""" General tests for all estimators in sklearn. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import os import pkgutil import re import warnings from functools import partial from inspect import isgenerator from itertools import chain import pytest from scipy.linalg import LinAlgWarning import sklearn from sklearn.base import BaseEstimator from sklearn.compose import ColumnTransformer from sklearn.datasets import make_classification from sklearn.exceptions import ConvergenceWarning # make it possible to discover experimental estimators when calling `all_estimators` from sklearn.experimental import ( enable_halving_search_cv, # noqa enable_iterative_imputer, # noqa ) from sklearn.linear_model import LogisticRegression from sklearn.pipeline import FeatureUnion, make_pipeline from sklearn.preprocessing import ( FunctionTransformer, MinMaxScaler, OneHotEncoder, StandardScaler, ) from sklearn.utils import all_estimators from sklearn.utils._test_common.instance_generator import ( _get_check_estimator_ids, _get_expected_failed_checks, _tested_estimators, ) from sklearn.utils._testing import ( SkipTest, ignore_warnings, ) from sklearn.utils.estimator_checks import ( check_dataframe_column_names_consistency, check_estimator, check_get_feature_names_out_error, check_global_output_transform_pandas, check_global_set_output_transform_polars, check_inplace_ensure_writeable, check_param_validation, check_set_output_transform, check_set_output_transform_pandas, check_set_output_transform_polars, check_transformer_get_feature_names_out, check_transformer_get_feature_names_out_pandas, parametrize_with_checks, ) from sklearn.utils.fixes import _IS_WASM def test_all_estimator_no_base_class(): # test that all_estimators doesn't find abstract classes. for name, Estimator in all_estimators(): msg = ( "Base estimators such as {0} should not be included in all_estimators" ).format(name) assert not name.lower().startswith("base"), msg def _sample_func(x, y=1): pass class CallableEstimator(BaseEstimator): """Dummy development stub for an estimator. This is to make sure a callable estimator passes common tests. """ def __call__(self): pass # pragma: nocover @pytest.mark.parametrize( "val, expected", [ (partial(_sample_func, y=1), "_sample_func(y=1)"), (_sample_func, "_sample_func"), (partial(_sample_func, "world"), "_sample_func"), (LogisticRegression(C=2.0), "LogisticRegression(C=2.0)"), ( LogisticRegression( random_state=1, solver="newton-cg", class_weight="balanced", warm_start=True, ), ( "LogisticRegression(class_weight='balanced',random_state=1," "solver='newton-cg',warm_start=True)" ), ), (CallableEstimator(), "CallableEstimator()"), ], ) def test_get_check_estimator_ids(val, expected): assert _get_check_estimator_ids(val) == expected @parametrize_with_checks( list(_tested_estimators()), expected_failed_checks=_get_expected_failed_checks ) def test_estimators(estimator, check, request): # Common tests for estimator instances with ignore_warnings( category=(FutureWarning, ConvergenceWarning, UserWarning, LinAlgWarning) ): check(estimator) # TODO(1.8): remove test when generate_only is removed def test_check_estimator_generate_only_deprecation(): """Check that check_estimator with generate_only=True raises a deprecation warning.""" with pytest.warns(FutureWarning, match="`generate_only` is deprecated in 1.6"): all_instance_gen_checks = check_estimator( LogisticRegression(), generate_only=True ) assert isgenerator(all_instance_gen_checks) @pytest.mark.xfail(_IS_WASM, reason="importlib not supported for Pyodide packages") @pytest.mark.filterwarnings( "ignore:Since version 1.0, it is not needed to import " "enable_hist_gradient_boosting anymore" ) def test_import_all_consistency(): sklearn_path = [os.path.dirname(sklearn.