Modhu commited on
Commit
d4f4114
1 Parent(s): 237f1c6

My first ever RL project. (PPO-LunarLander v2)

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 265.67 +/- 21.99
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b5f2dbff250>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b5f2dbff2e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b5f2dbff370>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b5f2dbff400>", "_build": "<function ActorCriticPolicy._build at 0x7b5f2dbff490>", "forward": "<function ActorCriticPolicy.forward at 0x7b5f2dbff520>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b5f2dbff5b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b5f2dbff640>", "_predict": "<function ActorCriticPolicy._predict at 0x7b5f2dbff6d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b5f2dbff760>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b5f2dbff7f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b5f2dbff880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b5f2dbaba40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703662691102009068, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAJTL2ccj68dtBevE3eID3ZoJ094UoAvgAAgD8AAIA/AGGXPfbcI7ppQ8E6j8/RNe9VmbpSrt65AAAAAAAAgD8AYC+6rmmqukVZ0DkL0Y+0y61cuo3t7rgAAIA/AACAP037a73VmiM+EQ9EPGId9701t469hnPuvAAAAAAAAAAAM5lWvMP9WLprXfG5pnPBtaxPnbvI0A45AACAPwAAgD+a/2s+nvqvP15GMj8HQeG+lwaNPq3gGT4AAAAAAAAAAIpker7Iw30/hJCpvrUUf74H55a+orCtvQAAAAAAAAAA5oW0PeEYh7pBWIG5QMp1tHmeRzt2gZY4AACAPwAAAADNtq+9RKH3PVdJjTx/7A6+DL+zuxuYnL0AAAAAAAAAAM2Yp7uhWQ0/IYENPlBIqb59B4g9Vr+vPAAAAAAAAAAAzdrjPM3esT855go/82J4vhdigbxObKk7AAAAAAAAAAAzCYS8/INAPta0FLwrvIC+YVrGPQz/lj0AAAAAAAAAAM0qATxXfFE8ta8QPfMVbb5vKBg9dqNYvQAAAAAAAAAAZjYOO4B0uD8zv2A9iRaXPmWaIbv2YEm8AAAAAAAAAADmftG9/nEEP3P1dj6hHJq+IyPFPejhvz0AAAAAAAAAAM1K2j2FS6u5uoXRu66HojeQRfy643QKtwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5XdX9zfaaMAWyUTVMBjAF0lEdAli16YE4ecXV9lChoBkdAchOGrS3LFGgHTUYBaAhHQJYuEfNiYsx1fZQoaAZHQE+D0ulGgBdoB00JAWgIR0CWLjaUiY9gdX2UKGgGR0BwOnZwn6VMaAdNFwFoCEdAli+jJQtSRHV9lChoBkdAb/fzH0btJGgHTUkBaAhHQJYv05jpcHJ1fZQoaAZHQG/Qzp5eJHloB00YAWgIR0CWL/hfjS5RdX2UKGgGR0BujqGYa5wwaAdNIQFoCEdAljE8vVVghXV9lChoBkdAcUIdH2AXmGgHTUsBaAhHQJYzpk6Lfk51fZQoaAZHQHC4fjKgZjxoB01OAWgIR0CWM8LowEhadX2UKGgGR0Bvm9zySV4YaAdNIgFoCEdAljQEpiI+GHV9lChoBkdAbw2XvYvnKWgHTR0BaAhHQJY0DtMPBi11fZQoaAZHQHIKGVRk3CNoB00iAWgIR0CWNOYU34sVdX2UKGgGR0Bw9b80k4WDaAdNUgFoCEdAljWBDXvphXV9lChoBkdAbSpP69CeE2gHTQUBaAhHQJY2X5zo2XN1fZQoaAZHQHBfMCcPOIJoB00hAWgIR0CWNpRMewLWdX2UKGgGR0BwRY3BHkLhaAdNOgFoCEdAljdrvPTodXV9lChoBkdAcMDvKlpGnWgHTT8BaAhHQJY5APd2xIJ1fZQoaAZHQHFq4zWPLgZoB006AWgIR0CWOQEJBw+/dX2UKGgGR0BvDiEYfnwHaAdNCwFoCEdAljkJtrKvFHV9lChoBkdAcnrGr0aqCGgHTRsBaAhHQJY5nhKlHjJ1fZQoaAZHQHBXKScLBsRoB00oAWgIR0CWObywOe8PdX2UKGgGR0BvSMBOpKjBaAdNPAFoCEdAljvT90ihWnV9lChoBkdAcBzvoePq92gHTQ4BaAhHQJY8qoLofSx1fZQoaAZHQHDVKDoQnQZoB00vAWgIR0CWPk9Aood/dX2UKGgGR0BscN4RmK64aAdNGwFoCEdAlj6FuaWonHV9lChoBkdAc0HFMZgogGgHTRABaAhHQJY+zDDTBqN1fZQoaAZHQHK5KW5Yoy9oB01DAWgIR0CWPtaDPGADdX2UKGgGR0BwSo8IRh+faAdNRQFoCEdAlj8p0W/JvHV9lChoBkdAbhJDpC8e0WgHTSIBaAhHQJZANaEBbOh1fZQoaAZHQHB44+r2g39oB00iAWgIR0CWQGU+s5n2dX2UKGgGR0Bx4KrKeTV2aAdNRwJoCEdAlkEqN6w+uHV9lChoBkdAclJVH4Glh2gHTQABaAhHQJZBj4sVclh1fZQoaAZHQHAC6v3ai9JoB01HAWgIR0CWQmi83++/dX2UKGgGR0Bx00UXYUWVaAdNHwFoCEdAlkKYsunMuHV9lChoBkdAby0csDnvD2gHTS8BaAhHQJZDD/+85CF1fZQoaAZHQHJW3j+717JoB00jAWgIR0CWQ3GpuMuOdX2UKGgGR0Bv15/EwWWQaAdNRAFoCEdAlkRPXoTwlXV9lChoBkdAccSwVTJhfGgHTQQBaAhHQJZEjt9hJAd1fZQoaAZHQHCpZn6Eal1oB00RAWgIR0CWRzQSi/O/dX2UKGgGR0BvcYr6LwWnaAdNGAFoCEdAlkgJgXuVo3V9lChoBkdAb6ztTkyULWgHTTMBaAhHQJZI18gIQe51fZQoaAZHQHFAHcclw99oB00yAWgIR0CWSSI68xsVdX2UKGgGR0BwkEpUgjhUaAdNKQFoCEdAlkksOoYNzHV9lChoBkdAb3tLZBcAzmgHTYgBaAhHQJZKPMxGlRB1fZQoaAZHQHDnUMG5c1RoB00xAWgIR0CWStXm/336dX2UKGgGR0By3H889wFUaAdNFAFoCEdAlkseLaVUuXV9lChoBkdAcJ888cMmW2gHTSMBaAhHQJZLL2FnIyV1fZQoaAZHQG22EB0ZFXtoB01GAWgIR0CWS1kvK2a2dX2UKGgGR0BQXEsz2vjfaAdL/2gIR0CWS3N9H+ZPdX2UKGgGR0ByYPVTaTOgaAdNMgFoCEdAlmL8fNiYs3V9lChoBkdAclEo8ZDRdGgHTQkBaAhHQJZjoI6bONZ1fZQoaAZHQHGj3/Pw/gRoB01iAWgIR0CWZaLCemNzdX2UKGgGR0Bw033sXzlLaAdL/2gIR0CWZjptJnQIdX2UKGgGR0Bt2rdvbXYlaAdNiQFoCEdAlmaYbbUPQXV9lChoBkdAcfFoP07KaGgHTVgBaAhHQJZmomdAgPp1fZQoaAZHQG90