AI_Avatar / demo.py
MohamedIFQ's picture
Upload 4 files
45ddb95 verified
import os
import subprocess
from os.path import join
from tqdm import tqdm
import numpy as np
import torch
from collections import OrderedDict
import librosa
from skimage.io import imread
import cv2
import scipy.io as sio
import argparse
import yaml
import albumentations as A
import albumentations.pytorch
from pathlib import Path
from options.test_audio2feature_options import TestOptions as FeatureOptions
from options.test_audio2headpose_options import TestOptions as HeadposeOptions
from options.test_feature2face_options import TestOptions as RenderOptions
from datasets import create_dataset
from models import create_model
from models.networks import APC_encoder
import util.util as util
from util.visualizer import Visualizer
from funcs import utils
from funcs import audio_funcs
import soundfile as sf
import warnings
warnings.filterwarnings("ignore")
def write_video_with_audio(audio_path, output_path, prefix='pred_'):
fps, fourcc = 60, cv2.VideoWriter_fourcc(*'DIVX')
video_tmp_path = join(save_root, 'tmp.avi')
out = cv2.VideoWriter(video_tmp_path, fourcc, fps, (Renderopt.loadSize, Renderopt.loadSize))
for j in tqdm(range(nframe), position=0, desc='writing video'):
img = cv2.imread(join(save_root, prefix + str(j+1) + '.jpg'))
out.write(img)
out.release()
cmd = 'ffmpeg -i "' + video_tmp_path + '" -i "' + audio_path + '" -codec copy -shortest "' + output_path + '"'
subprocess.call(cmd, shell=True)
os.remove(video_tmp_path) # remove the template video
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--id', default='May', help="person name, e.g. Obama1, Obama2, May, Nadella, McStay")
parser.add_argument('--driving_audio', default='./data/input/00083.wav', help="path to driving audio")
parser.add_argument('--save_intermediates', default=0, help="whether to save intermediate results")
parser.add_argument('--device', type=str, default='cpu', help='use cuda for GPU or use cpu for CPU')
############################### I/O Settings ##############################
# load config files
opt = parser.parse_args()
device = torch.device(opt.device)
with open(join('./config/', opt.id + '.yaml')) as f:
config = yaml.load(f, Loader=yaml.SafeLoader)
data_root = join('./data/', opt.id)
# create the results folder
audio_name = os.path.split(opt.driving_audio)[1][:-4]
save_root = join('./results/', opt.id, audio_name)
if not os.path.exists(save_root):
os.makedirs(save_root)
############################ Hyper Parameters #############################
h, w, sr, FPS = 512, 512, 16000, 60
mouth_indices = np.concatenate([np.arange(4, 11), np.arange(46, 64)])
eye_brow_indices = [27, 65, 28, 68, 29, 67, 30, 66, 31, 72, 32, 69, 33, 70, 34, 71]
eye_brow_indices = np.array(eye_brow_indices, np.int32)
############################ Pre-defined Data #############################
mean_pts3d = np.load(join(data_root, 'mean_pts3d.npy'))
fit_data = np.load(config['dataset_params']['fit_data_path'])
pts3d = np.load(config['dataset_params']['pts3d_path']) - mean_pts3d
trans = fit_data['trans'][:,:,0].astype(np.float32)
mean_translation = trans.mean(axis=0)
candidate_eye_brow = pts3d[10:, eye_brow_indices]
std_mean_pts3d = np.load(config['dataset_params']['pts3d_path']).mean(axis=0)
# candidates images
img_candidates = []
for j in range(4):
output = imread(join(data_root, 'candidates', f'normalized_full_{j}.jpg'))
output = A.pytorch.transforms.ToTensor(normalize={'mean':(0.5,0.5,0.5),
'std':(0.5,0.5,0.5)})(image=output)['image']
img_candidates.append(output)
img_candidates = torch.cat(img_candidates).unsqueeze(0).to(device)
# shoulders
shoulders = np.load(join(data_root, 'normalized_shoulder_points.npy'))
shoulder3D = np.load(join(data_root, 'shoulder_points3D.npy'))[1]
ref_trans = trans[1]
