeled=False, random_state=123 |
|
) |
|
clf = OneVsRestClassifier(SVC(kernel="linear")) |
|
|
|
eclf = VotingClassifier(estimators=[("ovr", clf)], voting="hard") |
|
|
|
try: |
|
eclf.fit(X, y) |
|
except NotImplementedError: |
|
return |
|
|
|
|
|
def test_gridsearch(): |
|
"""Check GridSearch support.""" |
|
clf1 = LogisticRegression(random_state=1) |
|
clf2 = RandomForestClassifier(random_state=1, n_estimators=3) |
|
clf3 = GaussianNB() |
|
eclf = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft" |
|
) |
|
|
|
params = { |
|
"lr__C": [1.0, 100.0], |
|
"voting": ["soft", "hard"], |
|
"weights": [[0.5, 0.5, 0.5], [1.0, 0.5, 0.5]], |
|
} |
|
|
|
grid = GridSearchCV(estimator=eclf, param_grid=params, cv=2) |
|
grid.fit(X_scaled, y) |
|
|
|
|
|
def test_parallel_fit(global_random_seed): |
|
"""Check parallel backend of VotingClassifier on toy dataset.""" |
|
clf1 = LogisticRegression(random_state=global_random_seed) |
|
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) |
|
clf3 = GaussianNB() |
|
X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) |
|
y = np.array([1, 1, 2, 2]) |
|
|
|
eclf1 = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", n_jobs=1 |
|
).fit(X, y) |
|
eclf2 = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", n_jobs=2 |
|
).fit(X, y) |
|
|
|
assert_array_equal(eclf1.predict(X), eclf2.predict(X)) |
|
assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X)) |
|
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore::FutureWarning") |
|
def test_sample_weight(global_random_seed): |
|
"""Tests sample_weight parameter of VotingClassifier""" |
|
clf1 = LogisticRegression(random_state=global_random_seed) |
|
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) |
|
clf3 = SVC(probability=True, random_state=global_random_seed) |
|
eclf1 = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("svc", clf3)], voting="soft" |
|
).fit(X_scaled, y, sample_weight=np.ones((len(y),))) |
|
eclf2 = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("svc", clf3)], voting="soft" |
|
).fit(X_scaled, y) |
|
assert_array_equal(eclf1.predict(X_scaled), eclf2.predict(X_scaled)) |
|
assert_array_almost_equal( |
|
eclf1.predict_proba(X_scaled), eclf2.predict_proba(X_scaled) |
|
) |
|
sample_weight = np.random.RandomState(global_random_seed).uniform(size=(len(y),)) |
|
eclf3 = VotingClassifier(estimators=[("lr", clf1)], voting="soft") |
|
eclf3.fit(X_scaled, y, sample_weight) |
|
clf1.fit(X_scaled, y, sample_weight) |
|
assert_array_equal(eclf3.predict(X_scaled), clf1.predict(X_scaled)) |
|
assert_array_almost_equal( |
|
eclf3.predict_proba(X_scaled), clf1.predict_proba(X_scaled) |
|
) |
|
|
|
|
|
|
|
clf4 = KNeighborsClassifier() |
|
eclf3 = VotingClassifier( |
|
estimators=[("lr", clf1), ("svc", clf3), ("knn", clf4)], voting="soft" |
|
) |
|
msg = "Underlying estimator KNeighborsClassifier does not support sample weights." |
|
with pytest.raises(TypeError, match=msg): |
|
eclf3.fit(X_scaled, y, sample_weight) |
|
|
|
|
|
|
|
class ClassifierErrorFit(ClassifierMixin, BaseEstimator): |
|
def fit(self, X_scaled, y, sample_weight): |
|
raise TypeError("Error unrelated to sample_weight.") |