bMX7+DRoB00hAWgIR0CWZ+fseGO/dX2UKGgGR0Bxsut2cJ+laAdNEQFoCEdAlmgH/cWTHXV9lChoBkdAb8BovBacJGgHTQ0BaAhHQJZoJBMSK3x1fZQoaAZHQHHGoao/A0toB00hAWgIR0CWaNFYuCf6dX2UKGgGR0Ay8H1vl2eQaAdL1GgIR0CWafiqABkqdX2UKGgGR0Bumh/kNnXeaAdNFAFoCEdAlmn3lGPPs3V9lChoBkdAcIMHtF8XvmgHTTkBaAhHQJZqoVN5+ph1fZQoaAZHQHALwJb+tKZoB00eAWgIR0CWasi7TUiIdX2UKGgGR0BwY70Fr2xqaAdNJgFoCEdAlmrNdZ7ojnV9lChoBkdASa6aZx7zCmgHS99oCEdAlmr4XoC+13V9lChoBkdAcBVtSQ5my2gHTToBaAhHQJZrVfv4M4N1fZQoaAZHQHF9bPt2LYRoB01KAWgIR0CWa+ydnTRZdX2UKGgGR0Bx1uDRMN+caAdNEQFoCEdAlm3uSwGGEnV9lChoBkdAcrYmOU+s5mgHTR0BaAhHQJZvPAqNIbx1fZQoaAZHQFBObVBlcyFoB0v5aAhHQJZvvOUt7KJ1fZQoaAZHQHCCBkqc3ERoB00NAWgIR0CWcDKfnOjZdX2UKGgGR0BwI1wxWT5gaAdNQgFoCEdAlnCa19fCynV9lChoBkdAceXGcFyJbmgHTQ8BaAhHQJZxSFsYVIt1fZQoaAZHQHA4Sfg75mBoB015AWgIR0CWcjd8zAN5dX2UKGgGR0Bx//tY0VJuaAdL+mgIR0CWcqnXumaZdX2UKGgGR0BwvfQJHAh0aAdNGwFoCEdAlnLtcGC7LHV9lChoBkdAb/NeBxxT9GgHTQsBaAhHQJZzENlRP451fZQoaAZHQHIYkqpcX3xoB00yAWgIR0CWc6f1HvtudX2UKGgGR0BvSYlY2bXpaAdNFwFoCEdAlnRRqXWvsHV9lChoBkdAcG4E/jbSJGgHTTYBaAhHQJZ0mmR/3Fl1fZQoaAZHQHDz+iaiKzloB00JAWgIR0CWdKx2B8QadX2UKGgGR0By/OZG8VYZaAdNNQFoCEdAlnTKAJ9iMHV9lChoBkdAc08mbb1yvWgHS/poCEdAlnga4x1xKnV9lChoBkdAcZH7YkE9uGgHTSABaAhHQJZ5B4ptrKx1fZQoaAZHQE2GUu+RHPNoB0vVaAhHQJZ5SbQTmGN1fZQoaAZHQG7mUu14Pf9oB01QAWgIR0CWeWNLlFMJdX2UKGgGR0Bv+5+jM3ZPaAdNCwFoCEdAlnpHxri2lXV9lChoBkdAcbpK3NLUTmgHTSsBaAhHQJZ675VOsT51fZQoaAZHQHFZliF0xM5oB0vraAhHQJZ7JAzHjp91fZQoaAZHQG31qEWZZ0VoB00/AWgIR0CWe11s+FDfdX2UKGgGR0Bx+XrfLs8gaAdNAAFoCEdAln4AvpQk5nV9lChoBkdAbVSOSW7e22gHTRsBaAhHQJZ+UaKk2xZ1fZQoaAZHQHI3wiaAnUloB007AWgIR0CWfmvi97F9dX2UKGgGR0BwYs0tRNypaAdNNQFoCEdAln554wAU+XV9lChoBkdAbRQYMOPNmmgHTUUBaAhHQJaBoTEit7t1fZQoaAZHQG6k08eS0ShoB01IAWgIR0CWgfsPrfLtdX2UKGgGR0BychfLLZBcaAdNLgFoCEdAloUDg62fCnV9lChoBkdAbo+yvcJtzmgHTSQBaAhHQJaFk7KaG6B1fZQoaAZHQHKT2eQMhHNoB002AWgIR0CWhrMz/IbPdX2UKGgGR0BxDY1TBInSaAdNHQFoCEdAloa9svZh8nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6ebb7ca561d0675058ac600848a3b1b114875e91067b580ecf34686a0ec6f42
3
+ size 148060
