|
import os
|
|
import subprocess
|
|
from os.path import join
|
|
from tqdm import tqdm
|
|
import numpy as np
|
|
import torch
|
|
from collections import OrderedDict
|
|
import librosa
|
|
from skimage.io import imread
|
|
import cv2
|
|
import scipy.io as sio
|
|
import argparse
|
|
import yaml
|
|
import albumentations as A
|
|
import albumentations.pytorch
|
|
from pathlib import Path
|
|
|
|
from options.test_audio2feature_options import TestOptions as FeatureOptions
|
|
from options.test_audio2headpose_options import TestOptions as HeadposeOptions
|
|
from options.test_feature2face_options import TestOptions as RenderOptions
|
|
|
|
from datasets import create_dataset
|
|
from models import create_model
|
|
from models.networks import APC_encoder
|
|
import util.util as util
|
|
from util.visualizer import Visualizer
|
|
from funcs import utils
|
|
from funcs import audio_funcs
|
|
import soundfile as sf
|
|
import warnings
|
|
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
def write_video_with_audio(audio_path, output_path, prefix='pred_'):
|
|
fps, fourcc = 60, cv2.VideoWriter_fourcc(*'DIVX')
|
|
video_tmp_path = join(save_root, 'tmp.avi')
|
|
out = cv2.VideoWriter(video_tmp_path, fourcc, fps, (Renderopt.loadSize, Renderopt.loadSize))
|
|
for j in tqdm(range(nframe), position=0, desc='writing video'):
|
|
img = cv2.imread(join(save_root, prefix + str(j+1) + '.jpg'))
|
|
out.write(img)
|
|
out.release()
|
|
cmd = 'ffmpeg -i "' + video_tmp_path + '" -i "' + audio_path + '" -codec copy -shortest "' + output_path + '"'
|
|
subprocess.call(cmd, shell=True)
|
|
os.remove(video_tmp_path)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--id', default='May', help="person name, e.g. Obama1, Obama2, May, Nadella, McStay")
|
|
parser.add_argument('--driving_audio', default='./data/input/00083.wav', help="path to driving audio")
|
|
parser.add_argument('--save_intermediates', default=0, help="whether to save intermediate results")
|
|
parser.add_argument('--device', type=str, default='cpu', help='use cuda for GPU or use cpu for CPU')
|
|
|
|
|
|
|
|
|
|
opt = parser.parse_args()
|
|
device = torch.device(opt.device)
|
|
with open(join('./config/', opt.id + '.yaml')) as f:
|
|
config = yaml.load(f, Loader=yaml.SafeLoader)
|
|
data_root = join('./data/', opt.id)
|
|
|
|
audio_name = os.path.split(opt.driving_audio)[1][:-4]
|
|
save_root = join('./results/', opt.id, audio_name)
|
|
if not os.path.exists(save_root):
|
|
os.makedirs(save_root)
|
|
|
|
|
|
|
|
|
|
h, w, sr, FPS = 512, 512, 16000, 60
|
|
mouth_indices = np.concatenate([np.arange(4, 11), np.arange(46, 64)])
|
|
eye_brow_indices = [27, 65, 28, 68, 29, 67, 30, 66, 31, 72, 32, 69, 33, 70, 34, 71]
|
|
eye_brow_indices = np.array(eye_brow_indices, np.int32)
|
|
|
|
|
|
|
|
|
|
mean_pts3d = np.load(join(data_root, 'mean_pts3d.npy'))
|
|
fit_data = np.load(config['dataset_params']['fit_data_path'])
|
|
pts3d = np.load(config['dataset_params']['pts3d_path']) - mean_pts3d
|
|
trans = fit_data['trans'][:,:,0].astype(np.float32)
|
|
mean_translation = trans.mean(axis=0)
|
|
candidate_eye_brow = pts3d[10:, eye_brow_indices]
|
|
std_mean_pts3d = np.load(config['dataset_params']['pts3d_path']).mean(axis=0)
|
|
|
|
img_candidates = []
|
|
for j in range(4):
|
|
output = imread(join(data_root, 'candidates', f'normalized_full_{j}.jpg'))
|
|
output = A.pytorch.transforms.ToTensor(normalize={'mean':(0.5,0.5,0.5),
|
|
'std':(0.5,0.5,0.5)})(image=output)['image']
|
|
img_candidates.append(output)
|
|
img_candidates = torch.cat(img_candidates).unsqueeze(0).to(device)
|
|
|
|
|
|
shoulders = np.load(join(data_root, 'normalized_shoulder_points.npy'))
|
|
shoulder3D = np.load(join(data_root, 'shoulder_points3D.npy'))[1]
|
|
ref_trans = trans[1]
|
|
|
|
|
|
camera = utils.camera()
|
|
camera_intrinsic = np.load(join(data_root, 'camera_intrinsic.npy')).astype(np.float32)
|
|
APC_feat_database = np.load(join(data_root, 'APC_feature_base.npy'))
|
|
|
|
|
|
