|
""" |
|
Testing for Support Vector Machine module (sklearn.svm) |
|
|
|
TODO: remove hard coded numerical results when possible |
|
""" |
|
|
|
import numpy as np |
|
import pytest |
|
from numpy.testing import ( |
|
assert_allclose, |
|
assert_almost_equal, |
|
assert_array_almost_equal, |
|
assert_array_equal, |
|
) |
|
|
|
from sklearn import base, datasets, linear_model, metrics, svm |
|
from sklearn.datasets import make_blobs, make_classification, make_regression |
|
from sklearn.exceptions import ( |
|
ConvergenceWarning, |
|
NotFittedError, |
|
) |
|
from sklearn.metrics import f1_score |
|
from sklearn.metrics.pairwise import rbf_kernel |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.multiclass import OneVsRestClassifier |
|
|
|
|
|
from sklearn.svm import ( |
|
SVR, |
|
LinearSVC, |
|
LinearSVR, |
|
NuSVR, |
|
OneClassSVM, |
|
_libsvm, |
|
) |
|
from sklearn.svm._classes import _validate_dual_parameter |
|
from sklearn.utils import check_random_state, shuffle |
|
from sklearn.utils.fixes import _IS_32BIT, CSR_CONTAINERS, LIL_CONTAINERS |
|
from sklearn.utils.validation import _num_samples |
|
|
|
|
|
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] |
|
Y = [1, 1, 1, 2, 2, 2] |
|
T = [[-1, -1], [2, 2], [3, 2]] |
|
true_result = [1, 2, 2] |
|
|
|
|
|
iris = datasets.load_iris() |
|
rng = check_random_state(42) |
|
perm = rng.permutation(iris.target.size) |
|
iris.data = iris.data[perm] |
|
iris.target = iris.target[perm] |
|
|
|
|
|
def test_libsvm_parameters(): |
|
|
|
clf = svm.SVC(kernel="linear").fit(X, Y) |
|
assert_array_equal(clf.dual_coef_, [[-0.25, 0.25]]) |
|
assert_array_equal(clf.support_, [1, 3]) |
|
assert_array_equal(clf.support_vectors_, (X[1], X[3])) |
|
assert_array_equal(clf.intercept_, [0.0]) |
|
assert_array_equal(clf.predict(X), Y) |
|
|
|
|
|
def test_libsvm_iris(): |
|
|
|
|
|
|
|
for k in ("linear", "rbf"): |
|
clf = svm.SVC(kernel=k).fit(iris.data, iris.target) |
|
assert np.mean(clf.predict(iris.data) == iris.target) > 0.9 |
|
assert hasattr(clf, "coef_") == (k == "linear") |
|
|
|
assert_array_equal(clf.classes_, np.sort(clf.classes_)) |
|
|
|
|
|
|
|
|
|
( |
|
libsvm_support, |
|
libsvm_support_vectors, |
|
libsvm_n_class_SV, |
|
libsvm_sv_coef, |
|
libsvm_intercept, |
|
libsvm_probA, |
|
libsvm_probB, |
|
|
|
libsvm_fit_status, |
|
libsvm_n_iter, |
|
) = _libsvm.fit(iris.data, iris.target.astype(np.float64)) |
|
|
|
model_params = { |
|
"support": libsvm_support, |
|
"SV": libsvm_support_vectors, |
|
"nSV": libsvm_n_class_SV, |
|
"sv_coef": libsvm_sv_coef, |
|
"intercept": libsvm_intercept, |
|
"probA": libsvm_probA, |
|
"probB": libsvm_probB, |
|
} |
|
pred = _libsvm.predict(iris.data, **model_params) |
|
assert np.mean(pred == iris.target) > 0.95 |
|
|
|
|
|
|
|
( |
|
libsvm_support, |
|
libsvm_support_vectors, |
|
libsvm_n_class_SV, |
|
libsvm_sv_coef, |
|
libsvm_intercept, |
|
libsvm_probA, |
|
libsvm_probB, |
|
|
|
libsvm_fit_status, |
|
libsvm_n_iter, |
|
) = _libsvm.fit(iris.data, iris.target.astype(np.float64), kernel="linear") |
|
|
|
model_params = { |
|
"support": libsvm_support, |
|
"SV": libsvm_support_vectors, |
|
"nSV": libsvm_n_class_SV, |
|
"sv_coef": libsvm_sv_coef, |
|
"intercept": libsvm_intercept, |
|
"probA": libsvm_probA, |
|
"probB": libsvm_probB, |
|
} |
|
pred = _libsvm.predict(iris.data, **model_params, kernel="linear") |
|
assert np.mean(pred == iris.target) > 0.95 |
|
|
|
pred = _libsvm.cross_validation( |
|
iris.data, iris.target.astype(np.float64), 5, kernel="linear", random_seed=0 |
|
) |
|
assert np.mean(pred == iris.target) > 0.95 |
|
|
|
|
|
|
|
|
|
pred2 = _libsvm.cross_validation( |
|
iris.data, iris.target.astype(np.float64), 5, kernel="linear", random_seed=0 |
|
) |
|
assert_array_equal(pred, pred2) |
|
|
|
|
|
def test_precomputed(): |
|
|
|
|
|
clf = svm.SVC(kernel="precomputed") |
|
|
|
|
|
K = np.dot(X, np.array(X).T) |
|
clf.fit(K, Y) |
|
|
|
KT = np.dot(T, np.array(X).T) |
|
pred = clf.predict(KT) |
|
with pytest.raises(ValueError): |
|
clf.predict(KT.T) |
|
|
|
assert_array_equal(clf.dual_coef_, [[-0.25, 0.25]]) |
|
assert_array_equal(clf.support_, [1, 3]) |
|
assert_array_equal(clf.intercept_, [0]) |
|
assert_array_almost_equal(clf.support_, [1, 3]) |
|
assert_array_equal(pred, true_result) |
|
|
|
|
|
|
|
KT = np.zeros_like(KT) |
|
for i in range(len(T)): |
|
for j in clf.support_: |
|
KT[i, j] = np.dot(T[i], X[j]) |
|
|
|
pred = clf.predict(KT) |
|
assert_array_equal(pred, true_result) |
|
|
|
|
|
|
|
|
|
def kfunc(x, y): |
|
return np.dot(x, y.T) |
|
|
|
clf = svm.SVC(kernel=kfunc) |
|
clf.fit(np.array(X), Y) |
|
pred = clf.predict(T) |
|
|
|
assert_array_equal(clf.dual_coef_, [[-0.25, 0.25]]) |
|
assert_array_equal(clf.intercept_, [0]) |
|
assert_array_almost_equal(clf.support_, [1, 3]) |
|
assert_array_equal(pred, true_result) |
|
|
|
|
|
|
|
clf = svm.SVC(kernel="precomputed") |
|
clf2 = svm.SVC(kernel="linear") |
|
K = np.dot(iris.data, iris.data.T) |
|
clf.fit(K, iris.target) |
|
clf2.fit(iris.data, iris.target) |
|
pred = clf.predict(K) |
|
assert_array_almost_equal(clf.support_, clf2.support_) |
|
assert_array_almost_equal(clf.dual_coef_, clf2.dual_coef_) |
