File size: 7,963 Bytes
bc59155 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# Copyright (C) 2020-2022 Intel Corporation
# Copyright (C) 2022 CVAT.ai Corporation
#
# SPDX-License-Identifier: MIT
import os
import cv2
import numpy as np
from model_loader import ModelLoader
from shared import to_cvat_mask
class PixelLinkDecoder():
def __init__(self, pixel_threshold, link_threshold):
four_neighbours = False
if four_neighbours:
self._get_neighbours = self._get_neighbours_4
else:
self._get_neighbours = self._get_neighbours_8
self.pixel_conf_threshold = pixel_threshold
self.link_conf_threshold = link_threshold
def decode(self, height, width, detections: dict):
self.image_height = height
self.image_width = width
self.pixel_scores = self._set_pixel_scores(detections['model/segm_logits/add'])
self.link_scores = self._set_link_scores(detections['model/link_logits_/add'])
self.pixel_mask = self.pixel_scores >= self.pixel_conf_threshold
self.link_mask = self.link_scores >= self.link_conf_threshold
self.points = list(zip(*np.where(self.pixel_mask)))
self.h, self.w = np.shape(self.pixel_mask)
self.group_mask = dict.fromkeys(self.points, -1)
self.bboxes = None
self.root_map = None
self.mask = None
self._decode()
def _softmax(self, x, axis=None):
return np.exp(x - self._logsumexp(x, axis=axis, keepdims=True))
# pylint: disable=no-self-use
def _logsumexp(self, a, axis=None, b=None, keepdims=False, return_sign=False):
if b is not None:
a, b = np.broadcast_arrays(a, b)
if np.any(b == 0):
a = a + 0. # promote to at least float
a[b == 0] = -np.inf
a_max = np.amax(a, axis=axis, keepdims=True)
if a_max.ndim > 0:
a_max[~np.isfinite(a_max)] = 0
elif not np.isfinite(a_max):
a_max = 0
if b is not None:
b = np.asarray(b)
tmp = b * np.exp(a - a_max)
else:
tmp = np.exp(a - a_max)
# suppress warnings about log of zero
with np.errstate(divide='ignore'):
s = np.sum(tmp, axis=axis, keepdims=keepdims)
if return_sign:
sgn = np.sign(s)
s *= sgn # /= makes more sense but we need zero -> zero
out = np.log(s)
if not keepdims:
a_max = np.squeeze(a_max, axis=axis)
out += a_max
if return_sign:
return out, sgn
else:
return out
def _set_pixel_scores(self, pixel_scores):
"get softmaxed properly shaped pixel scores"
tmp = np.transpose(pixel_scores, (0, 2, 3, 1))
return self._softmax(tmp, axis=-1)[0, :, :, 1]
def _set_link_scores(self, link_scores):
"get softmaxed properly shaped links scores"
tmp = np.transpose(link_scores, (0, 2, 3, 1))
tmp_reshaped = tmp.reshape(tmp.shape[:-1] + (8, 2))
return self._softmax(tmp_reshaped, axis=-1)[0, :, :, :, 1]
def _find_root(self, point):
root = point
update_parent = False
tmp = self.group_mask[root]
while tmp is not -1:
root = tmp
tmp = self.group_mask[root]
update_parent = True
if update_parent:
self.group_mask[point] = root
return root
def _join(self, p1, p2):
root1 = self._find_root(p1)
root2 = self._find_root(p2)
if root1 != root2:
self.group_mask[root2] = root1
def _get_index(self, root):
if root not in self.root_map:
self.root_map[root] = len(self.root_map) + 1
return self.root_map[root]
def _get_all(self):
self.root_map = {}
self.mask = np.zeros_like(self.pixel_mask, dtype=np.int32)