# camera matrix, we always use training set intrinsic parameters.
camera = utils.camera()
camera_intrinsic = np.load(join(data_root, 'camera_intrinsic.npy')).astype(np.float32)
APC_feat_database = np.load(join(data_root, 'APC_feature_base.npy'))
# load reconstruction data
scale = sio.loadmat(join(data_root, 'id_scale.mat'))['scale'][0,0]
# Audio2Mel_torch = audio_funcs.Audio2Mel(n_fft=512, hop_length=int(16000/120), win_length=int(16000/60), sampling_rate=16000,
# n_mel_channels=80, mel_fmin=90, mel_fmax=7600.0).to(device)
########################### Experiment Settings ###########################
#### user config
use_LLE = config['model_params']['APC']['use_LLE']
Knear = config['model_params']['APC']['Knear']
LLE_percent = config['model_params']['APC']['LLE_percent']
headpose_sigma = config['model_params']['Headpose']['sigma']
Feat_smooth_sigma = config['model_params']['Audio2Mouth']['smooth']
Head_smooth_sigma = config['model_params']['Headpose']['smooth']
Feat_center_smooth_sigma, Head_center_smooth_sigma = 0, 0
AMP_method = config['model_params']['Audio2Mouth']['AMP'][0]
Feat_AMPs = config['model_params']['Audio2Mouth']['AMP'][1:]
rot_AMP, trans_AMP = config['model_params']['Headpose']['AMP']
shoulder_AMP = config['model_params']['Headpose']['shoulder_AMP']
save_feature_maps = config['model_params']['Image2Image']['save_input']
#### common settings
Featopt = FeatureOptions().parse()
Headopt = HeadposeOptions().parse()
Renderopt = RenderOptions().parse()
Featopt.load_epoch = config['model_params']['Audio2Mouth']['ckp_path']
Headopt.load_epoch = config['model_params']['Headpose']['ckp_path']
Renderopt.dataroot = config['dataset_params']['root']
Renderopt.load_epoch = config['model_params']['Image2Image']['ckp_path']
Renderopt.size = config['model_params']['Image2Image']['size']
## GPU or CPU
if opt.device == 'cpu':
Featopt.gpu_ids = Headopt.gpu_ids = Renderopt.gpu_ids = []
############################# Load Models #################################
print('---------- Loading Model: APC-------------')
APC_model = APC_encoder(config['model_params']['APC']['mel_dim'],
config['model_params']['APC']['hidden_size'],
config['model_params']['APC']['num_layers'],
config['model_params']['APC']['residual'])
APC_model.load_state_dict(torch.load(config['model_params']['APC']['ckp_path'],map_location=device), strict=False)
if opt.device == 'cuda':
APC_model.cuda()
APC_model.eval()
print('---------- Loading Model: {} -------------'.format(Featopt.task))
Audio2Feature = create_model(Featopt)
Audio2Feature.setup(Featopt)
Audio2Feature.eval()
print('---------- Loading Model: {} -------------'.format(Headopt.task))
Audio2Headpose = create_model(Headopt)
Audio2Headpose.setup(Headopt)
Audio2Headpose.eval()
if Headopt.feature_decoder == 'WaveNet':
if opt.device == 'cuda':
Headopt.A2H_receptive_field = Audio2Headpose.Audio2Headpose.module.WaveNet.receptive_field
else:
Headopt.A2H_receptive_field = Audio2Headpose.Audio2Headpose.WaveNet.receptive_field
print('---------- Loading Model: {} -------------'.format(Renderopt.task))
facedataset = create_dataset(Renderopt)
Feature2Face = create_model(Renderopt)
Feature2Face.setup(Renderopt)
Feature2Face.eval()
visualizer = Visualizer(Renderopt)
############################## Inference ##################################
print('Processing audio: {} ...'.format(audio_name))
# read audio
audio, _ = librosa.load(opt.driving_audio, sr=sr)
total_frames = np.int32(audio.shape[0] / sr * FPS)
#### 1. compute APC features
print('1. Computing APC features...')
mel80 = utils.compute_mel_one_sequence(audio, device=opt.device)
mel_nframe = mel80.shape[0]
with torch.no_grad():
length = torch.Tensor([mel_nframe])
mel80_torch = torch.from_numpy(mel80.astype(np.float32)).to(device).unsqueeze(0)
hidden_reps = APC_model.forward(mel80_torch, length)[0] # [mel_nframe, 512]
hidden_reps = hidden_reps.cpu().numpy()
audio_feats = hidden_reps
#### 2. manifold projection
if use_LLE:
print('2. Manifold projection...')
ind = utils.KNN_with_torch(audio_feats, APC_feat_database, K=Knear)
weights, feat_fuse = utils.compute_LLE_projection_all_frame(audio_feats, APC_feat_database, ind, audio_feats.shape[0])
audio_feats = audio_feats * (1-LLE_percent) + feat_fuse * LLE_percent
#### 3. Audio2Mouth
print('3. Audio2Mouth inference...')
pred_Feat = Audio2Feature.generate_sequences(audio_feats, sr, FPS, fill_zero=True, opt=Featopt)
#### 4. Audio2Headpose
print('4. Headpose inference...')