|
assert_array_almost_equal(clf.intercept_, clf2.intercept_) |
|
assert_almost_equal(np.mean(pred == iris.target), 0.99, decimal=2) |
|
|
|
|
|
|
|
K = np.zeros_like(K) |
|
for i in range(len(iris.data)): |
|
for j in clf.support_: |
|
K[i, j] = np.dot(iris.data[i], iris.data[j]) |
|
|
|
pred = clf.predict(K) |
|
assert_almost_equal(np.mean(pred == iris.target), 0.99, decimal=2) |
|
|
|
clf = svm.SVC(kernel=kfunc) |
|
clf.fit(iris.data, iris.target) |
|
assert_almost_equal(np.mean(pred == iris.target), 0.99, decimal=2) |
|
|
|
|
|
def test_svr(): |
|
|
|
|
|
diabetes = datasets.load_diabetes() |
|
for clf in ( |
|
svm.NuSVR(kernel="linear", nu=0.4, C=1.0), |
|
svm.NuSVR(kernel="linear", nu=0.4, C=10.0), |
|
svm.SVR(kernel="linear", C=10.0), |
|
svm.LinearSVR(C=10.0), |
|
svm.LinearSVR(C=10.0), |
|
): |
|
clf.fit(diabetes.data, diabetes.target) |
|
assert clf.score(diabetes.data, diabetes.target) > 0.02 |
|
|
|
|
|
|
|
svm.SVR().fit(diabetes.data, np.ones(len(diabetes.data))) |
|
svm.LinearSVR().fit(diabetes.data, np.ones(len(diabetes.data))) |
|
|
|
|
|
def test_linearsvr(): |
|
|
|
|
|
diabetes = datasets.load_diabetes() |
|
lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target) |
|
score1 = lsvr.score(diabetes.data, diabetes.target) |
|
|
|
svr = svm.SVR(kernel="linear", C=1e3).fit(diabetes.data, diabetes.target) |
|
score2 = svr.score(diabetes.data, diabetes.target) |
|
|
|
assert_allclose(np.linalg.norm(lsvr.coef_), np.linalg.norm(svr.coef_), 1, 0.0001) |
|
assert_almost_equal(score1, score2, 2) |
|
|
|
|
|
def test_linearsvr_fit_sampleweight(): |
|
|
|
|
|
|
|
diabetes = datasets.load_diabetes() |
|
n_samples = len(diabetes.target) |
|
unit_weight = np.ones(n_samples) |
|
lsvr = svm.LinearSVR(C=1e3, tol=1e-12, max_iter=10000).fit( |
|
diabetes.data, diabetes.target, sample_weight=unit_weight |
|
) |
|
score1 = lsvr.score(diabetes.data, diabetes.target) |
|
|
|
lsvr_no_weight = svm.LinearSVR(C=1e3, tol=1e-12, max_iter=10000).fit( |
|
diabetes.data, diabetes.target |
|
) |
|
score2 = lsvr_no_weight.score(diabetes.data, diabetes.target) |
|
|
|
assert_allclose( |
|
np.linalg.norm(lsvr.coef_), np.linalg.norm(lsvr_no_weight.coef_), 1, 0.0001 |
|
) |
|
assert_almost_equal(score1, score2, 2) |
|
|
|
|
|
|
|
random_state = check_random_state(0) |
|
random_weight = random_state.randint(0, 10, n_samples) |
|
lsvr_unflat = svm.LinearSVR(C=1e3, tol=1e-12, max_iter=10000).fit( |
|
diabetes.data, diabetes.target, sample_weight=random_weight |
|
) |
|
score3 = lsvr_unflat.score( |
|
diabetes.data, diabetes.target, sample_weight=random_weight |
|
) |
|
|
|
X_flat = np.repeat(diabetes.data, random_weight, axis=0) |
|
y_flat = np.repeat(diabetes.target, random_weight, axis=0) |
|
lsvr_flat = svm.LinearSVR(C=1e3, tol=1e-12, max_iter=10000).fit(X_flat, y_flat) |
|
score4 = lsvr_flat.score(X_flat, y_flat) |
|
|
|
assert_almost_equal(score3, score4, 2) |
|
|
|
|
|
def test_svr_errors(): |
|
X = [[0.0], [1.0]] |
|
y = [0.0, 0.5] |
|
|
|
|
|
clf = svm.SVR(kernel=lambda x, y: np.array([[1.0]])) |
|
clf.fit(X, y) |
|
with pytest.raises(ValueError): |
|
clf.predict(X) |
|
|
|
|
|
def test_oneclass(): |
|
|
|
clf = svm.OneClassSVM() |
|
clf.fit(X) |
|
pred = clf.predict(T) |
|
|
|
assert_array_equal(pred, [1, -1, -1]) |
|
assert pred.dtype == np.dtype("intp") |
|
assert_array_almost_equal(clf.intercept_, [-1.218], decimal=3) |
|
assert_array_almost_equal(clf.dual_coef_, [[0.750, 0.750, 0.750, 0.750]], decimal=3) |
|
with pytest.raises(AttributeError): |
|
(lambda: clf.coef_)() |
|
|
|
|
|
def test_oneclass_decision_function(): |
|
|
|
clf = svm.OneClassSVM() |
|
rnd = check_random_state(2) |
|
|
|
|
|
X = 0.3 * rnd.randn(100, 2) |
|
X_train = np.r_[X + 2, X - 2] |
|
|
|
|
|
X = 0.3 * rnd.randn(20, 2) |
|
X_test = np.r_[X + 2, X - 2] |
|
|
|
X_outliers = rnd.uniform(low=-4, high=4, size=(20, 2)) |
|
|
|
|
|
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) |
|
clf.fit(X_train) |
|
|
|
|
|
y_pred_test = clf.predict(X_test) |
|
assert np.mean(y_pred_test == 1) > 0.9 |
|
y_pred_outliers = clf.predict(X_outliers) |
|
assert np.mean(y_pred_outliers == -1) > 0.9 |
|
dec_func_test = clf.decision_function(X_test) |
|
assert_array_equal((dec_func_test > 0).ravel(), y_pred_test == 1) |
|
dec_func_outliers = clf.decision_function(X_outliers) |
|
assert_array_equal((dec_func_outliers > 0).ravel(), y_pred_outliers == 1) |
|
|
|
|
|
def test_oneclass_score_samples(): |
|
X_train = [[1, 1], [1, 2], [2, 1]] |
|
clf = svm.OneClassSVM(gamma=1).fit(X_train) |
|
assert_array_equal( |
|
clf.score_samples([[2.0, 2.0]]), |
|
clf.decision_function([[2.0, 2.0]]) + clf.offset_, |
|
) |
|
|
|
|
|
def test_tweak_params(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
clf = svm.SVC(kernel="linear", C=1.0) |
|
clf.fit(X, Y) |
|
assert_array_equal(clf.dual_coef_, [[-0.25, 0.25]]) |
|
assert_array_equal(clf.predict([[-0.1, -0.1]]), [1]) |
|
clf._dual_coef_ = np.array([[0.0, 1.0]]) |
|
assert_array_equal(clf.predict([[-0.1, -0.1]]), [2]) |
|
|
|
|
|
def test_probability(): |
|
|
|
|
|
|
|
for clf in ( |
|
svm.SVC(probability=True, random_state=0, C=1.0), |
|