__file__)] # Smoke test to check that any name in a __all__ list is actually defined # in the namespace of the module or package. pkgs = pkgutil.walk_packages( path=sklearn_path, prefix="sklearn.", onerror=lambda _: None ) submods = [modname for _, modname, _ in pkgs] for modname in submods + ["sklearn"]: if ".tests." in modname: continue # Avoid test suite depending on build dependencies, for example Cython if "sklearn._build_utils" in modname: continue package = __import__(modname, fromlist="dummy") for name in getattr(package, "__all__", ()): assert hasattr(package, name), "Module '{0}' has no attribute '{1}'".format( modname, name ) def test_root_import_all_completeness(): sklearn_path = [os.path.dirname(sklearn.__file__)] EXCEPTIONS = ("utils", "tests", "base", "conftest") for _, modname, _ in pkgutil.walk_packages( path=sklearn_path, onerror=lambda _: None ): if "." in modname or modname.startswith("_") or modname in EXCEPTIONS: continue assert modname in sklearn.__all__ def test_all_tests_are_importable(): # Ensure that for each contentful subpackage, there is a test directory # within it that is also a subpackage (i.e. a directory with __init__.py) HAS_TESTS_EXCEPTIONS = re.compile( r"""(?x) \.externals(\.|$)| \.tests(\.|$)| \._ """ ) resource_modules = { "sklearn.datasets.data", "sklearn.datasets.descr", "sklearn.datasets.images", } sklearn_path = [os.path.dirname(sklearn.__file__)] lookup = { name: ispkg for _, name, ispkg in pkgutil.walk_packages(sklearn_path, prefix="sklearn.") } missing_tests = [ name for name, ispkg in lookup.items() if ispkg and name not in resource_modules and not HAS_TESTS_EXCEPTIONS.search(name) and name + ".tests" not in lookup ] assert missing_tests == [], ( "{0} do not have `tests` subpackages. " "Perhaps they require " "__init__.py or a meson.build " "in the parent " "directory".format(missing_tests) ) def test_class_support_removed(): # Make sure passing classes to check_estimator or parametrize_with_checks # raises an error msg = "Passing a class was deprecated.* isn't supported anymore" with pytest.raises(TypeError, match=msg): check_estimator(LogisticRegression) with pytest.raises(TypeError, match=msg): parametrize_with_checks([LogisticRegression]) def _estimators_that_predict_in_fit(): for estimator in _tested_estimators(): est_params = set(estimator.get_params()) if "oob_score" in est_params: yield estimator.set_params(oob_score=True, bootstrap=True) elif "early_stopping" in est_params: est = estimator.set_params(early_stopping=True, n_iter_no_change=1) if est.__class__.__name__ in {"MLPClassifier", "MLPRegressor"}: # TODO: FIX MLP to not check validation set during MLP yield pytest.param( est, marks=pytest.mark.xfail(msg="MLP still validates in fit") ) else: yield est elif "n_iter_no_change" in est_params: yield estimator.set_params(n_iter_no_change=1) # NOTE: When running `check_dataframe_column_names_consistency` on a meta-estimator that # delegates validation to a base estimator, the check is testing that the base estimator # is checking for column name consistency. column_name_estimators = list( chain( _tested_estimators(), [make_pipeline(LogisticRegression(C=1))], _estimators_that_predict_in_fit(), ) ) @pytest.mark.parametrize( "estimator", column_name_estimators, ids=_get_check_estimator_ids ) def test_pandas_column_name_consistency(estimator): if isinstance(estimator, ColumnTransformer): pytest.skip("ColumnTransformer is not tested here") if "check_dataframe_column_names_consistency" in _get_expected_failed_checks( estimator ): pytest.skip( "Estimator does not support check_dataframe_column_names_consistency" ) with ignore_warnings(category=(FutureWarning)): with warnings.catch_warnings(record=True) as record: check_dataframe_column_names_consistency( estimator.__class__.__name__, estimator ) for warning in record: assert "was fitted without feature names" not in str(warning.message) # TODO: As more modules support get_feature_names_out they should be removed # from this list to be tested GET_FEATURES_OUT_MODULES_TO_IGNORE = [ "ensemble", "kernel_approximation", ] def _include_in_get_feature_names_out_check(transformer): if hasattr(transformer, "get_feature_names_out"): return True module = transformer.__module__.split(".")