|
import copy |
|
import pickle |
|
import warnings |
|
|
|
import numpy as np |
|
import pytest |
|
from scipy.special import expit |
|
|
|
import sklearn |
|
from sklearn.datasets import make_regression |
|
from sklearn.isotonic import ( |
|
IsotonicRegression, |
|
_make_unique, |
|
check_increasing, |
|
isotonic_regression, |
|
) |
|
from sklearn.utils import shuffle |
|
from sklearn.utils._testing import ( |
|
assert_allclose, |
|
assert_array_almost_equal, |
|
assert_array_equal, |
|
) |
|
from sklearn.utils.validation import check_array |
|
|
|
|
|
def test_permutation_invariance(): |
|
|
|
|
|
ir = IsotonicRegression() |
|
x = [1, 2, 3, 4, 5, 6, 7] |
|
y = [1, 41, 51, 1, 2, 5, 24] |
|
sample_weight = [1, 2, 3, 4, 5, 6, 7] |
|
x_s, y_s, sample_weight_s = shuffle(x, y, sample_weight, random_state=0) |
|
y_transformed = ir.fit_transform(x, y, sample_weight=sample_weight) |
|
y_transformed_s = ir.fit(x_s, y_s, sample_weight=sample_weight_s).transform(x) |
|
|
|
assert_array_equal(y_transformed, y_transformed_s) |
|
|
|
|
|
def test_check_increasing_small_number_of_samples(): |
|
x = [0, 1, 2] |
|
y = [1, 1.1, 1.05] |
|
|
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("error", UserWarning) |
|
is_increasing = check_increasing(x, y) |
|
|
|
assert is_increasing |
|
|
|
|
|
def test_check_increasing_up(): |
|
x = [0, 1, 2, 3, 4, 5] |
|
y = [0, 1.5, 2.77, 8.99, 8.99, 50] |
|
|
|
|
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("error", UserWarning) |
|
is_increasing = check_increasing(x, y) |
|
|
|
assert is_increasing |
|
|
|
|
|
def test_check_increasing_up_extreme(): |
|
x = [0, 1, 2, 3, 4, 5] |
|
y = [0, 1, 2, 3, 4, 5] |
|
|
|
|
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("error", UserWarning) |
|
is_increasing = check_increasing(x, y) |
|
|
|
assert is_increasing |
|
|
|
|
|
def test_check_increasing_down(): |
|
x = [0, 1, 2, 3, 4, 5] |
|
y = [0, -1.5, -2.77, -8.99, -8.99, -50] |
|
|
|
|
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("error", UserWarning) |
|
is_increasing = check_increasing(x, y) |
|
|
|
assert not is_increasing |
|
|
|
|
|
def test_check_increasing_down_extreme(): |
|
x = [0, 1, 2, 3, 4, 5] |
|
y = [0, -1, -2, -3, -4, -5] |
|
|
|
|
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("error", UserWarning) |
|
is_increasing = check_increasing(x, y) |
|
|
|
assert not is_increasing |
|
|
|
|
|
def test_check_ci_warn(): |
|
x = [0, 1, 2, 3, 4, 5] |
|
y = [0, -1, 2, -3, 4, -5] |
|
|
|
|
|
msg = "interval" |
|
with pytest.warns(UserWarning, match=msg): |
|
is_increasing = check_increasing(x, y) |
|
|
|
assert not is_increasing |
|
|
|
|
|
def test_isotonic_regression(): |
|
y = np.array([3, 7, 5, 9, 8, 7, 10]) |
|
y_ = np.array([3, 6, 6, 8, 8, 8, 10]) |
|