svm.NuSVC(probability=True, random_state=0), |
|
): |
|
clf.fit(iris.data, iris.target) |
|
|
|
prob_predict = clf.predict_proba(iris.data) |
|
assert_array_almost_equal(np.sum(prob_predict, 1), np.ones(iris.data.shape[0])) |
|
assert np.mean(np.argmax(prob_predict, 1) == clf.predict(iris.data)) > 0.9 |
|
|
|
assert_almost_equal( |
|
clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8 |
|
) |
|
|
|
|
|
def test_decision_function(): |
|
|
|
|
|
|
|
|
|
clf = svm.SVC(kernel="linear", C=0.1, decision_function_shape="ovo").fit( |
|
iris.data, iris.target |
|
) |
|
|
|
dec = np.dot(iris.data, clf.coef_.T) + clf.intercept_ |
|
|
|
assert_array_almost_equal(dec, clf.decision_function(iris.data)) |
|
|
|
|
|
clf.fit(X, Y) |
|
dec = np.dot(X, clf.coef_.T) + clf.intercept_ |
|
prediction = clf.predict(X) |
|
assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) |
|
assert_array_almost_equal( |
|
prediction, clf.classes_[(clf.decision_function(X) > 0).astype(int)] |
|
) |
|
expected = np.array([-1.0, -0.66, -1.0, 0.66, 1.0, 1.0]) |
|
assert_array_almost_equal(clf.decision_function(X), expected, 2) |
|
|
|
|
|
clf = svm.SVC(kernel="rbf", gamma=1, decision_function_shape="ovo") |
|
clf.fit(X, Y) |
|
|
|
rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma) |
|
dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_ |
|
assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) |
|
|
|
|
|
@pytest.mark.parametrize("SVM", (svm.SVC, svm.NuSVC)) |
|
def test_decision_function_shape(SVM): |
|
|
|
|
|
|
|
clf = SVM(kernel="linear", decision_function_shape="ovr").fit( |
|
iris.data, iris.target |
|
) |
|
dec = clf.decision_function(iris.data) |
|
assert dec.shape == (len(iris.data), 3) |
|
assert_array_equal(clf.predict(iris.data), np.argmax(dec, axis=1)) |
|
|
|
|
|
X, y = make_blobs(n_samples=80, centers=5, random_state=0) |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) |
|
|
|
clf = SVM(kernel="linear", decision_function_shape="ovr").fit(X_train, y_train) |
|
dec = clf.decision_function(X_test) |
|
assert dec.shape == (len(X_test), 5) |
|
assert_array_equal(clf.predict(X_test), np.argmax(dec, axis=1)) |
|
|
|
|
|
clf = SVM(kernel="linear", decision_function_shape="ovo").fit(X_train, y_train) |
|
dec = clf.decision_function(X_train) |
|
assert dec.shape == (len(X_train), 10) |
|
|
|
|
|
def test_svr_predict(): |
|
|
|
|
|
|
|
|
|
X = iris.data |
|
y = iris.target |
|
|
|
|
|
reg = svm.SVR(kernel="linear", C=0.1).fit(X, y) |
|
|
|
dec = np.dot(X, reg.coef_.T) + reg.intercept_ |
|
assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel()) |
|
|
|
|
|
reg = svm.SVR(kernel="rbf", gamma=1).fit(X, y) |
|
|
|
rbfs = rbf_kernel(X, reg.support_vectors_, gamma=reg.gamma) |
|
dec = np.dot(rbfs, reg.dual_coef_.T) + reg.intercept_ |
|
assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel()) |
|
|
|
|
|
def test_weight(): |
|
|
|
clf = svm.SVC(class_weight={1: 0.1}) |
|
|
|
clf.fit(X, Y) |
|
|
|
assert_array_almost_equal(clf.predict(X), [2] * 6) |
|
|
|
X_, y_ = make_classification( |
|
n_samples=200, n_features=10, weights=[0.833, 0.167], random_state=2 |
|
) |
|
|
|
for clf in ( |
|
linear_model.LogisticRegression(), |
|
svm.LinearSVC(random_state=0), |
|
svm.SVC(), |
|
): |
|
clf.set_params(class_weight={0: 0.1, 1: 10}) |
|
clf.fit(X_[:100], y_[:100]) |
|
y_pred = clf.predict(X_[100:]) |
|
assert f1_score(y_[100:], y_pred) > 0.3 |
|
|
|
|
|
@pytest.mark.parametrize("estimator", [svm.SVC(C=1e-2), svm.NuSVC()]) |
|
def test_svm_classifier_sided_sample_weight(estimator): |
|
|
|
|
|
X = [[-2, 0], [-1, -1], [0, -2], [0, 2], [1, 1], [2, 0]] |
|
estimator.set_params(kernel="linear") |
|
|
|
|
|
|
|
sample_weight = [1] * 6 |
|
estimator.fit(X, Y, sample_weight=sample_weight) |
|
y_pred = estimator.decision_function([[-1.0, 1.0]]) |
|
assert y_pred == pytest.approx(0) |
|
|
|
|
|
sample_weight = [10.0, 0.1, 0.1, 0.1, 0.1, 10] |
|
estimator.fit(X, Y, sample_weight=sample_weight) |
|
y_pred = estimator.decision_function([[-1.0, 1.0]]) |
|
assert y_pred < 0 |
|
|
|
sample_weight = [1.0, 0.1, 10.0, 10.0, 0.1, 0.1] |
|
estimator.fit(X, Y, sample_weight=sample_weight) |
|
y_pred = estimator.decision_function([[-1.0, 1.0]]) |
|
assert y_pred > 0 |
|
|
|
|
|
@pytest.mark.parametrize("estimator", [svm.SVR(C=1e-2), svm.NuSVR(C=1e-2)]) |
|
def test_svm_regressor_sided_sample_weight(estimator): |
|
|
|
|
|
X = [[-2, 0], [-1, -1], [0, -2], [0, 2], [1, 1], [2, 0]] |
|
estimator.set_params(kernel="linear") |
|
|
|
|
|
|
|
sample_weight = [1] * 6 |
|
estimator.fit(X, Y, sample_weight=sample_weight) |
|
y_pred = estimator.predict([[-1.0, 1.0]]) |
|
assert y_pred == pytest.approx(1.5) |
|
|
|
|
|
sample_weight = [10.0, 0.1, 0.1, 0.1, 0.1, 10] |
|
estimator.fit(X, Y, sample_weight=sample_weight) |
|
y_pred = estimator.predict([[-1.0, 1.0]]) |
|
assert y_pred < 1.5 |
|
|
|
sample_weight = [1.0, 0.1, 10.0, 10.0, 0.1, 0.1] |
|
estimator.fit(X, Y, sample_weight=sample_weight) |
|
y_pred = estimator.predict([[-1.0, 1.0]]) |
|
assert y_pred > 1.5 |
|
|
|
|
|
def test_svm_equivalence_sample_weight_C(): |
|
|
|
clf = svm.SVC() |
|
clf.fit(X, Y) |
|
dual_coef_no_weight = clf.dual_coef_ |
|