[1] return module not in GET_FEATURES_OUT_MODULES_TO_IGNORE GET_FEATURES_OUT_ESTIMATORS = [ est for est in _tested_estimators("transformer") if _include_in_get_feature_names_out_check(est) ] @pytest.mark.parametrize( "transformer", GET_FEATURES_OUT_ESTIMATORS, ids=_get_check_estimator_ids ) def test_transformers_get_feature_names_out(transformer): with ignore_warnings(category=(FutureWarning)): check_transformer_get_feature_names_out( transformer.__class__.__name__, transformer ) check_transformer_get_feature_names_out_pandas( transformer.__class__.__name__, transformer ) ESTIMATORS_WITH_GET_FEATURE_NAMES_OUT = [ est for est in _tested_estimators() if hasattr(est, "get_feature_names_out") ] @pytest.mark.parametrize( "estimator", ESTIMATORS_WITH_GET_FEATURE_NAMES_OUT, ids=_get_check_estimator_ids ) def test_estimators_get_feature_names_out_error(estimator): estimator_name = estimator.__class__.__name__ check_get_feature_names_out_error(estimator_name, estimator) @pytest.mark.parametrize( "estimator", list(_tested_estimators()), ids=_get_check_estimator_ids ) def test_check_param_validation(estimator): if isinstance(estimator, FeatureUnion): pytest.skip("FeatureUnion is not tested here") name = estimator.__class__.__name__ check_param_validation(name, estimator) SET_OUTPUT_ESTIMATORS = list( chain( _tested_estimators("transformer"), [ make_pipeline(StandardScaler(), MinMaxScaler()), OneHotEncoder(sparse_output=False), FunctionTransformer(feature_names_out="one-to-one"), ], ) ) @pytest.mark.parametrize( "estimator", SET_OUTPUT_ESTIMATORS, ids=_get_check_estimator_ids ) def test_set_output_transform(estimator): name = estimator.__class__.__name__ if not hasattr(estimator, "set_output"): pytest.skip( f"Skipping check_set_output_transform for {name}: Does not support" " set_output API" ) with ignore_warnings(category=(FutureWarning)): check_set_output_transform(estimator.__class__.__name__, estimator) @pytest.mark.parametrize( "estimator", SET_OUTPUT_ESTIMATORS, ids=_get_check_estimator_ids ) @pytest.mark.parametrize( "check_func", [ check_set_output_transform_pandas, check_global_output_transform_pandas, check_set_output_transform_polars, check_global_set_output_transform_polars, ], ) def test_set_output_transform_configured(estimator, check_func): name = estimator.__class__.__name__ if not hasattr(estimator, "set_output"): pytest.skip( f"Skipping {check_func.__name__} for {name}: Does not support" " set_output API yet" ) with ignore_warnings(category=(FutureWarning)): check_func(estimator.__class__.__name__, estimator) @pytest.mark.parametrize( "estimator", _tested_estimators(), ids=_get_check_estimator_ids ) def test_check_inplace_ensure_writeable(estimator): name = estimator.__class__.__name__ if hasattr(estimator, "copy"): estimator.set_params(copy=False) elif hasattr(estimator, "copy_X"): estimator.set_params(copy_X=False) else: raise SkipTest(f"{name} doesn't require writeable input.") # The following estimators can work inplace only with certain settings if name == "HDBSCAN": estimator.set_params(metric="precomputed", algorithm="brute") if name == "PCA": estimator.set_params(svd_solver="full") if name == "KernelPCA": estimator.set_params(kernel="precomputed") check_inplace_ensure_writeable(name, estimator) # TODO(1.7): Remove this test when the deprecation cycle is over def test_transition_public_api_deprecations(): """This test checks that we raised deprecation warning explaining how to transition to the new developer public API from 1.5 to 1.6. """ class OldEstimator(BaseEstimator): def fit(self, X, y=None): X = self._validate_data(X) self._check_n_features(X, reset=True) self._check_feature_names(X, reset=True) return self def transform(self, X): return X # pragma: no cover X, y = make_classification(n_samples=10, n_features=5, random_state=0) old_estimator = OldEstimator() with pytest.warns(FutureWarning) as warning_list: old_estimator.fit(X) assert len(warning_list) == 3 assert str(warning_list[0].message).startswith( "`BaseEstimator._validate_data` is deprecated" ) assert str(warning_list[1].message).startswith( "`BaseEstimator._check_n_features` is deprecated" ) assert str(warning_list[2].message).startswith( "`BaseEstimator._check_feature_names` is deprecated" )