assert_array_equal(y_, isotonic_regression(y)) |
|
|
|
y = np.array([10, 0, 2]) |
|
y_ = np.array([4, 4, 4]) |
|
assert_array_equal(y_, isotonic_regression(y)) |
|
|
|
x = np.arange(len(y)) |
|
ir = IsotonicRegression(y_min=0.0, y_max=1.0) |
|
ir.fit(x, y) |
|
assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) |
|
assert_array_equal(ir.transform(x), ir.predict(x)) |
|
|
|
|
|
perm = np.random.permutation(len(y)) |
|
ir = IsotonicRegression(y_min=0.0, y_max=1.0) |
|
assert_array_equal(ir.fit_transform(x[perm], y[perm]), ir.fit_transform(x, y)[perm]) |
|
assert_array_equal(ir.transform(x[perm]), ir.transform(x)[perm]) |
|
|
|
|
|
ir = IsotonicRegression() |
|
assert_array_equal(ir.fit_transform(np.ones(len(x)), y), np.mean(y)) |
|
|
|
|
|
def test_isotonic_regression_ties_min(): |
|
|
|
x = [1, 1, 2, 3, 4, 5] |
|
y = [1, 2, 3, 4, 5, 6] |
|
y_true = [1.5, 1.5, 3, 4, 5, 6] |
|
|
|
|
|
ir = IsotonicRegression() |
|
ir.fit(x, y) |
|
assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) |
|
assert_array_equal(y_true, ir.fit_transform(x, y)) |
|
|
|
|
|
def test_isotonic_regression_ties_max(): |
|
|
|
x = [1, 2, 3, 4, 5, 5] |
|
y = [1, 2, 3, 4, 5, 6] |
|
y_true = [1, 2, 3, 4, 5.5, 5.5] |
|
|
|
|
|
ir = IsotonicRegression() |
|
ir.fit(x, y) |
|
assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) |
|
assert_array_equal(y_true, ir.fit_transform(x, y)) |
|
|
|
|
|
def test_isotonic_regression_ties_secondary_(): |
|
""" |
|
Test isotonic regression fit, transform and fit_transform |
|
against the "secondary" ties method and "pituitary" data from R |
|
"isotone" package, as detailed in: J. d. Leeuw, K. Hornik, P. Mair, |
|
Isotone Optimization in R: Pool-Adjacent-Violators Algorithm |
|
(PAVA) and Active Set Methods |
|
|
|
Set values based on pituitary example and |
|
the following R command detailed in the paper above: |
|
> library("isotone") |
|
> data("pituitary") |
|
> res1 <- gpava(pituitary$age, pituitary$size, ties="secondary") |
|
> res1$x |
|
|
|
`isotone` version: 1.0-2, 2014-09-07 |
|
R version: R version 3.1.1 (2014-07-10) |
|
""" |
|
x = [8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14] |
|
y = [21, 23.5, 23, 24, 21, 25, 21.5, 22, 19, 23.5, 25] |
|
y_true = [ |
|
22.22222, |
|
22.22222, |
|
22.22222, |
|
22.22222, |
|
22.22222, |
|
22.22222, |
|
22.22222, |
|
22.22222, |
|
22.22222, |
|
24.25, |
|
24.25, |
|
] |
|
|
|
|
|
ir = IsotonicRegression() |
|
ir.fit(x, y) |
|
assert_array_almost_equal(ir.transform(x), y_true, 4) |
|
assert_array_almost_equal(ir.fit_transform(x, y), y_true, 4) |
|
|
|
|
|
def test_isotonic_regression_with_ties_in_differently_sized_groups(): |
|
""" |
|
Non-regression test to handle issue 9432: |
|
https://github.com/scikit-learn/scikit-learn/issues/9432 |
|
|
|
Compare against output in R: |