clf.set_params(C=100) |
|
clf.fit(X, Y, sample_weight=np.repeat(0.01, len(X))) |
|
assert_allclose(dual_coef_no_weight, clf.dual_coef_) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"Estimator, err_msg", |
|
[ |
|
(svm.SVC, "Invalid input - all samples have zero or negative weights."), |
|
(svm.NuSVC, "(negative dimensions are not allowed|nu is infeasible)"), |
|
(svm.SVR, "Invalid input - all samples have zero or negative weights."), |
|
(svm.NuSVR, "Invalid input - all samples have zero or negative weights."), |
|
(svm.OneClassSVM, "Invalid input - all samples have zero or negative weights."), |
|
], |
|
ids=["SVC", "NuSVC", "SVR", "NuSVR", "OneClassSVM"], |
|
) |
|
@pytest.mark.parametrize( |
|
"sample_weight", |
|
[[0] * len(Y), [-0.3] * len(Y)], |
|
ids=["weights-are-zero", "weights-are-negative"], |
|
) |
|
def test_negative_sample_weights_mask_all_samples(Estimator, err_msg, sample_weight): |
|
est = Estimator(kernel="linear") |
|
with pytest.raises(ValueError, match=err_msg): |
|
est.fit(X, Y, sample_weight=sample_weight) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"Classifier, err_msg", |
|
[ |
|
( |
|
svm.SVC, |
|
( |
|
"Invalid input - all samples with positive weights belong to the same" |
|
" class" |
|
), |
|
), |
|
(svm.NuSVC, "specified nu is infeasible"), |
|
], |
|
ids=["SVC", "NuSVC"], |
|
) |
|
@pytest.mark.parametrize( |
|
"sample_weight", |
|
[[0, -0.5, 0, 1, 1, 1], [1, 1, 1, 0, -0.1, -0.3]], |
|
ids=["mask-label-1", "mask-label-2"], |
|
) |
|
def test_negative_weights_svc_leave_just_one_label(Classifier, err_msg, sample_weight): |
|
clf = Classifier(kernel="linear") |
|
with pytest.raises(ValueError, match=err_msg): |
|
clf.fit(X, Y, sample_weight=sample_weight) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"Classifier, model", |
|
[ |
|
(svm.SVC, {"when-left": [0.3998, 0.4], "when-right": [0.4, 0.3999]}), |
|
(svm.NuSVC, {"when-left": [0.3333, 0.3333], "when-right": [0.3333, 0.3333]}), |
|
], |
|
ids=["SVC", "NuSVC"], |
|
) |
|
@pytest.mark.parametrize( |
|
"sample_weight, mask_side", |
|
[([1, -0.5, 1, 1, 1, 1], "when-left"), ([1, 1, 1, 0, 1, 1], "when-right")], |
|
ids=["partial-mask-label-1", "partial-mask-label-2"], |
|
) |
|
def test_negative_weights_svc_leave_two_labels( |
|
Classifier, model, sample_weight, mask_side |
|
): |
|
clf = Classifier(kernel="linear") |
|
clf.fit(X, Y, sample_weight=sample_weight) |
|
assert_allclose(clf.coef_, [model[mask_side]], rtol=1e-3) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"Estimator", [svm.SVC, svm.NuSVC, svm.NuSVR], ids=["SVC", "NuSVC", "NuSVR"] |
|
) |
|
@pytest.mark.parametrize( |
|
"sample_weight", |
|
[[1, -0.5, 1, 1, 1, 1], [1, 1, 1, 0, 1, 1]], |
|
ids=["partial-mask-label-1", "partial-mask-label-2"], |
|
) |
|
def test_negative_weight_equal_coeffs(Estimator, sample_weight): |
|
|
|
est = Estimator(kernel="linear") |
|
est.fit(X, Y, sample_weight=sample_weight) |
|
coef = np.abs(est.coef_).ravel() |
|
assert coef[0] == pytest.approx(coef[1], rel=1e-3) |
|
|
|
|
|
def test_auto_weight(): |
|
|
|
from sklearn.linear_model import LogisticRegression |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from sklearn.utils import compute_class_weight |
|
|
|
X, y = iris.data[:, :2], iris.target + 1 |
|
unbalanced = np.delete(np.arange(y.size), np.where(y > 2)[0][::2]) |
|
|
|
classes = np.unique(y[unbalanced]) |
|
class_weights = compute_class_weight("balanced", classes=classes, y=y[unbalanced]) |
|
assert np.argmax(class_weights) == 2 |
|
|
|
for clf in ( |
|
svm.SVC(kernel="linear"), |
|
svm.LinearSVC(random_state=0), |
|
LogisticRegression(), |
|
): |
|
|
|
y_pred = clf.fit(X[unbalanced], y[unbalanced]).predict(X) |
|
clf.set_params(class_weight="balanced") |
|
y_pred_balanced = clf.fit( |
|
X[unbalanced], |
|
y[unbalanced], |
|
).predict(X) |
|
assert metrics.f1_score(y, y_pred, average="macro") <= metrics.f1_score( |
|
y, y_pred_balanced, average="macro" |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS) |
|
def test_bad_input(lil_container): |
|
|
|
Y2 = Y[:-1] |
|
with pytest.raises(ValueError): |
|
svm.SVC().fit(X, Y2) |
|
|
|
|
|
for clf in (svm.SVC(), svm.LinearSVC(random_state=0)): |
|
Xf = np.asfortranarray(X) |
|
assert not Xf.flags["C_CONTIGUOUS"] |
|
yf = np.ascontiguousarray(np.tile(Y, (2, 1)).T) |
|
yf = yf[:, -1] |
|
assert not yf.flags["F_CONTIGUOUS"] |
|
assert not yf.flags["C_CONTIGUOUS"] |
|
clf.fit(Xf, yf) |
|
assert_array_equal(clf.predict(T), true_result) |
|
|
|
|
|
clf = svm.SVC(kernel="precomputed") |
|
with pytest.raises(ValueError): |
|
clf.fit(X, Y) |
|
|
|
|
|
clf = svm.SVC().fit(X, Y) |
|
with pytest.raises(ValueError): |
|
clf.predict(lil_container(X)) |
|
|
|
Xt = np.array(X).T |
|
clf.fit(np.dot(X, Xt), Y) |
|
with pytest.raises(ValueError): |
|
clf.predict(X) |
|
|
|
clf = svm.SVC() |
|
clf.fit(X, Y) |
|
with pytest.raises(ValueError): |
|
clf.predict(Xt) |
|
|
|
|
|
def test_svc_nonfinite_params(): |
|
|
|
rng = np.random.RandomState(0) |
|
n_samples = 10 |
|
fmax = np.finfo(np.float64).max |
|
X = fmax * rng.uniform(size=(n_samples, 2)) |
|
y = rng.randint(0, 2, size=n_samples) |
|
|
|
clf = svm.SVC() |
|