|
|
|
clf = ClassifierErrorFit() |
|
with pytest.raises(TypeError, match="Error unrelated to sample_weight"): |
|
clf.fit(X_scaled, y, sample_weight=sample_weight) |
|
|
|
|
|
def test_sample_weight_kwargs(): |
|
"""Check that VotingClassifier passes sample_weight as kwargs""" |
|
|
|
class MockClassifier(ClassifierMixin, BaseEstimator): |
|
"""Mock Classifier to check that sample_weight is received as kwargs""" |
|
|
|
def fit(self, X, y, *args, **sample_weight): |
|
assert "sample_weight" in sample_weight |
|
|
|
clf = MockClassifier() |
|
eclf = VotingClassifier(estimators=[("mock", clf)], voting="soft") |
|
|
|
|
|
eclf.fit(X, y, sample_weight=np.ones((len(y),))) |
|
|
|
|
|
def test_voting_classifier_set_params(global_random_seed): |
|
|
|
clf1 = LogisticRegression(random_state=global_random_seed) |
|
clf2 = RandomForestClassifier( |
|
n_estimators=10, random_state=global_random_seed, max_depth=None |
|
) |
|
clf3 = GaussianNB() |
|
|
|
eclf1 = VotingClassifier( |
|
[("lr", clf1), ("rf", clf2)], voting="soft", weights=[1, 2] |
|
).fit(X_scaled, y) |
|
eclf2 = VotingClassifier( |
|
[("lr", clf1), ("nb", clf3)], voting="soft", weights=[1, 2] |
|
) |
|
eclf2.set_params(nb=clf2).fit(X_scaled, y) |
|
|
|
assert_array_equal(eclf1.predict(X_scaled), eclf2.predict(X_scaled)) |
|
assert_array_almost_equal( |
|
eclf1.predict_proba(X_scaled), eclf2.predict_proba(X_scaled) |
|
) |
|
assert eclf2.estimators[0][1].get_params() == clf1.get_params() |
|
assert eclf2.estimators[1][1].get_params() == clf2.get_params() |
|
|
|
|
|
def test_set_estimator_drop(): |
|
|
|
|
|
clf1 = LogisticRegression(random_state=123) |
|
clf2 = RandomForestClassifier(n_estimators=10, random_state=123) |
|
clf3 = GaussianNB() |
|
eclf1 = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("nb", clf3)], |
|
voting="hard", |
|
weights=[1, 0, 0.5], |
|
).fit(X, y) |
|
|
|
eclf2 = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("nb", clf3)], |
|
voting="hard", |
|
weights=[1, 1, 0.5], |
|
) |
|
eclf2.set_params(rf="drop").fit(X, y) |
|
|
|
assert_array_equal(eclf1.predict(X), eclf2.predict(X)) |
|
|
|
assert dict(eclf2.estimators)["rf"] == "drop" |
|
assert len(eclf2.estimators_) == 2 |
|
assert all( |
|
isinstance(est, (LogisticRegression, GaussianNB)) for est in eclf2.estimators_ |
|
) |
|
assert eclf2.get_params()["rf"] == "drop" |
|
|
|
eclf1.set_params(voting="soft").fit(X, y) |
|
eclf2.set_params(voting="soft").fit(X, y) |
|
|
|
assert_array_equal(eclf1.predict(X), eclf2.predict(X)) |
|
assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X)) |
|
msg = "All estimators are dropped. At least one is required" |
|
with pytest.raises(ValueError, match=msg): |
|
eclf2.set_params(lr="drop", rf="drop", nb="drop").fit(X, y) |
|
|
|
|
|
X1 = np.array([[1], [2]]) |
|
y1 = np.array([1, 2]) |
|
eclf1 = VotingClassifier( |
|
estimators=[("rf", clf2), ("nb", clf3)], |
|
voting="soft", |
|
weights=[0, 0.5], |
|
flatten_transform=False, |
|
).fit(X1, y1) |
|
|
|
eclf2 = VotingClassifier( |
|
estimators=[("rf", clf2), ("nb", clf3)], |
|
voting="soft", |
|
weights=[1, 0.5], |
|
flatten_transform=False, |
|
) |
|