|
> library("isotone") |
|
> x <- c(0, 1, 1, 2, 3, 4) |
|
> y <- c(0, 0, 1, 0, 0, 1) |
|
> res1 <- gpava(x, y, ties="secondary") |
|
> res1$x |
|
|
|
`isotone` version: 1.1-0, 2015-07-24 |
|
R version: R version 3.3.2 (2016-10-31) |
|
""" |
|
x = np.array([0, 1, 1, 2, 3, 4]) |
|
y = np.array([0, 0, 1, 0, 0, 1]) |
|
y_true = np.array([0.0, 0.25, 0.25, 0.25, 0.25, 1.0]) |
|
ir = IsotonicRegression() |
|
ir.fit(x, y) |
|
assert_array_almost_equal(ir.transform(x), y_true) |
|
assert_array_almost_equal(ir.fit_transform(x, y), y_true) |
|
|
|
|
|
def test_isotonic_regression_reversed(): |
|
y = np.array([10, 9, 10, 7, 6, 6.1, 5]) |
|
y_result = np.array([10, 9.5, 9.5, 7, 6.05, 6.05, 5]) |
|
|
|
y_iso = isotonic_regression(y, increasing=False) |
|
assert_allclose(y_iso, y_result) |
|
|
|
y_ = IsotonicRegression(increasing=False).fit_transform(np.arange(len(y)), y) |
|
assert_allclose(y_, y_result) |
|
assert_array_equal(np.ones(y_[:-1].shape), ((y_[:-1] - y_[1:]) >= 0)) |
|
|
|
|
|
def test_isotonic_regression_auto_decreasing(): |
|
|
|
y = np.array([10, 9, 10, 7, 6, 6.1, 5]) |
|
x = np.arange(len(y)) |
|
|
|
|
|
ir = IsotonicRegression(increasing="auto") |
|
with warnings.catch_warnings(record=True) as w: |
|
warnings.simplefilter("always") |
|
y_ = ir.fit_transform(x, y) |
|
|
|
assert all(["invalid value encountered in " in str(warn.message) for warn in w]) |
|
|
|
|
|
is_increasing = y_[0] < y_[-1] |
|
assert not is_increasing |
|
|
|
|
|
def test_isotonic_regression_auto_increasing(): |
|
|
|
y = np.array([5, 6.1, 6, 7, 10, 9, 10]) |
|
x = np.arange(len(y)) |
|
|
|
|
|
ir = IsotonicRegression(increasing="auto") |
|
with warnings.catch_warnings(record=True) as w: |
|
warnings.simplefilter("always") |
|
y_ = ir.fit_transform(x, y) |
|
|
|
assert all(["invalid value encountered in " in str(warn.message) for warn in w]) |
|
|
|
|
|
is_increasing = y_[0] < y_[-1] |
|
assert is_increasing |
|
|
|
|
|
def test_assert_raises_exceptions(): |
|
ir = IsotonicRegression() |
|
rng = np.random.RandomState(42) |
|
|
|
msg = "Found input variables with inconsistent numbers of samples" |
|
with pytest.raises(ValueError, match=msg): |
|
ir.fit([0, 1, 2], [5, 7, 3], [0.1, 0.6]) |
|
|
|
with pytest.raises(ValueError, match=msg): |
|
ir.fit([0, 1, 2], [5, 7]) |
|
|
|
msg = "X should be a 1d array" |
|
with pytest.raises(ValueError, match=msg): |
|
ir.fit(rng.randn(3, 10), [0, 1, 2]) |
|
|
|
msg = "Isotonic regression input X should be a 1d array" |
|
with pytest.raises(ValueError, match=msg): |
|
ir.transform(rng.randn(3, 10)) |
|
|
|
|
|
def test_isotonic_sample_weight_parameter_default_value(): |
|
|
|
ir = IsotonicRegression() |
|
|
|
rng = np.random.RandomState(42) |
|
n = 100 |
|
x = np.arange(n) |
|