msg = "The dual coefficients or intercepts are not finite" |
|
with pytest.raises(ValueError, match=msg): |
|
clf.fit(X, y) |
|
|
|
|
|
def test_unicode_kernel(): |
|
|
|
clf = svm.SVC(kernel="linear", probability=True) |
|
clf.fit(X, Y) |
|
clf.predict_proba(T) |
|
_libsvm.cross_validation( |
|
iris.data, iris.target.astype(np.float64), 5, kernel="linear", random_seed=0 |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_sparse_precomputed(csr_container): |
|
clf = svm.SVC(kernel="precomputed") |
|
sparse_gram = csr_container([[1, 0], [0, 1]]) |
|
with pytest.raises(TypeError, match="Sparse precomputed"): |
|
clf.fit(sparse_gram, [0, 1]) |
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_sparse_fit_support_vectors_empty(csr_container): |
|
|
|
X_train = csr_container([[0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]]) |
|
y_train = np.array([0.04, 0.04, 0.10, 0.16]) |
|
model = svm.SVR(kernel="linear") |
|
model.fit(X_train, y_train) |
|
assert not model.support_vectors_.data.size |
|
assert not model.dual_coef_.data.size |
|
|
|
|
|
@pytest.mark.parametrize("loss", ["hinge", "squared_hinge"]) |
|
@pytest.mark.parametrize("penalty", ["l1", "l2"]) |
|
@pytest.mark.parametrize("dual", [True, False]) |
|
def test_linearsvc_parameters(loss, penalty, dual): |
|
|
|
|
|
X, y = make_classification(n_samples=5, n_features=5, random_state=0) |
|
|
|
clf = svm.LinearSVC(penalty=penalty, loss=loss, dual=dual, random_state=0) |
|
if ( |
|
(loss, penalty) == ("hinge", "l1") |
|
or (loss, penalty, dual) == ("hinge", "l2", False) |
|
or (penalty, dual) == ("l1", True) |
|
): |
|
with pytest.raises( |
|
ValueError, |
|
match="Unsupported set of arguments.*penalty='%s.*loss='%s.*dual=%s" |
|
% (penalty, loss, dual), |
|
): |
|
clf.fit(X, y) |
|
else: |
|
clf.fit(X, y) |
|
|
|
|
|
def test_linearsvc(): |
|
|
|
clf = svm.LinearSVC(random_state=0).fit(X, Y) |
|
|
|
|
|
assert clf.fit_intercept |
|
|
|
assert_array_equal(clf.predict(T), true_result) |
|
assert_array_almost_equal(clf.intercept_, [0], decimal=3) |
|
|
|
|
|
clf = svm.LinearSVC( |
|
penalty="l1", loss="squared_hinge", dual=False, random_state=0 |
|
).fit(X, Y) |
|
assert_array_equal(clf.predict(T), true_result) |
|
|
|
|
|
clf = svm.LinearSVC(penalty="l2", dual=True, random_state=0).fit(X, Y) |
|
assert_array_equal(clf.predict(T), true_result) |
|
|
|
|
|
clf = svm.LinearSVC(penalty="l2", loss="hinge", dual=True, random_state=0) |
|
clf.fit(X, Y) |
|
assert_array_equal(clf.predict(T), true_result) |
|
|
|
|
|
dec = clf.decision_function(T) |
|
res = (dec > 0).astype(int) + 1 |
|
assert_array_equal(res, true_result) |
|
|
|
|
|
def test_linearsvc_crammer_singer(): |
|
|
|
ovr_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) |
|
cs_clf = svm.LinearSVC(multi_class="crammer_singer", random_state=0) |
|
cs_clf.fit(iris.data, iris.target) |
|
|
|
|
|
assert (ovr_clf.predict(iris.data) == cs_clf.predict(iris.data)).mean() > 0.9 |
|
|
|
|
|
assert (ovr_clf.coef_ != cs_clf.coef_).all() |
|
|
|
|
|
assert_array_equal( |
|
cs_clf.predict(iris.data), |
|
np.argmax(cs_clf.decision_function(iris.data), axis=1), |
|
) |
|
dec_func = np.dot(iris.data, cs_clf.coef_.T) + cs_clf.intercept_ |
|
assert_array_almost_equal(dec_func, cs_clf.decision_function(iris.data)) |
|
|
|
|
|
def test_linearsvc_fit_sampleweight(): |
|
|
|
n_samples = len(X) |
|
unit_weight = np.ones(n_samples) |
|
clf = svm.LinearSVC(random_state=0).fit(X, Y) |
|
clf_unitweight = svm.LinearSVC(random_state=0, tol=1e-12, max_iter=1000).fit( |
|
X, Y, sample_weight=unit_weight |
|
) |
|
|
|
|
|
assert_array_equal(clf_unitweight.predict(T), clf.predict(T)) |
|
assert_allclose(clf.coef_, clf_unitweight.coef_, 1, 0.0001) |
|
|
|
|
|
|
|
|
|
random_state = check_random_state(0) |
|
random_weight = random_state.randint(0, 10, n_samples) |
|
lsvc_unflat = svm.LinearSVC(random_state=0, tol=1e-12, max_iter=1000).fit( |
|
X, Y, sample_weight=random_weight |
|
) |
|
|
|
pred1 = lsvc_unflat.predict(T) |
|
|
|
X_flat = np.repeat(X, random_weight, axis=0) |
|
y_flat = np.repeat(Y, random_weight, axis=0) |
|
lsvc_flat = svm.LinearSVC(random_state=0, tol=1e-12, max_iter=1000).fit( |
|
X_flat, y_flat |
|
) |
|
pred2 = lsvc_flat.predict(T) |
|
|
|
assert_array_equal(pred1, pred2) |
|
assert_allclose(lsvc_unflat.coef_, lsvc_flat.coef_, 1, 0.0001) |
|
|
|
|
|
def test_crammer_singer_binary(): |
|
|
|
X, y = make_classification(n_classes=2, random_state=0) |
|
|
|
for fit_intercept in (True, False): |
|
acc = ( |
|
svm.LinearSVC( |
|
fit_intercept=fit_intercept, |
|
multi_class="crammer_singer", |
|
random_state=0, |
|
) |
|
.fit(X, y) |
|
.score(X, y) |
|
) |
|
assert acc > 0.9 |
|
|
|
|
|
def test_linearsvc_iris(): |
|
|
|
|
|
target = iris.target_names[iris.target] |
|
clf = svm.LinearSVC(random_state=0).fit(iris.data, target) |
|
assert set(clf.classes_) == set(iris.target_names) |
|
assert np.mean(clf.predict(iris.data) == target) > 0.8 |
|
|
|
dec = clf.decision_function(iris.data) |
|
pred = iris.target_names[np.argmax(dec, 1)] |
|
assert_array_equal(pred, clf.predict(iris.data)) |
|
|
|
|
|
def test_dense_liblinear_intercept_handling(classifier=svm.LinearSVC): |