scale = sio.loadmat(join(data_root, 'id_scale.mat'))['scale'][0,0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
use_LLE = config['model_params']['APC']['use_LLE']
|
|
Knear = config['model_params']['APC']['Knear']
|
|
LLE_percent = config['model_params']['APC']['LLE_percent']
|
|
headpose_sigma = config['model_params']['Headpose']['sigma']
|
|
Feat_smooth_sigma = config['model_params']['Audio2Mouth']['smooth']
|
|
Head_smooth_sigma = config['model_params']['Headpose']['smooth']
|
|
Feat_center_smooth_sigma, Head_center_smooth_sigma = 0, 0
|
|
AMP_method = config['model_params']['Audio2Mouth']['AMP'][0]
|
|
Feat_AMPs = config['model_params']['Audio2Mouth']['AMP'][1:]
|
|
rot_AMP, trans_AMP = config['model_params']['Headpose']['AMP']
|
|
shoulder_AMP = config['model_params']['Headpose']['shoulder_AMP']
|
|
save_feature_maps = config['model_params']['Image2Image']['save_input']
|
|
|
|
|
|
Featopt = FeatureOptions().parse()
|
|
Headopt = HeadposeOptions().parse()
|
|
Renderopt = RenderOptions().parse()
|
|
Featopt.load_epoch = config['model_params']['Audio2Mouth']['ckp_path']
|
|
Headopt.load_epoch = config['model_params']['Headpose']['ckp_path']
|
|
Renderopt.dataroot = config['dataset_params']['root']
|
|
Renderopt.load_epoch = config['model_params']['Image2Image']['ckp_path']
|
|
Renderopt.size = config['model_params']['Image2Image']['size']
|
|
|
|
if opt.device == 'cpu':
|
|
Featopt.gpu_ids = Headopt.gpu_ids = Renderopt.gpu_ids = []
|
|
|
|
|
|
|
|
|
|
print('---------- Loading Model: APC-------------')
|
|
APC_model = APC_encoder(config['model_params']['APC']['mel_dim'],
|
|
config['model_params']['APC']['hidden_size'],
|
|
config['model_params']['APC']['num_layers'],
|
|
config['model_params']['APC']['residual'])
|
|
APC_model.load_state_dict(torch.load(config['model_params']['APC']['ckp_path'],map_location=device), strict=False)
|
|
if opt.device == 'cuda':
|
|
APC_model.cuda()
|
|
APC_model.eval()
|
|
print('---------- Loading Model: {} -------------'.format(Featopt.task))
|
|
Audio2Feature = create_model(Featopt)
|
|
Audio2Feature.setup(Featopt)
|
|
Audio2Feature.eval()
|
|
print('---------- Loading Model: {} -------------'.format(Headopt.task))
|
|
Audio2Headpose = create_model(Headopt)
|
|
Audio2Headpose.setup(Headopt)
|
|
Audio2Headpose.eval()
|
|
if Headopt.feature_decoder == 'WaveNet':
|
|
if opt.device == 'cuda':
|
|
Headopt.A2H_receptive_field = Audio2Headpose.Audio2Headpose.module.WaveNet.receptive_field
|
|
else:
|
|
Headopt.A2H_receptive_field = Audio2Headpose.Audio2Headpose.WaveNet.receptive_field
|
|
print('---------- Loading Model: {} -------------'.format(Renderopt.task))
|
|
facedataset = create_dataset(Renderopt)
|
|
Feature2Face = create_model(Renderopt)
|
|
Feature2Face.setup(Renderopt)
|
|
Feature2Face.eval()
|
|
visualizer = Visualizer(Renderopt)
|
|
|
|
|
|
|
|
|
|
print('Processing audio: {} ...'.format(audio_name))
|
|
|
|
audio, _ = librosa.load(opt.driving_audio, sr=sr)
|
|
total_frames = np.int32(audio.shape[0] / sr * FPS)
|
|
|
|
|
|
|
|
print('1. Computing APC features...')
|
|
mel80 = utils.compute_mel_one_sequence(audio, device=opt.device)
|
|
mel_nframe = mel80.shape[0]
|
|
with torch.no_grad():
|
|
length = torch.Tensor([mel_nframe])
|
|
mel80_torch = torch.from_numpy(mel80.astype(np.float32)).to(device).unsqueeze(0)
|
|
hidden_reps = APC_model.forward(mel80_torch, length)[0]
|
|
hidden_reps = hidden_reps.cpu().numpy()
|
|
audio_feats = hidden_reps
|
|
|
|
|
|
|
|
if use_LLE:
|
|
print('2. Manifold projection...')
|
|
ind = utils.KNN_with_torch(audio_feats, APC_feat_database, K=Knear)
|
|
weights, feat_fuse = utils.compute_LLE_projection_all_frame(audio_feats, APC_feat_database, ind, audio_feats.shape[0])
|
|
audio_feats = audio_feats * (1-LLE_percent) + feat_fuse * LLE_percent
|
|
|
|
|
|
|
|
print('3. Audio2Mouth inference...')
|
|
pred_Feat = Audio2Feature.generate_sequences(audio_feats, sr, FPS, fill_zero=True, opt=Featopt)
|
|
|
|
|
|
|
|
print('4. Headpose inference...')