y = rng.randint(-50, 50, size=(n,)) + 50.0 * np.log(1 + np.arange(n)) |
|
|
|
weights = np.ones(n) |
|
y_set_value = ir.fit_transform(x, y, sample_weight=weights) |
|
y_default_value = ir.fit_transform(x, y) |
|
|
|
assert_array_equal(y_set_value, y_default_value) |
|
|
|
|
|
def test_isotonic_min_max_boundaries(): |
|
|
|
ir = IsotonicRegression(y_min=2, y_max=4) |
|
n = 6 |
|
x = np.arange(n) |
|
y = np.arange(n) |
|
y_test = [2, 2, 2, 3, 4, 4] |
|
y_result = np.round(ir.fit_transform(x, y)) |
|
assert_array_equal(y_result, y_test) |
|
|
|
|
|
def test_isotonic_sample_weight(): |
|
ir = IsotonicRegression() |
|
x = [1, 2, 3, 4, 5, 6, 7] |
|
y = [1, 41, 51, 1, 2, 5, 24] |
|
sample_weight = [1, 2, 3, 4, 5, 6, 7] |
|
expected_y = [1, 13.95, 13.95, 13.95, 13.95, 13.95, 24] |
|
received_y = ir.fit_transform(x, y, sample_weight=sample_weight) |
|
|
|
assert_array_equal(expected_y, received_y) |
|
|
|
|
|
def test_isotonic_regression_oob_raise(): |
|
|
|
y = np.array([3, 7, 5, 9, 8, 7, 10]) |
|
x = np.arange(len(y)) |
|
|
|
|
|
ir = IsotonicRegression(increasing="auto", out_of_bounds="raise") |
|
ir.fit(x, y) |
|
|
|
|
|
msg = "in x_new is below the interpolation range" |
|
with pytest.raises(ValueError, match=msg): |
|
ir.predict([min(x) - 10, max(x) + 10]) |
|
|
|
|
|
def test_isotonic_regression_oob_clip(): |
|
|
|
y = np.array([3, 7, 5, 9, 8, 7, 10]) |
|
x = np.arange(len(y)) |
|
|
|
|
|
ir = IsotonicRegression(increasing="auto", out_of_bounds="clip") |
|
ir.fit(x, y) |
|
|
|
|
|
y1 = ir.predict([min(x) - 10, max(x) + 10]) |
|
y2 = ir.predict(x) |
|
assert max(y1) == max(y2) |
|
assert min(y1) == min(y2) |
|
|
|
|
|
def test_isotonic_regression_oob_nan(): |
|
|
|
y = np.array([3, 7, 5, 9, 8, 7, 10]) |
|
x = np.arange(len(y)) |
|
|
|
|
|
ir = IsotonicRegression(increasing="auto", out_of_bounds="nan") |
|
ir.fit(x, y) |
|
|
|
|
|
y1 = ir.predict([min(x) - 10, max(x) + 10]) |
|
assert sum(np.isnan(y1)) == 2 |
|
|
|
|
|
def test_isotonic_regression_pickle(): |
|
y = np.array([3, 7, 5, 9, 8, 7, 10]) |
|
x = np.arange(len(y)) |
|
|
|
|
|
ir = IsotonicRegression(increasing="auto", out_of_bounds="clip") |
|
ir.fit(x, y) |
|
|
|
ir_ser = pickle.dumps(ir, pickle.HIGHEST_PROTOCOL) |
|
ir2 = pickle.loads(ir_ser) |
|
np.testing.assert_array_equal(ir.predict(x), ir2.predict(x)) |
|
|
|
|
|
def test_isotonic_duplicate_min_entry(): |
|
x = [0, 0, 1] |
|
y = [0, 0, 1] |
|
|
|
ir = IsotonicRegression(increasing=True, out_of_bounds="clip") |
|
ir.fit(x, y) |
|
all_predictions_finite = np.all(np.isfinite(ir.predict(x))) |
|
assert all_predictions_finite |
|
|
|
|
|
def test_isotonic_ymin_ymax(): |
|
|
|
|
|
x = np.array( |
|
[ |
|
1.263, |
|
1.318, |
|
-0.572, |
|
0.307, |
|
-0.707, |
|
-0.176, |
|
-1.599, |
|
1.059, |
|
1.396, |
|
1.906, |
|
0.210, |
|
0.028, |
|