# set history headposes as zero
pre_headpose = np.zeros(Headopt.A2H_wavenet_input_channels, np.float32)
pred_Head = Audio2Headpose.generate_sequences(audio_feats, pre_headpose, fill_zero=True, sigma_scale=0.3, opt=Headopt)
#### 5. Post-Processing
print('5. Post-processing...')
nframe = min(pred_Feat.shape[0], pred_Head.shape[0])
pred_pts3d = np.zeros([nframe, 73, 3])
pred_pts3d[:, mouth_indices] = pred_Feat.reshape(-1, 25, 3)[:nframe]
## mouth
pred_pts3d = utils.landmark_smooth_3d(pred_pts3d, Feat_smooth_sigma, area='only_mouth')
pred_pts3d = utils.mouth_pts_AMP(pred_pts3d, True, AMP_method, Feat_AMPs)
pred_pts3d = pred_pts3d + mean_pts3d
pred_pts3d = utils.solve_intersect_mouth(pred_pts3d) # solve intersect lips if exist
## headpose
pred_Head[:, 0:3] *= rot_AMP
pred_Head[:, 3:6] *= trans_AMP
pred_headpose = utils.headpose_smooth(pred_Head[:,:6], Head_smooth_sigma).astype(np.float32)
pred_headpose[:, 3:] += mean_translation
pred_headpose[:, 0] += 180
## compute projected landmarks
pred_landmarks = np.zeros([nframe, 73, 2], dtype=np.float32)
final_pts3d = np.zeros([nframe, 73, 3], dtype=np.float32)
final_pts3d[:] = std_mean_pts3d.copy()
final_pts3d[:, 46:64] = pred_pts3d[:nframe, 46:64]
for k in tqdm(range(nframe)):
ind = k % candidate_eye_brow.shape[0]
final_pts3d[k, eye_brow_indices] = candidate_eye_brow[ind] + mean_pts3d[eye_brow_indices]
pred_landmarks[k], _, _ = utils.project_landmarks(camera_intrinsic, camera.relative_rotation,
camera.relative_translation, scale,
pred_headpose[k], final_pts3d[k])
## Upper Body Motion
pred_shoulders = np.zeros([nframe, 18, 2], dtype=np.float32)
pred_shoulders3D = np.zeros([nframe, 18, 3], dtype=np.float32)
for k in range(nframe):
diff_trans = pred_headpose[k][3:] - ref_trans
pred_shoulders3D[k] = shoulder3D + diff_trans * shoulder_AMP
# project
project = camera_intrinsic.dot(pred_shoulders3D[k].T)
project[:2, :] /= project[2, :] # divide z
pred_shoulders[k] = project[:2, :].T
#### 6. Image2Image translation & Save resuls
print('6. Image2Image translation & Saving results...')
for ind in tqdm(range(0, nframe), desc='Image2Image translation inference'):
# feature_map: [input_nc, h, w]
current_pred_feature_map = facedataset.dataset.get_data_test_mode(pred_landmarks[ind],
pred_shoulders[ind],
facedataset.dataset.image_pad)
input_feature_maps = current_pred_feature_map.unsqueeze(0).to(device)
pred_fake = Feature2Face.inference(input_feature_maps, img_candidates)
# save results
visual_list = [('pred', util.tensor2im(pred_fake[0]))]
if save_feature_maps:
visual_list += [('input', np.uint8(current_pred_feature_map[0].cpu().numpy() * 255))]
visuals = OrderedDict(visual_list)
visualizer.save_images(save_root, visuals, str(ind+1))
## make videos
# generate corresponding audio, reused for all results
tmp_audio_path = join(save_root, 'tmp.wav')
tmp_audio_clip = audio[ : np.int32(nframe * sr / FPS)]
sf.write(tmp_audio_path, tmp_audio_clip, sr)
# librosa.output.write_wav(tmp_audio_path, tmp_audio_clip, sr)
final_path = join(save_root, audio_name + '.avi')
write_video_with_audio(tmp_audio_path, final_path, 'pred_')
feature_maps_path = join(save_root, audio_name + '_feature_maps.avi')
write_video_with_audio(tmp_audio_path, feature_maps_path, 'input_')
if os.path.exists(tmp_audio_path):
os.remove(tmp_audio_path)
if not opt.save_intermediates:
_img_paths = list(map(lambda x:str(x), list(Path(save_root).glob('*.jpg'))))
for i in tqdm(range(len(_img_paths)), desc='deleting intermediate images'):
os.remove(_img_paths[i])
print('Finish!')