|
|
|
X = [[2, 1], [3, 1], [1, 3], [2, 3]] |
|
y = [0, 0, 1, 1] |
|
clf = classifier( |
|
fit_intercept=True, |
|
penalty="l1", |
|
loss="squared_hinge", |
|
dual=False, |
|
C=4, |
|
tol=1e-7, |
|
random_state=0, |
|
) |
|
assert clf.intercept_scaling == 1, clf.intercept_scaling |
|
assert clf.fit_intercept |
|
|
|
|
|
|
|
clf.intercept_scaling = 1 |
|
clf.fit(X, y) |
|
assert_almost_equal(clf.intercept_, 0, decimal=5) |
|
|
|
|
|
|
|
clf.intercept_scaling = 100 |
|
clf.fit(X, y) |
|
intercept1 = clf.intercept_ |
|
assert intercept1 < -1 |
|
|
|
|
|
|
|
clf.intercept_scaling = 1000 |
|
clf.fit(X, y) |
|
intercept2 = clf.intercept_ |
|
assert_array_almost_equal(intercept1, intercept2, decimal=2) |
|
|
|
|
|
def test_liblinear_set_coef(): |
|
|
|
clf = svm.LinearSVC().fit(iris.data, iris.target) |
|
values = clf.decision_function(iris.data) |
|
clf.coef_ = clf.coef_.copy() |
|
clf.intercept_ = clf.intercept_.copy() |
|
values2 = clf.decision_function(iris.data) |
|
assert_array_almost_equal(values, values2) |
|
|
|
|
|
X = [[2, 1], [3, 1], [1, 3], [2, 3]] |
|
y = [0, 0, 1, 1] |
|
|
|
clf = svm.LinearSVC().fit(X, y) |
|
values = clf.decision_function(X) |
|
clf.coef_ = clf.coef_.copy() |
|
clf.intercept_ = clf.intercept_.copy() |
|
values2 = clf.decision_function(X) |
|
assert_array_equal(values, values2) |
|
|
|
|
|
def test_immutable_coef_property(): |
|
|
|
svms = [ |
|
svm.SVC(kernel="linear").fit(iris.data, iris.target), |
|
svm.NuSVC(kernel="linear").fit(iris.data, iris.target), |
|
svm.SVR(kernel="linear").fit(iris.data, iris.target), |
|
svm.NuSVR(kernel="linear").fit(iris.data, iris.target), |
|
svm.OneClassSVM(kernel="linear").fit(iris.data), |
|
] |
|
for clf in svms: |
|
with pytest.raises(AttributeError): |
|
clf.__setattr__("coef_", np.arange(3)) |
|
with pytest.raises((RuntimeError, ValueError)): |
|
clf.coef_.__setitem__((0, 0), 0) |
|
|
|
|
|
def test_linearsvc_verbose(): |
|
|
|
import os |
|
|
|
stdout = os.dup(1) |
|
os.dup2(os.pipe()[1], 1) |
|
|
|
|
|
clf = svm.LinearSVC(verbose=1) |
|
clf.fit(X, Y) |
|
|
|
|
|
os.dup2(stdout, 1) |
|
|
|
|
|
def test_svc_clone_with_callable_kernel(): |
|
|
|
|
|
svm_callable = svm.SVC( |
|
kernel=lambda x, y: np.dot(x, y.T), |
|
probability=True, |
|
random_state=0, |
|
decision_function_shape="ovr", |
|
) |
|
|
|
svm_cloned = base.clone(svm_callable) |
|
svm_cloned.fit(iris.data, iris.target) |
|
|
|
svm_builtin = svm.SVC( |
|
kernel="linear", probability=True, random_state=0, decision_function_shape="ovr" |
|
) |
|
svm_builtin.fit(iris.data, iris.target) |
|
|
|
assert_array_almost_equal(svm_cloned.dual_coef_, svm_builtin.dual_coef_) |
|
assert_array_almost_equal(svm_cloned.intercept_, svm_builtin.intercept_) |
|
assert_array_equal(svm_cloned.predict(iris.data), svm_builtin.predict(iris.data)) |
|
|
|
assert_array_almost_equal( |
|
svm_cloned.predict_proba(iris.data), |
|
svm_builtin.predict_proba(iris.data), |
|
decimal=4, |
|
) |
|
assert_array_almost_equal( |
|
svm_cloned.decision_function(iris.data), |
|
svm_builtin.decision_function(iris.data), |
|
) |
|
|
|
|
|
def test_svc_bad_kernel(): |
|
svc = svm.SVC(kernel=lambda x, y: x) |
|
with pytest.raises(ValueError): |
|
svc.fit(X, Y) |
|
|
|
|
|
def test_libsvm_convergence_warnings(): |
|
a = svm.SVC( |
|
kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, max_iter=2 |
|
) |
|
warning_msg = ( |
|
r"Solver terminated early \(max_iter=2\). Consider pre-processing " |
|
r"your data with StandardScaler or MinMaxScaler." |
|
) |
|
with pytest.warns(ConvergenceWarning, match=warning_msg): |
|
a.fit(np.array(X), Y) |
|
assert np.all(a.n_iter_ == 2) |
|
|
|
|
|
def test_unfitted(): |
|
X = "foo!" |
|
|
|
clf = svm.SVC() |
|
with pytest.raises(Exception, match=r".*\bSVC\b.*\bnot\b.*\bfitted\b"): |
|
clf.predict(X) |
|
|
|
clf = svm.NuSVR() |
|
with pytest.raises(Exception, match=r".*\bNuSVR\b.*\bnot\b.*\bfitted\b"): |
|
clf.predict(X) |
|
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning") |
|
def test_consistent_proba(): |
|
a = svm.SVC(probability=True, max_iter=1, random_state=0) |
|
proba_1 = a.fit(X, Y).predict_proba(X) |
|
a = svm.SVC(probability=True, max_iter=1, random_state=0) |
|
proba_2 = a.fit(X, Y).predict_proba(X) |
|
assert_array_almost_equal(proba_1, proba_2) |
|
|
|
|
|
def test_linear_svm_convergence_warnings(): |
|
|
|
|
|
lsvc = svm.LinearSVC(random_state=0, max_iter=2) |
|
warning_msg = "Liblinear failed to converge, increase the number of iterations." |
|
with pytest.warns(ConvergenceWarning, match=warning_msg): |
|
lsvc.fit(X, Y) |
|
|
|
|
|
assert isinstance(lsvc.n_iter_, int) |
|
assert lsvc.n_iter_ == 2 |
|
|
|
lsvr = svm.LinearSVR(random_state=0, max_iter=2) |
|
with pytest.warns(ConvergenceWarning, match=warning_msg): |
|
lsvr.fit(iris.data, iris.target) |
|
assert isinstance(lsvr.n_iter_, int) |
|
assert lsvr.n_iter_ == 2 |
|
|
|
|
|
def test_svr_coef_sign(): |
|
|
|
|
|
X = np.random.RandomState(21).randn(10, 3) |
|
y = np.random.RandomState(12).randn(10) |
|
|
|
for svr in [ |
|
svm.SVR(kernel="linear"), |
|
svm.NuSVR(kernel="linear"), |
|
svm.LinearSVR(), |
|
]: |
|
svr.fit(X, y) |
|
assert_array_almost_equal( |