-0.081, |
|
0.444, |
|
0.018, |
|
-0.377, |
|
-0.896, |
|
-0.377, |
|
-1.327, |
|
0.180, |
|
] |
|
) |
|
y = isotonic_regression(x, y_min=0.0, y_max=0.1) |
|
|
|
assert np.all(y >= 0) |
|
assert np.all(y <= 0.1) |
|
|
|
|
|
y = isotonic_regression(x, y_min=0.0, y_max=0.1, increasing=False) |
|
|
|
assert np.all(y >= 0) |
|
assert np.all(y <= 0.1) |
|
|
|
|
|
y = isotonic_regression(x, y_min=0.0, increasing=False) |
|
|
|
assert np.all(y >= 0) |
|
|
|
|
|
def test_isotonic_zero_weight_loop(): |
|
|
|
|
|
|
|
|
|
rng = np.random.RandomState(42) |
|
|
|
|
|
regression = IsotonicRegression() |
|
n_samples = 50 |
|
x = np.linspace(-3, 3, n_samples) |
|
y = x + rng.uniform(size=n_samples) |
|
|
|
|
|
w = rng.uniform(size=n_samples) |
|
w[5:8] = 0 |
|
regression.fit(x, y, sample_weight=w) |
|
|
|
|
|
regression.fit(x, y, sample_weight=w) |
|
|
|
|
|
def test_fast_predict(): |
|
|
|
|
|
|
|
rng = np.random.RandomState(123) |
|
n_samples = 10**3 |
|
|
|
X_train = 20.0 * rng.rand(n_samples) - 10 |
|
y_train = ( |
|
np.less(rng.rand(n_samples), expit(X_train)).astype("int64").astype("float64") |
|
) |
|
|
|
weights = rng.rand(n_samples) |
|
|
|
weights[rng.rand(n_samples) < 0.1] = 0 |
|
|
|
slow_model = IsotonicRegression(y_min=0, y_max=1, out_of_bounds="clip") |
|
fast_model = IsotonicRegression(y_min=0, y_max=1, out_of_bounds="clip") |
|
|
|
|
|
|
|
|
|
X_train_fit, y_train_fit = slow_model._build_y( |
|
X_train, y_train, sample_weight=weights, trim_duplicates=False |
|
) |
|
slow_model._build_f(X_train_fit, y_train_fit) |
|
|
|
|
|
fast_model.fit(X_train, y_train, sample_weight=weights) |
|
|
|
X_test = 20.0 * rng.rand(n_samples) - 10 |
|
y_pred_slow = slow_model.predict(X_test) |
|
y_pred_fast = fast_model.predict(X_test) |
|
|
|
assert_array_equal(y_pred_slow, y_pred_fast) |
|
|
|
|
|
def test_isotonic_copy_before_fit(): |
|
|
|
ir = IsotonicRegression() |
|
copy.copy(ir) |
|
|
|
|
|
@pytest.mark.parametrize("dtype", [np.int32, np.int64, np.float32, np.float64]) |
|
def test_isotonic_dtype(dtype): |
|
y = [2, 1, 4, 3, 5] |
|
weights = np.array([0.9, 0.9, 0.9, 0.9, 0.9], dtype=np.float64) |
|
reg = IsotonicRegression() |
|
|
|
for sample_weight in (None, weights.astype(np.float32), weights): |
|
y_np = np.array(y, dtype=dtype) |
|
expected_dtype = check_array( |
|
y_np, dtype=[np.float64, np.float32], ensure_2d=False |
|
).dtype |
|
|
|
res = isotonic_regression(y_np, sample_weight=sample_weight) |
|
assert res.dtype == expected_dtype |
|
|
|
X = np.arange(len(y)).astype(dtype) |
|
reg.fit(X, y_np, sample_weight=sample_weight) |
|
res = reg.predict(X) |
|
assert res.dtype == expected_dtype |
|
|
|
|
|
@pytest.mark.parametrize("y_dtype", [np.int32, np.int64, np.float32, np.float64]) |
|
def test_isotonic_mismatched_dtype(y_dtype): |
