MohamedIFQ commited on
Commit
0d5f401
·
verified ·
1 Parent(s): 740bf29

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -16
README.md CHANGED
@@ -1,28 +1,31 @@
1
  ---
2
- license: mit
3
- ---
4
- ---
5
  tags:
 
 
 
6
  - text-generation
 
7
  ---
8
 
9
- # Model Name
10
-
11
- This is a fine-tuned model for text generation.
12
 
13
- ## Usage
14
 
15
- ```python
16
- from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
17
 
18
- model_name = "MohamedIFQ/sysmlAI"
19
- tokenizer = AutoTokenizer.from_pretrained(model_name)
20
- model = AutoModelForCausalLM.from_pretrained(model_name)
 
21
 
22
- nlp = pipeline("text-generation", model=model, tokenizer=tokenizer)
23
 
24
- prompt = "Your prompt here"
25
- result = nlp(prompt)
26
- print(result)
 
 
27
 
 
28
 
 
 
1
  ---
 
 
 
2
  tags:
3
+ - code-generation
4
+ - plantuml
5
+ - text-to-code
6
  - text-generation
7
+ library_name: transformers
8
  ---
9
 
10
+ # SysML AI: PlantUML Code Generator
 
 
11
 
12
+ This model is a fine-tuned version of [**Base Model Name**] (e.g., GPT-2, CodeGen, etc.) that generates PlantUML code from natural language descriptions. It can be used to create sequence diagrams, class diagrams, and other PlantUML diagrams, making it a valuable tool for software engineers, system architects, and anyone who needs to visualize system designs.
13
 
14
+ ## Model Description
 
15
 
16
+ - **Architecture:** [**Describe the base model architecture, e.g., Transformer with X layers, Y attention heads**]
17
+ - **Fine-tuning Dataset:** [**Specify the dataset used for fine-tuning, including the number of examples, source, and data format**]
18
+ - **Training Objective:** [**Describe the training objective, e.g., minimizing cross-entropy loss between predicted and actual PlantUML tokens**]
19
+ - **Evaluation Metrics:** [**List the metrics used to evaluate the model, e.g., BLEU score, ROUGE score, or other relevant code generation metrics**]
20
 
21
+ ## Intended Uses & Limitations
22
 
23
+ - **Intended Use:** Generating PlantUML code from natural language descriptions to aid in system design and visualization.
24
+ - **Limitations:**
25
+ - May not handle complex or ambiguous descriptions accurately.
26
+ - May require some manual editing of the generated code for optimal results.
27
+ - Performance may vary depending on the complexity of the desired diagram.
28
 
29
+ ## How to Use
30
 
31
+ **Installation:**