eclf2.set_params(rf="drop").fit(X1, y1) |
|
assert_array_almost_equal( |
|
eclf1.transform(X1), |
|
np.array([[[0.7, 0.3], [0.3, 0.7]], [[1.0, 0.0], [0.0, 1.0]]]), |
|
) |
|
assert_array_almost_equal(eclf2.transform(X1), np.array([[[1.0, 0.0], [0.0, 1.0]]])) |
|
eclf1.set_params(voting="hard") |
|
eclf2.set_params(voting="hard") |
|
assert_array_equal(eclf1.transform(X1), np.array([[0, 0], [1, 1]])) |
|
assert_array_equal(eclf2.transform(X1), np.array([[0], [1]])) |
|
|
|
|
|
def test_estimator_weights_format(global_random_seed): |
|
|
|
clf1 = LogisticRegression(random_state=global_random_seed) |
|
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) |
|
eclf1 = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2)], weights=[1, 2], voting="soft" |
|
) |
|
eclf2 = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2)], weights=np.array((1, 2)), voting="soft" |
|
) |
|
eclf1.fit(X_scaled, y) |
|
eclf2.fit(X_scaled, y) |
|
assert_array_almost_equal( |
|
eclf1.predict_proba(X_scaled), eclf2.predict_proba(X_scaled) |
|
) |
|
|
|
|
|
def test_transform(global_random_seed): |
|
"""Check transform method of VotingClassifier on toy dataset.""" |
|
clf1 = LogisticRegression(random_state=global_random_seed) |
|
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed) |
|
clf3 = GaussianNB() |
|
X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) |
|
y = np.array([1, 1, 2, 2]) |
|
|
|
eclf1 = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft" |
|
).fit(X, y) |
|
eclf2 = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], |
|
voting="soft", |
|
flatten_transform=True, |
|
).fit(X, y) |
|
eclf3 = VotingClassifier( |
|
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], |
|
voting="soft", |
|
flatten_transform=False, |
|
).fit(X, y) |
|
|
|
assert_array_equal(eclf1.transform(X).shape, (4, 6)) |
|
assert_array_equal(eclf2.transform(X).shape, (4, 6)) |
|
assert_array_equal(eclf3.transform(X).shape, (3, 4, 2)) |
|
assert_array_almost_equal(eclf1.transform(X), eclf2.transform(X)) |
|
assert_array_almost_equal( |
|
eclf3.transform(X).swapaxes(0, 1).reshape((4, 6)), eclf2.transform(X) |
|
) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"X, y, voter", |
|
[ |
|
( |
|
X, |
|
y, |
|
VotingClassifier( |
|
[ |
|
("lr", LogisticRegression()), |
|
("rf", RandomForestClassifier(n_estimators=5)), |
|
] |
|
), |
|
), |
|
( |
|
X_r, |
|
y_r, |
|
VotingRegressor( |
|
[ |
|
("lr", LinearRegression()), |
|
("rf", RandomForestRegressor(n_estimators=5)), |
|
] |
|
), |
|
), |
|
], |
|
) |
|
def test_none_estimator_with_weights(X, y, voter): |
|
|
|
|
|
|
|
voter = clone(voter) |
|
|
|
X_scaled = StandardScaler().fit_transform(X) |
|
voter.fit(X_scaled, y, sample_weight=np.ones(y.shape)) |
|
voter.set_params(lr="drop") |
|
voter.fit(X_scaled, y, sample_weight=np.ones(y.shape)) |
|
y_pred = voter.predict(X_scaled) |
|
assert y_pred.shape == y.shape |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"est", |
|
[ |
|
VotingRegressor( |
|
estimators=[ |
|
("lr", LinearRegression()), |
|
("tree", DecisionTreeRegressor(random_state=0)), |
|
] |
|
), |
|
VotingClassifier( |
|
estimators=[ |
|
("lr", LogisticRegression(random_state=0)), |