|
|
|
|
|
reg = IsotonicRegression() |
|
y = np.array([2, 1, 4, 3, 5], dtype=y_dtype) |
|
X = np.arange(len(y), dtype=np.float32) |
|
reg.fit(X, y) |
|
assert reg.predict(X).dtype == X.dtype |
|
|
|
|
|
def test_make_unique_dtype(): |
|
x_list = [2, 2, 2, 3, 5] |
|
for dtype in (np.float32, np.float64): |
|
x = np.array(x_list, dtype=dtype) |
|
y = x.copy() |
|
w = np.ones_like(x) |
|
x, y, w = _make_unique(x, y, w) |
|
assert_array_equal(x, [2, 3, 5]) |
|
|
|
|
|
@pytest.mark.parametrize("dtype", [np.float64, np.float32]) |
|
def test_make_unique_tolerance(dtype): |
|
|
|
x = np.array([0, 1e-16, 1, 1 + 1e-14], dtype=dtype) |
|
y = x.copy() |
|
w = np.ones_like(x) |
|
x, y, w = _make_unique(x, y, w) |
|
if dtype == np.float64: |
|
x_out = np.array([0, 1, 1 + 1e-14]) |
|
else: |
|
x_out = np.array([0, 1]) |
|
assert_array_equal(x, x_out) |
|
|
|
|
|
def test_isotonic_make_unique_tolerance(): |
|
|
|
|
|
X = np.array([0, 1, 1 + 1e-16, 2], dtype=np.float64) |
|
y = np.array([0, 1, 2, 3], dtype=np.float64) |
|
ireg = IsotonicRegression().fit(X, y) |
|
y_pred = ireg.predict([0, 0.5, 1, 1.5, 2]) |
|
|
|
assert_array_equal(y_pred, np.array([0, 0.75, 1.5, 2.25, 3])) |
|
assert_array_equal(ireg.X_thresholds_, np.array([0.0, 1.0, 2.0])) |
|
assert_array_equal(ireg.y_thresholds_, np.array([0.0, 1.5, 3.0])) |
|
|
|
|
|
def test_isotonic_non_regression_inf_slope(): |
|
|
|
|
|
X = np.array([0.0, 4.1e-320, 4.4e-314, 1.0]) |
|
y = np.array([0.42, 0.42, 0.44, 0.44]) |
|
ireg = IsotonicRegression().fit(X, y) |
|
y_pred = ireg.predict(np.array([0, 2.1e-319, 5.4e-316, 1e-10])) |
|
assert np.all(np.isfinite(y_pred)) |
|
|
|
|
|
@pytest.mark.parametrize("increasing", [True, False]) |
|
def test_isotonic_thresholds(increasing): |
|
rng = np.random.RandomState(42) |
|
n_samples = 30 |
|
X = rng.normal(size=n_samples) |
|
y = rng.normal(size=n_samples) |
|
ireg = IsotonicRegression(increasing=increasing).fit(X, y) |
|
X_thresholds, y_thresholds = ireg.X_thresholds_, ireg.y_thresholds_ |
|
assert X_thresholds.shape == y_thresholds.shape |
|
|
|
|
|
|
|
|
|
assert X_thresholds.shape[0] < X.shape[0] |
|
assert np.isin(X_thresholds, X).all() |
|
|
|
|
|
assert y_thresholds.max() <= y.max() |
|
assert y_thresholds.min() >= y.min() |
|
|
|
assert all(np.diff(X_thresholds) > 0) |
|
if increasing: |
|
assert all(np.diff(y_thresholds) >= 0) |
|
else: |
|
assert all(np.diff(y_thresholds) <= 0) |
|
|
|
|
|
def test_input_shape_validation(): |
|
|
|
|
|
X = np.arange(10) |
|
X_2d = X.reshape(-1, 1) |
|
y = np.arange(10) |
|
|
|
iso_reg = IsotonicRegression().fit(X, y) |
|
iso_reg_2d = IsotonicRegression().fit(X_2d, y) |
|
|
|
assert iso_reg.X_max_ == iso_reg_2d.X_max_ |
|
assert iso_reg.X_min_ == iso_reg_2d.X_min_ |
|
assert iso_reg.y_max == iso_reg_2d.y_max |