|
|
|
|
pre_headpose = np.zeros(Headopt.A2H_wavenet_input_channels, np.float32)
|
|
pred_Head = Audio2Headpose.generate_sequences(audio_feats, pre_headpose, fill_zero=True, sigma_scale=0.3, opt=Headopt)
|
|
|
|
|
|
|
|
print('5. Post-processing...')
|
|
nframe = min(pred_Feat.shape[0], pred_Head.shape[0])
|
|
pred_pts3d = np.zeros([nframe, 73, 3])
|
|
pred_pts3d[:, mouth_indices] = pred_Feat.reshape(-1, 25, 3)[:nframe]
|
|
|
|
|
|
pred_pts3d = utils.landmark_smooth_3d(pred_pts3d, Feat_smooth_sigma, area='only_mouth')
|
|
pred_pts3d = utils.mouth_pts_AMP(pred_pts3d, True, AMP_method, Feat_AMPs)
|
|
pred_pts3d = pred_pts3d + mean_pts3d
|
|
pred_pts3d = utils.solve_intersect_mouth(pred_pts3d)
|
|
|
|
|
|
pred_Head[:, 0:3] *= rot_AMP
|
|
pred_Head[:, 3:6] *= trans_AMP
|
|
pred_headpose = utils.headpose_smooth(pred_Head[:,:6], Head_smooth_sigma).astype(np.float32)
|
|
pred_headpose[:, 3:] += mean_translation
|
|
pred_headpose[:, 0] += 180
|
|
|
|
|
|
pred_landmarks = np.zeros([nframe, 73, 2], dtype=np.float32)
|
|
final_pts3d = np.zeros([nframe, 73, 3], dtype=np.float32)
|
|
final_pts3d[:] = std_mean_pts3d.copy()
|
|
final_pts3d[:, 46:64] = pred_pts3d[:nframe, 46:64]
|
|
for k in tqdm(range(nframe)):
|
|
ind = k % candidate_eye_brow.shape[0]
|
|
final_pts3d[k, eye_brow_indices] = candidate_eye_brow[ind] + mean_pts3d[eye_brow_indices]
|
|
pred_landmarks[k], _, _ = utils.project_landmarks(camera_intrinsic, camera.relative_rotation,
|
|
camera.relative_translation, scale,
|
|
pred_headpose[k], final_pts3d[k])
|
|
|
|
|
|
pred_shoulders = np.zeros([nframe, 18, 2], dtype=np.float32)
|
|
pred_shoulders3D = np.zeros([nframe, 18, 3], dtype=np.float32)
|
|
for k in range(nframe):
|
|
diff_trans = pred_headpose[k][3:] - ref_trans
|
|
pred_shoulders3D[k] = shoulder3D + diff_trans * shoulder_AMP
|
|
|
|
project = camera_intrinsic.dot(pred_shoulders3D[k].T)
|
|
project[:2, :] /= project[2, :]
|
|
pred_shoulders[k] = project[:2, :].T
|
|
|
|
|
|
|
|
print('6. Image2Image translation & Saving results...')
|
|
for ind in tqdm(range(0, nframe), desc='Image2Image translation inference'):
|
|
|
|
current_pred_feature_map = facedataset.dataset.get_data_test_mode(pred_landmarks[ind],
|
|
pred_shoulders[ind],
|
|
facedataset.dataset.image_pad)
|
|
input_feature_maps = current_pred_feature_map.unsqueeze(0).to(device)
|
|
pred_fake = Feature2Face.inference(input_feature_maps, img_candidates)
|
|
|
|
visual_list = [('pred', util.tensor2im(pred_fake[0]))]
|
|
if save_feature_maps:
|
|
visual_list += [('input', np.uint8(current_pred_feature_map[0].cpu().numpy() * 255))]
|
|
visuals = OrderedDict(visual_list)
|
|
visualizer.save_images(save_root, visuals, str(ind+1))
|
|
|
|
|
|
|
|
|
|
tmp_audio_path = join(save_root, 'tmp.wav')
|
|
tmp_audio_clip = audio[ : np.int32(nframe * sr / FPS)]
|
|
sf.write(tmp_audio_path, tmp_audio_clip, sr)
|
|
|
|
|
|
|
|
final_path = join(save_root, audio_name + '.avi')
|
|
write_video_with_audio(tmp_audio_path, final_path, 'pred_')
|
|
feature_maps_path = join(save_root, audio_name + '_feature_maps.avi')
|
|
write_video_with_audio(tmp_audio_path, feature_maps_path, 'input_')
|
|
|
|
if os.path.exists(tmp_audio_path):
|
|
os.remove(tmp_audio_path)
|
|
if not opt.save_intermediates:
|
|
_img_paths = list(map(lambda x:str(x), list(Path(save_root).glob('*.jpg'))))
|
|
for i in tqdm(range(len(_img_paths)), desc='deleting intermediate images'):
|
|
os.remove(_img_paths[i])
|
|
|
|
|
|
print('Finish!')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|