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b5f2dbff250>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b5f2dbff2e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b5f2dbff370>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b5f2dbff400>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b5f2dbff490>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b5f2dbff520>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b5f2dbff5b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b5f2dbff640>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b5f2dbff6d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b5f2dbff760>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b5f2dbff7f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b5f2dbff880>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b5f2dbaba40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1703662691102009068,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAJTL2ccj68dtBevE3eID3ZoJ094UoAvgAAgD8AAIA/AGGXPfbcI7ppQ8E6j8/RNe9VmbpSrt65AAAAAAAAgD8AYC+6rmmqukVZ0DkL0Y+0y61cuo3t7rgAAIA/AACAP037a73VmiM+EQ9EPGId9701t469hnPuvAAAAAAAAAAAM5lWvMP9WLprXfG5pnPBtaxPnbvI0A45AACAPwAAgD+a/2s+nvqvP15GMj8HQeG+lwaNPq3gGT4AAAAAAAAAAIpker7Iw30/hJCpvrUUf74H55a+orCtvQAAAAAAAAAA5oW0PeEYh7pBWIG5QMp1tHmeRzt2gZY4AACAPwAAAADNtq+9RKH3PVdJjTx/7A6+DL+zuxuYnL0AAAAAAAAAAM2Yp7uhWQ0/IYENPlBIqb59B4g9Vr+vPAAAAAAAAAAAzdrjPM3esT855go/82J4vhdigbxObKk7AAAAAAAAAAAzCYS8/INAPta0FLwrvIC+YVrGPQz/lj0AAAAAAAAAAM0qATxXfFE8ta8QPfMVbb5vKBg9dqNYvQAAAAAAAAAAZjYOO4B0uD8zv2A9iRaXPmWaIbv2YEm8AAAAAAAAAADmftG9/nEEP3P1dj6hHJq+IyPFPejhvz0AAAAAAAAAAM1K2j2FS6u5uoXRu66HojeQRfy643QKtwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5XdX9zfaaMAWyUTVMBjAF0lEdAli16YE4ecXV9lChoBkdAchOGrS3LFGgHTUYBaAhHQJYuEfNiYsx1fZQoaAZHQE+D0ulGgBdoB00JAWgIR0CWLjaUiY9gdX2UKGgGR0BwOnZwn6VMaAdNFwFoCEdAli+jJQtSRHV9lChoBkdAb/fzH0btJGgHTUkBaAhHQJYv05jpcHJ1fZQoaAZHQG/Qzp5eJHloB00YAWgIR0CWL/hfjS5RdX2UKGgGR0BujqGYa5wwaAdNIQFoCEdAljE8vVVghXV9lChoBkdAcUIdH2AXmGgHTUsBaAhHQJYzpk6Lfk51fZQoaAZHQHC4fjKgZjxoB01OAWgIR0CWM8LowEhadX2UKGgGR0Bvm9zySV4YaAdNIgFoCEdAljQEpiI+GHV9lChoBkdAbw2XvYvnKWgHTR0BaAhHQJY0DtMPBi11fZQoaAZHQHIKGVRk3CNoB00iAWgIR0CWNOYU34sVdX2UKGgGR0Bw9b80k4WDaAdNUgFoCEdAljWBDXvphXV9lChoBkdAbSpP69CeE2gHTQUBaAhHQJY2X5zo2XN1fZQoaAZHQHBfMCcPOIJoB00hAWgIR0CWNpRMewLWdX2UKGgGR0BwRY3BHkLhaAdNOgFoCEdAljdrvPTodXV9lChoBkdAcMDvKlpGnWgHTT8BaAhHQJY5APd2xIJ1fZQoaAZHQHFq4zWPLgZoB006AWgIR0CWOQEJBw+/dX2UKGgGR0BvDiEYfnwHaAdNCwFoCEdAljkJtrKvFHV9lChoBkdAcnrGr0aqCGgHTRsBaAhHQJY5nhKlHjJ1fZQoaAZHQHBXKScLBsRoB00oAWgIR0CWObywOe8PdX2UKGgGR0BvSMBOpKjBaAdNPAFoCEdAljvT90ihWnV9lChoBkdAcBzvoePq92gHTQ4BaAhHQJY8qoLofSx1fZQoaAZHQHDVKDoQnQZoB00vAWgIR0CWPk9Aood/dX2UKGgGR0BscN4RmK64aAdNGwFoCEdAlj6FuaWonHV9lChoBkdAc0HFMZgogGgHTRABaAhHQJY+zDDTBqN1fZQoaAZHQHK5KW5Yoy9oB01DAWgIR0CWPtaDPGADdX2UKGgGR0BwSo8IRh+faAdNRQFoCEdAlj8p0W/JvHV9lChoBkdAbhJDpC8e0WgHTSIBaAhHQJZANaEBbOh1fZQoaAZHQHB44+r2g39oB00iAWgIR0CWQGU+s5n2dX2UKGgGR0Bx4KrKeTV2aAdNRwJoCEdAlkEqN6w+uHV9lChoBkdAclJVH4Glh2gHTQABaAhHQJZBj4sVclh1fZQoaAZHQHAC6v3ai9JoB01HAWgIR0CWQmi83++/dX2UKGgGR0Bx00UXYUWVaAdNHwFoCEdAlkKYsunMuHV9lChoBkdAby0csDnvD2gHTS8BaAhHQJZDD/+85CF1fZQoaAZHQHJW3j+717JoB00jAWgIR0CWQ3GpuMuOdX2UKGgGR0Bv15/EwWWQaAdNRAFoCEdAlkRPXoTwlXV9lChoBkdAccSwVTJhfGgHTQQBaAhHQJZEjt9hJAd1fZQoaAZHQHCpZn6Eal1oB00RAWgIR0CWRzQSi/O/dX2UKGgGR0BvcYr6LwWnaAdNGAFoCEdAlkgJgXuVo3V9lChoBkdAb6ztTkyULWgHTTMBaAhHQJZI18gIQe51fZQoaAZHQHFAHcclw99oB00yAWgIR0CWSSI68xsVdX2UKGgGR0BwkEpUgjhUaAdNKQFoCEdAlkksOoYNzHV9lChoBkdAb3tLZBcAzmgHTYgBaAhHQJZKPMxGlRB1fZQoaAZHQHDnUMG5c1RoB00xAWgIR0CWStXm/336dX2UKGgGR0By3H889wFUaAdNFAFoCEdAlkseLaVUuXV9lChoBkdAcJ888cMmW2gHTSMBaAhHQJZLL2FnIyV1fZQoaAZHQG22EB0ZFXtoB01GAWgIR0CWS1kvK2a2dX2UKGgGR0BQXEsz2vjfaAdL/2gIR0CWS3N9H+ZPdX2UKGgGR0ByYPVTaTOgaAdNMgFoCEdAlmL8fNiYs3V9lChoBkdAclEo8ZDRdGgHTQkBaAhHQJZjoI6bONZ1fZQoaAZHQHGj3/Pw/gRoB01iAWgIR0CWZaLCemNzdX2UKGgGR0Bw033sXzlLaAdL/2gIR0CWZjptJnQIdX2UKGgGR0Bt2rdvbXYlaAdNiQFoCEdAlmaYbbUPQXV9lChoBkdAcfFoP07KaGgHTVgBaAhHQJZmomdAgPp1fZQoaAZHQG90bMX7+DRoB00hAWgIR0CWZ+fseGO/dX2UKGgGR0Bxsut2cJ+laAdNEQFoCEdAlmgH/cWTHXV9lChoBkdAb8BovBacJGgHTQ0BaAhHQJZoJBMSK3x1fZQoaAZHQHHGoao/A0toB00hAWgIR0CWaNFYuCf6dX2UKGgGR0Ay8H1vl2eQaAdL1GgIR0CWafiqABkqdX2UKGgGR0Bumh/kNnXeaAdNFAFoCEdAlmn3lGPPs3V9lChoBkdAcIMHtF8XvmgHTTkBaAhHQJZqoVN5+ph1fZQoaAZHQHALwJb+tKZoB00eAWgIR0CWasi7TUiIdX2UKGgGR0BwY70Fr2xqaAdNJgFoCEdAlmrNdZ7ojnV9lChoBkdASa6aZx7zCmgHS99oCEdAlmr4XoC+13V9lChoBkdAcBVtSQ5my2gHTToBaAhHQJZrVfv4M4N1fZQoaAZHQHF9bPt2LYRoB01KAWgIR0CWa+ydnTRZdX2UKGgGR0Bx1uDRMN+caAdNEQFoCEdAlm3uSwGGEnV9lChoBkdAcrYmOU+s5mgHTR0BaAhHQJZvPAqNIbx1fZQoaAZHQFBObVBlcyFoB0v5aAhHQJZvvOUt7KJ1fZQoaAZHQHCCBkqc3ERoB00NAWgIR0CWcDKfnOjZdX2UKGgGR0BwI1wxWT5gaAdNQgFoCEdAlnCa19fCynV9lChoBkdAceXGcFyJbmgHTQ8BaAhHQJZxSFsYVIt1fZQoaAZHQHA4Sfg75mBoB015AWgIR0CWcjd8zAN5dX2UKGgGR0Bx//tY0VJuaAdL+mgIR0CWcqnXumaZdX2UKGgGR0BwvfQJHAh0aAdNGwFoCEdAlnLtcGC7LHV9lChoBkdAb/NeBxxT9GgHTQsBaAhHQJZzENlRP451fZQoaAZHQHIYkqpcX3xoB00yAWgIR0CWc6f1HvtudX2UKGgGR0BvSYlY2bXpaAdNFwFoCEdAlnRRqXWvsHV9lChoBkdAcG4E/jbSJGgHTTYBaAhHQJZ0mmR/3Fl1fZQoaAZHQHDz+iaiKzloB00JAWgIR0CWdKx2B8QadX2UKGgGR0By/OZG8VYZaAdNNQFoCEdAlnTKAJ9iMHV9lChoBkdAc08mbb1yvWgHS/poCEdAlnga4x1xKnV9lChoBkdAcZH7YkE9uGgHTSABaAhHQJZ5B4ptrKx1fZQoaAZHQE2GUu+RHPNoB0vVaAhHQJZ5SbQTmGN1fZQoaAZHQG7mUu14Pf9oB01QAWgIR0CWeWNLlFMJdX2UKGgGR0Bv+5+jM3ZPaAdNCwFoCEdAlnpHxri2lXV9lChoBkdAcbpK3NLUTmgHTSsBaAhHQJZ675VOsT51fZQoaAZHQHFZliF0xM5oB0vraAhHQJZ7JAzHjp91fZQoaAZHQG31qEWZZ0VoB00/AWgIR0CWe11s+FDfdX2UKGgGR0Bx+XrfLs8gaAdNAAFoCEdAln4AvpQk5nV9lChoBkdAbVSOSW7e22gHTRsBaAhHQJZ+UaKk2xZ1fZQoaAZHQHI3wiaAnUloB007AWgIR0CWfmvi97F9dX2UKGgGR0BwYs0tRNypaAdNNQFoCEdAln554wAU+XV9lChoBkdAbRQYMOPNmmgHTUUBaAhHQJaBoTEit7t1fZQoaAZHQG6k08eS0ShoB01IAWgIR0CWgfsPrfLtdX2UKGgGR0BychfLLZBcaAdNLgFoCEdAloUDg62fCnV9lChoBkdAbo+yvcJtzmgHTSQBaAhHQJaFk7KaG6B1fZQoaAZHQHKT2eQMhHNoB002AWgIR0CWhrMz/IbPdX2UKGgGR0BxDY1TBInSaAdNHQFoCEdAloa9svZh8nVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 5,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f73b9b4b8d41a449c93e824ffad22bc4e336cb0ada4d930547c9df09d7de1c1
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d91061040a48bff86f0927420086010e5ed033cca4676c4a88c3377d5b7355a7
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (186 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 265.6744326, "std_reward": 21.993530652969106, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-27T08:12:09.469971"}