|
assert iso_reg.y_min == iso_reg_2d.y_min |
|
assert_array_equal(iso_reg.X_thresholds_, iso_reg_2d.X_thresholds_) |
|
assert_array_equal(iso_reg.y_thresholds_, iso_reg_2d.y_thresholds_) |
|
|
|
y_pred1 = iso_reg.predict(X) |
|
y_pred2 = iso_reg_2d.predict(X_2d) |
|
assert_allclose(y_pred1, y_pred2) |
|
|
|
|
|
def test_isotonic_2darray_more_than_1_feature(): |
|
|
|
X = np.arange(10) |
|
X_2d = np.c_[X, X] |
|
y = np.arange(10) |
|
|
|
msg = "should be a 1d array or 2d array with 1 feature" |
|
with pytest.raises(ValueError, match=msg): |
|
IsotonicRegression().fit(X_2d, y) |
|
|
|
iso_reg = IsotonicRegression().fit(X, y) |
|
with pytest.raises(ValueError, match=msg): |
|
iso_reg.predict(X_2d) |
|
|
|
with pytest.raises(ValueError, match=msg): |
|
iso_reg.transform(X_2d) |
|
|
|
|
|
def test_isotonic_regression_sample_weight_not_overwritten(): |
|
"""Check that calling fitting function of isotonic regression will not |
|
overwrite `sample_weight`. |
|
Non-regression test for: |
|
https://github.com/scikit-learn/scikit-learn/issues/20508 |
|
""" |
|
X, y = make_regression(n_samples=10, n_features=1, random_state=41) |
|
sample_weight_original = np.ones_like(y) |
|
sample_weight_original[0] = 10 |
|
sample_weight_fit = sample_weight_original.copy() |
|
|
|
isotonic_regression(y, sample_weight=sample_weight_fit) |
|
assert_allclose(sample_weight_fit, sample_weight_original) |
|
|
|
IsotonicRegression().fit(X, y, sample_weight=sample_weight_fit) |
|
assert_allclose(sample_weight_fit, sample_weight_original) |
|
|
|
|
|
@pytest.mark.parametrize("shape", ["1d", "2d"]) |
|
def test_get_feature_names_out(shape): |
|
"""Check `get_feature_names_out` for `IsotonicRegression`.""" |
|
X = np.arange(10) |
|
if shape == "2d": |
|
X = X.reshape(-1, 1) |
|
y = np.arange(10) |
|
|
|
iso = IsotonicRegression().fit(X, y) |
|
names = iso.get_feature_names_out() |
|
assert isinstance(names, np.ndarray) |
|
assert names.dtype == object |
|
assert_array_equal(["isotonicregression0"], names) |
|
|
|
|
|
def test_isotonic_regression_output_predict(): |
|
"""Check that `predict` does return the expected output type. |
|
|
|
We need to check that `transform` will output a DataFrame and a NumPy array |
|
when we set `transform_output` to `pandas`. |
|
|
|
Non-regression test for: |
|
https://github.com/scikit-learn/scikit-learn/issues/25499 |
|
""" |
|
pd = pytest.importorskip("pandas") |
|
X, y = make_regression(n_samples=10, n_features=1, random_state=42) |
|
regressor = IsotonicRegression() |
|
with sklearn.config_context(transform_output="pandas"): |
|
regressor.fit(X, y) |
|
X_trans = regressor.transform(X) |
|
y_pred = regressor.predict(X) |
|
|
|
assert isinstance(X_trans, pd.DataFrame) |
|
assert isinstance(y_pred, np.ndarray) |
|
|