|
svr.predict(X), np.dot(X, svr.coef_.ravel()) + svr.intercept_ |
|
) |
|
|
|
|
|
def test_lsvc_intercept_scaling_zero(): |
|
|
|
|
|
lsvc = svm.LinearSVC(fit_intercept=False) |
|
lsvc.fit(X, Y) |
|
assert lsvc.intercept_ == 0.0 |
|
|
|
|
|
def test_hasattr_predict_proba(): |
|
|
|
|
|
|
|
G = svm.SVC(probability=True) |
|
assert hasattr(G, "predict_proba") |
|
G.fit(iris.data, iris.target) |
|
assert hasattr(G, "predict_proba") |
|
|
|
G = svm.SVC(probability=False) |
|
assert not hasattr(G, "predict_proba") |
|
G.fit(iris.data, iris.target) |
|
assert not hasattr(G, "predict_proba") |
|
|
|
|
|
|
|
G.probability = True |
|
assert hasattr(G, "predict_proba") |
|
msg = "predict_proba is not available when fitted with probability=False" |
|
|
|
with pytest.raises(NotFittedError, match=msg): |
|
G.predict_proba(iris.data) |
|
|
|
|
|
def test_decision_function_shape_two_class(): |
|
for n_classes in [2, 3]: |
|
X, y = make_blobs(centers=n_classes, random_state=0) |
|
for estimator in [svm.SVC, svm.NuSVC]: |
|
clf = OneVsRestClassifier(estimator(decision_function_shape="ovr")).fit( |
|
X, y |
|
) |
|
assert len(clf.predict(X)) == len(y) |
|
|
|
|
|
def test_ovr_decision_function(): |
|
|
|
X_train = np.array([[1, 1], [-1, 1], [-1, -1], [1, -1]]) |
|
y_train = [0, 1, 2, 3] |
|
|
|
|
|
base_points = np.array([[5, 5], [10, 10]]) |
|
|
|
|
|
X_test = np.vstack( |
|
( |
|
base_points * [1, 1], |
|
base_points * [-1, 1], |
|
base_points * [-1, -1], |
|
base_points * [1, -1], |
|
) |
|
) |
|
|
|
y_test = [0] * 2 + [1] * 2 + [2] * 2 + [3] * 2 |
|
|
|
clf = svm.SVC(kernel="linear", decision_function_shape="ovr") |
|
clf.fit(X_train, y_train) |
|
|
|
y_pred = clf.predict(X_test) |
|
|
|
|
|
assert_array_equal(y_pred, y_test) |
|
|
|
deci_val = clf.decision_function(X_test) |
|
|
|
|
|
assert_array_equal(np.argmax(deci_val, axis=1), y_pred) |
|
|
|
|
|
pred_class_deci_val = deci_val[range(8), y_pred].reshape((4, 2)) |
|
|
|
|
|
assert np.min(pred_class_deci_val) > 0.0 |
|
|
|
|
|
|
|
assert np.all(pred_class_deci_val[:, 0] < pred_class_deci_val[:, 1]) |
|
|
|
|
|
@pytest.mark.parametrize("SVCClass", [svm.SVC, svm.NuSVC]) |
|
def test_svc_invalid_break_ties_param(SVCClass): |
|
X, y = make_blobs(random_state=42) |
|
|
|
svm = SVCClass( |
|
kernel="linear", decision_function_shape="ovo", break_ties=True, random_state=42 |
|
).fit(X, y) |
|
|
|
with pytest.raises(ValueError, match="break_ties must be False"): |
|
svm.predict(y) |
|
|
|
|
|
@pytest.mark.parametrize("SVCClass", [svm.SVC, svm.NuSVC]) |
|
def test_svc_ovr_tie_breaking(SVCClass): |
|
"""Test if predict breaks ties in OVR mode. |
|
Related issue: https://github.com/scikit-learn/scikit-learn/issues/8277 |
|
""" |
|
if SVCClass.__name__ == "NuSVC" and _IS_32BIT: |
|
|
|
|
|
|
|
|
|
pytest.xfail("Failing test on 32bit OS") |
|
|
|
X, y = make_blobs(random_state=0, n_samples=20, n_features=2) |
|
|
|
xs = np.linspace(X[:, 0].min(), X[:, 0].max(), 100) |
|
ys = np.linspace(X[:, 1].min(), X[:, 1].max(), 100) |
|
xx, yy = np.meshgrid(xs, ys) |
|
|
|
common_params = dict( |
|
kernel="rbf", gamma=1e6, random_state=42, decision_function_shape="ovr" |
|
) |
|
svm = SVCClass( |
|
break_ties=False, |
|
**common_params, |
|
).fit(X, y) |
|
pred = svm.predict(np.c_[xx.ravel(), yy.ravel()]) |
|
dv = svm.decision_function(np.c_[xx.ravel(), yy.ravel()]) |
|
assert not np.all(pred == np.argmax(dv, axis=1)) |
|
|
|
svm = SVCClass( |
|
break_ties=True, |
|
**common_params, |
|
).fit(X, y) |
|
pred = svm.predict(np.c_[xx.ravel(), yy.ravel()]) |
|
dv = svm.decision_function(np.c_[xx.ravel(), yy.ravel()]) |
|
assert np.all(pred == np.argmax(dv, axis=1)) |
|
|
|
|
|
def test_gamma_scale(): |
|
X, y = [[0.0], [1.0]], [0, 1] |
|
|
|
clf = svm.SVC() |
|
clf.fit(X, y) |
|
assert_almost_equal(clf._gamma, 4) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"SVM, params", |
|
[ |
|
(LinearSVC, {"penalty": "l1", "loss": "squared_hinge", "dual": False}), |
|
(LinearSVC, {"penalty": "l2", "loss": "squared_hinge", "dual": True}), |
|
(LinearSVC, {"penalty": "l2", "loss": "squared_hinge", "dual": False}), |
|
(LinearSVC, {"penalty": "l2", "loss": "hinge", "dual": True}), |
|
(LinearSVR, {"loss": "epsilon_insensitive", "dual": True}), |
|
(LinearSVR, {"loss": "squared_epsilon_insensitive", "dual": True}), |
|
(LinearSVR, {"loss": "squared_epsilon_insensitive", "dual": True}), |
|
], |
|
) |
|
def test_linearsvm_liblinear_sample_weight(SVM, params): |
|
X = np.array( |
|
[ |
|
[1, 3], |
|
[1, 3], |
|
[1, 3], |
|
[1, 3], |
|
[2, 1], |
|
[2, 1], |
|
[2, 1], |
|
[2, 1], |
|
[3, 3], |
|
[3, 3], |
|
[3, 3], |
|
[3, 3], |
|
[4, 1], |
|
[4, 1], |
|
[4, 1], |
|
[4, 1], |
|
], |
|
dtype=np.dtype("float"), |
|
) |
|
y = np.array( |
|
[1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2], dtype=np.dtype("int") |
|
) |
|
|
|
X2 = np.vstack([X, X]) |
|
y2 = np.hstack([y, 3 - y]) |
|
sample_weight = np.ones(shape=len(y) * 2) |
|
sample_weight[len(y) :] = 0 |
|
X2, y2, sample_weight = shuffle(X2, y2, sample_weight, random_state=0) |
|
|
|
base_estimator = SVM(random_state=42) |
|
base_estimator.set_params(**params) |
|
base_estimator.set_params(tol=1e-12, max_iter=1000) |