for point in self.points:
point_root = self._find_root(point)
bbox_idx = self._get_index(point_root)
self.mask[point] = bbox_idx
def _get_neighbours_8(self, x, y):
w, h = self.w, self.h
tmp = [(0, x - 1, y - 1), (1, x, y - 1),
(2, x + 1, y - 1), (3, x - 1, y),
(4, x + 1, y), (5, x - 1, y + 1),
(6, x, y + 1), (7, x + 1, y + 1)]
return [i for i in tmp if i[1] >= 0 and i[1] < w and i[2] >= 0 and i[2] < h]
def _get_neighbours_4(self, x, y):
w, h = self.w, self.h
tmp = [(1, x, y - 1),
(3, x - 1, y),
(4, x + 1, y),
(6, x, y + 1)]
return [i for i in tmp if i[1] >= 0 and i[1] < w and i[2] >= 0 and i[2] < h]
def _mask_to_bboxes(self, min_area=300, min_height=10):
self.bboxes = []
max_bbox_idx = self.mask.max()
mask_tmp = cv2.resize(self.mask, (self.image_width, self.image_height), interpolation=cv2.INTER_NEAREST)
for bbox_idx in range(1, max_bbox_idx + 1):
bbox_mask = mask_tmp == bbox_idx
cnts, _ = cv2.findContours(bbox_mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if len(cnts) == 0:
continue
cnt = cnts[0]
rect, w, h = self._min_area_rect(cnt)
if min(w, h) < min_height:
continue
if w * h < min_area:
continue
self.bboxes.append(self._order_points(rect))
# pylint: disable=no-self-use
def _min_area_rect(self, cnt):
rect = cv2.minAreaRect(cnt)
w, h = rect[1]
box = cv2.boxPoints(rect)
box = np.int0(box)
return box, w, h
# pylint: disable=no-self-use
def _order_points(self, rect):
""" (x, y)
Order: TL, TR, BR, BL
"""
tmp = np.zeros_like(rect)
sums = rect.sum(axis=1)
tmp[0] = rect[np.argmin(sums)]
tmp[2] = rect[np.argmax(sums)]
diff = np.diff(rect, axis=1)
tmp[1] = rect[np.argmin(diff)]
tmp[3] = rect[np.argmax(diff)]
return tmp
def _decode(self):
for point in self.points:
y, x = point
neighbours = self._get_neighbours(x, y)
for n_idx, nx, ny in neighbours:
link_value = self.link_mask[y, x, n_idx]
pixel_cls = self.pixel_mask[ny, nx]
if link_value and pixel_cls:
self._join(point, (ny, nx))
self._get_all()
self._mask_to_bboxes()
class ModelHandler:
def __init__(self, labels):
base_dir = os.path.abspath(os.environ.get("MODEL_PATH",
"/opt/nuclio/open_model_zoo/intel/text-detection-0004/FP32"))
model_xml = os.path.join(base_dir, "text-detection-0004.xml")
model_bin = os.path.join(base_dir, "text-detection-0004.bin")
self.model = ModelLoader(model_xml, model_bin)
self.labels = labels
def infer(self, image, pixel_threshold, link_threshold):
output_layer = self.model.infer(image)
results = []
obj_class = 1
pcd = PixelLinkDecoder(pixel_threshold, link_threshold)
pcd.decode(image.height, image.width, output_layer)
for box in pcd.bboxes:
mask = pcd.pixel_mask
mask = np.array(mask, dtype=np.uint8)
mask = cv2.resize(mask, dsize=(image.width, image.height), interpolation=cv2.INTER_CUBIC)
cv2.normalize(mask, mask, 0, 255, cv2.NORM_MINMAX)
box = box.ravel().tolist()
x_min = min(box[::2])
x_max = max(box[::2])
y_min = min(box[1::2])
y_max = max(box[1::2])
cvat_mask = to_cvat_mask((x_min, y_min, x_max, y_max), mask)
results.append({
"confidence": None,
"label": self.labels.get(obj_class, "unknown"),
"points": box,
"mask": cvat_mask,
"type": "mask",
})
return results
|