|
("tree", DecisionTreeClassifier(random_state=0)), |
|
] |
|
), |
|
], |
|
ids=["VotingRegressor", "VotingClassifier"], |
|
) |
|
def test_n_features_in(est): |
|
X = [[1, 2], [3, 4], [5, 6]] |
|
y = [0, 1, 2] |
|
|
|
assert not hasattr(est, "n_features_in_") |
|
est.fit(X, y) |
|
assert est.n_features_in_ == 2 |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"estimator", |
|
[ |
|
VotingRegressor( |
|
estimators=[ |
|
("lr", LinearRegression()), |
|
("rf", RandomForestRegressor(random_state=123)), |
|
], |
|
verbose=True, |
|
), |
|
VotingClassifier( |
|
estimators=[ |
|
("lr", LogisticRegression(random_state=123)), |
|
("rf", RandomForestClassifier(random_state=123)), |
|
], |
|
verbose=True, |
|
), |
|
], |
|
) |
|
def test_voting_verbose(estimator, capsys): |
|
X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) |
|
y = np.array([1, 1, 2, 2]) |
|
|
|
pattern = ( |
|
r"\[Voting\].*\(1 of 2\) Processing lr, total=.*\n" |
|
r"\[Voting\].*\(2 of 2\) Processing rf, total=.*\n$" |
|
) |
|
clone(estimator).fit(X, y) |
|
assert re.match(pattern, capsys.readouterr()[0]) |
|
|
|
|
|
def test_get_features_names_out_regressor(): |
|
"""Check get_feature_names_out output for regressor.""" |
|
|
|
X = [[1, 2], [3, 4], [5, 6]] |
|
y = [0, 1, 2] |
|
|
|
voting = VotingRegressor( |
|
estimators=[ |
|
("lr", LinearRegression()), |
|
("tree", DecisionTreeRegressor(random_state=0)), |
|
("ignore", "drop"), |
|
] |
|
) |
|
voting.fit(X, y) |
|
|
|
names_out = voting.get_feature_names_out() |
|
expected_names = ["votingregressor_lr", "votingregressor_tree"] |
|
assert_array_equal(names_out, expected_names) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"kwargs, expected_names", |
|
[ |
|
( |
|
{"voting": "soft", "flatten_transform": True}, |
|
[ |
|
"votingclassifier_lr0", |
|
"votingclassifier_lr1", |
|
"votingclassifier_lr2", |
|
"votingclassifier_tree0", |
|
"votingclassifier_tree1", |
|
"votingclassifier_tree2", |
|
], |
|
), |
|
({"voting": "hard"}, ["votingclassifier_lr", "votingclassifier_tree"]), |
|
], |
|
) |
|
def test_get_features_names_out_classifier(kwargs, expected_names): |
|
"""Check get_feature_names_out for classifier for different settings.""" |
|
X = [[1, 2], [3, 4], [5, 6], [1, 1.2]] |
|
y = [0, 1, 2, 0] |
|
|
|
voting = VotingClassifier( |
|
estimators=[ |
|
("lr", LogisticRegression(random_state=0)), |
|
("tree", DecisionTreeClassifier(random_state=0)), |
|
], |
|
**kwargs, |
|
) |
|
voting.fit(X, y) |
|
X_trans = voting.transform(X) |
|
names_out = voting.get_feature_names_out() |
|
|
|
assert X_trans.shape[1] == len(expected_names) |
|
assert_array_equal(names_out, expected_names) |
|
|
|
|
|
def test_get_features_names_out_classifier_error(): |
|
"""Check that error is raised when voting="soft" and flatten_transform=False.""" |
|
X = [[1, 2], [3, 4], [5, 6]] |
|
y = [0, 1, 2] |
|
|
|
voting = VotingClassifier( |
|
estimators=[ |
|
("lr", LogisticRegression(random_state=0)), |
|
("tree", DecisionTreeClassifier(random_state=0)), |
|
], |
|
voting="soft", |
|
flatten_transform=False, |
|
) |
|
voting.fit(X, y) |
|
|
|
msg = ( |
|
"get_feature_names_out is not supported when `voting='soft'` and " |