|
est_no_weight = base.clone(base_estimator).fit(X, y) |
|
est_with_weight = base.clone(base_estimator).fit( |
|
X2, y2, sample_weight=sample_weight |
|
) |
|
|
|
for method in ("predict", "decision_function"): |
|
if hasattr(base_estimator, method): |
|
X_est_no_weight = getattr(est_no_weight, method)(X) |
|
X_est_with_weight = getattr(est_with_weight, method)(X) |
|
assert_allclose(X_est_no_weight, X_est_with_weight) |
|
|
|
|
|
@pytest.mark.parametrize("Klass", (OneClassSVM, SVR, NuSVR)) |
|
def test_n_support(Klass): |
|
|
|
|
|
|
|
X = np.array([[0], [0.44], [0.45], [0.46], [1]]) |
|
y = np.arange(X.shape[0]) |
|
est = Klass() |
|
assert not hasattr(est, "n_support_") |
|
est.fit(X, y) |
|
assert est.n_support_[0] == est.support_vectors_.shape[0] |
|
assert est.n_support_.size == 1 |
|
|
|
|
|
@pytest.mark.parametrize("Estimator", [svm.SVC, svm.SVR]) |
|
def test_custom_kernel_not_array_input(Estimator): |
|
"""Test using a custom kernel that is not fed with array-like for floats""" |
|
data = ["A A", "A", "B", "B B", "A B"] |
|
X = np.array([[2, 0], [1, 0], [0, 1], [0, 2], [1, 1]]) |
|
y = np.array([1, 1, 2, 2, 1]) |
|
|
|
def string_kernel(X1, X2): |
|
assert isinstance(X1[0], str) |
|
n_samples1 = _num_samples(X1) |
|
n_samples2 = _num_samples(X2) |
|
K = np.zeros((n_samples1, n_samples2)) |
|
for ii in range(n_samples1): |
|
for jj in range(ii, n_samples2): |
|
K[ii, jj] = X1[ii].count("A") * X2[jj].count("A") |
|
K[ii, jj] += X1[ii].count("B") * X2[jj].count("B") |
|
K[jj, ii] = K[ii, jj] |
|
return K |
|
|
|
K = string_kernel(data, data) |
|
assert_array_equal(np.dot(X, X.T), K) |
|
|
|
svc1 = Estimator(kernel=string_kernel).fit(data, y) |
|
svc2 = Estimator(kernel="linear").fit(X, y) |
|
svc3 = Estimator(kernel="precomputed").fit(K, y) |
|
|
|
assert svc1.score(data, y) == svc3.score(K, y) |
|
assert svc1.score(data, y) == svc2.score(X, y) |
|
if hasattr(svc1, "decision_function"): |
|
assert_allclose(svc1.decision_function(data), svc2.decision_function(X)) |
|
assert_allclose(svc1.decision_function(data), svc3.decision_function(K)) |
|
assert_array_equal(svc1.predict(data), svc2.predict(X)) |
|
assert_array_equal(svc1.predict(data), svc3.predict(K)) |
|
else: |
|
assert_allclose(svc1.predict(data), svc2.predict(X)) |
|
assert_allclose(svc1.predict(data), svc3.predict(K)) |
|
|
|
|
|
def test_svc_raises_error_internal_representation(): |
|
"""Check that SVC raises error when internal representation is altered. |
|
|
|
Non-regression test for #18891 and https://nvd.nist.gov/vuln/detail/CVE-2020-28975 |
|
""" |
|
clf = svm.SVC(kernel="linear").fit(X, Y) |
|
clf._n_support[0] = 1000000 |
|
|
|
msg = "The internal representation of SVC was altered" |
|
with pytest.raises(ValueError, match=msg): |
|
clf.predict(X) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"estimator, expected_n_iter_type", |
|
[ |
|
(svm.SVC, np.ndarray), |
|
(svm.NuSVC, np.ndarray), |
|
(svm.SVR, int), |
|
(svm.NuSVR, int), |
|
(svm.OneClassSVM, int), |
|
], |
|
) |
|
@pytest.mark.parametrize( |
|
"dataset", |
|
[ |
|
make_classification(n_classes=2, n_informative=2, random_state=0), |
|
make_classification(n_classes=3, n_informative=3, random_state=0), |
|
make_classification(n_classes=4, n_informative=4, random_state=0), |
|
], |
|
) |
|
def test_n_iter_libsvm(estimator, expected_n_iter_type, dataset): |
|
|
|
|
|
|
|
|
|
|
|
X, y = dataset |
|
n_iter = estimator(kernel="linear").fit(X, y).n_iter_ |
|
assert type(n_iter) == expected_n_iter_type |
|
if estimator in [svm.SVC, svm.NuSVC]: |
|
n_classes = len(np.unique(y)) |
|
assert n_iter.shape == (n_classes * (n_classes - 1) // 2,) |
|
|
|
|
|
@pytest.mark.parametrize("loss", ["squared_hinge", "squared_epsilon_insensitive"]) |
|
def test_dual_auto(loss): |
|
|
|
dual = _validate_dual_parameter("auto", loss, "l2", "ovr", np.asarray(X)) |
|
assert dual is False |
|
|
|
dual = _validate_dual_parameter("auto", loss, "l2", "ovr", np.asarray(X).T) |
|
assert dual is True |
|
|
|
|
|
def test_dual_auto_edge_cases(): |
|
|
|
dual = _validate_dual_parameter("auto", "hinge", "l2", "ovr", np.asarray(X)) |
|
assert dual is True |
|
dual = _validate_dual_parameter( |
|
"auto", "epsilon_insensitive", "l2", "ovr", np.asarray(X) |
|
) |
|
assert dual is True |
|
|
|
dual = _validate_dual_parameter( |
|
"auto", "squared_hinge", "l1", "ovr", np.asarray(X).T |
|
) |
|
assert dual is False |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"Estimator, make_dataset", |
|
[(svm.SVC, make_classification), (svm.SVR, make_regression)], |
|
) |
|
@pytest.mark.parametrize("C_inf", [np.inf, float("inf")]) |
|
def test_svm_with_infinite_C(Estimator, make_dataset, C_inf, global_random_seed): |
|
"""Check that we can pass `C=inf` that is equivalent to a very large C value. |
|
|
|
Non-regression test for |
|
https://github.com/scikit-learn/scikit-learn/issues/29772 |
|
""" |
|
X, y = make_dataset(random_state=global_random_seed) |
|
estimator_C_inf = Estimator(C=C_inf).fit(X, y) |
|
estimator_C_large = Estimator(C=1e10).fit(X, y) |
|
|
|
assert_allclose(estimator_C_large.predict(X), estimator_C_inf.predict(X)) |
|
|