|
"`flatten_transform=False`" |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
voting.get_feature_names_out() |
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize( |
|
"Estimator, Child", |
|
[(VotingClassifier, ConsumingClassifier), (VotingRegressor, ConsumingRegressor)], |
|
) |
|
def test_routing_passed_metadata_not_supported(Estimator, Child): |
|
"""Test that the right error message is raised when metadata is passed while |
|
not supported when `enable_metadata_routing=False`.""" |
|
|
|
X = np.array([[0, 1], [2, 2], [4, 6]]) |
|
y = [1, 2, 3] |
|
|
|
with pytest.raises( |
|
ValueError, match="is only supported if enable_metadata_routing=True" |
|
): |
|
Estimator(["clf", Child()]).fit(X, y, sample_weight=[1, 1, 1], metadata="a") |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"Estimator, Child", |
|
[(VotingClassifier, ConsumingClassifier), (VotingRegressor, ConsumingRegressor)], |
|
) |
|
@config_context(enable_metadata_routing=True) |
|
def test_get_metadata_routing_without_fit(Estimator, Child): |
|
|
|
est = Estimator([("sub_est", Child())]) |
|
est.get_metadata_routing() |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"Estimator, Child", |
|
[(VotingClassifier, ConsumingClassifier), (VotingRegressor, ConsumingRegressor)], |
|
) |
|
@pytest.mark.parametrize("prop", ["sample_weight", "metadata"]) |
|
@config_context(enable_metadata_routing=True) |
|
def test_metadata_routing_for_voting_estimators(Estimator, Child, prop): |
|
"""Test that metadata is routed correctly for Voting*.""" |
|
X = np.array([[0, 1], [2, 2], [4, 6]]) |
|
y = [1, 2, 3] |
|
sample_weight, metadata = [1, 1, 1], "a" |
|
|
|
est = Estimator( |
|
[ |
|
( |
|
"sub_est1", |
|
Child(registry=_Registry()).set_fit_request(**{prop: True}), |
|
), |
|
( |
|
"sub_est2", |
|
Child(registry=_Registry()).set_fit_request(**{prop: True}), |
|
), |
|
] |
|
) |
|
|
|
est.fit(X, y, **{prop: sample_weight if prop == "sample_weight" else metadata}) |
|
|
|
for estimator in est.estimators: |
|
if prop == "sample_weight": |
|
kwargs = {prop: sample_weight} |
|
else: |
|
kwargs = {prop: metadata} |
|
|
|
registry = estimator[1].registry |
|
assert len(registry) |
|
for sub_est in registry: |
|
check_recorded_metadata(obj=sub_est, method="fit", parent="fit", **kwargs) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"Estimator, Child", |
|
[(VotingClassifier, ConsumingClassifier), (VotingRegressor, ConsumingRegressor)], |
|
) |
|
@config_context(enable_metadata_routing=True) |
|
def test_metadata_routing_error_for_voting_estimators(Estimator, Child): |
|
"""Test that the right error is raised when metadata is not requested.""" |
|
X = np.array([[0, 1], [2, 2], [4, 6]]) |
|
y = [1, 2, 3] |
|
sample_weight, metadata = [1, 1, 1], "a" |
|
|
|
est = Estimator([("sub_est", Child())]) |
|
|
|
error_message = ( |
|
"[sample_weight, metadata] are passed but are not explicitly set as requested" |
|
f" or not requested for {Child.__name__}.fit" |
|
) |
|
|
|
with pytest.raises(ValueError, match=re.escape(error_message)): |
|
est.fit(X, y, sample_weight=sample_weight, metadata=metadata) |
|
|
|
|
|
|
|
|
|
|