File size: 7,963 Bytes
bc59155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (C) 2020-2022 Intel Corporation
# Copyright (C) 2022 CVAT.ai Corporation
#
# SPDX-License-Identifier: MIT

import os
import cv2
import numpy as np
from model_loader import ModelLoader
from shared import to_cvat_mask


class PixelLinkDecoder():
    def __init__(self, pixel_threshold, link_threshold):
        four_neighbours = False
        if four_neighbours:
            self._get_neighbours = self._get_neighbours_4
        else:
            self._get_neighbours = self._get_neighbours_8
        self.pixel_conf_threshold = pixel_threshold
        self.link_conf_threshold = link_threshold

    def decode(self, height, width, detections: dict):
        self.image_height = height
        self.image_width = width
        self.pixel_scores = self._set_pixel_scores(detections['model/segm_logits/add'])
        self.link_scores = self._set_link_scores(detections['model/link_logits_/add'])

        self.pixel_mask = self.pixel_scores >= self.pixel_conf_threshold
        self.link_mask = self.link_scores >= self.link_conf_threshold
        self.points = list(zip(*np.where(self.pixel_mask)))
        self.h, self.w = np.shape(self.pixel_mask)
        self.group_mask = dict.fromkeys(self.points, -1)
        self.bboxes = None
        self.root_map = None
        self.mask = None

        self._decode()

    def _softmax(self, x, axis=None):
        return np.exp(x - self._logsumexp(x, axis=axis, keepdims=True))

    # pylint: disable=no-self-use
    def _logsumexp(self, a, axis=None, b=None, keepdims=False, return_sign=False):
        if b is not None:
            a, b = np.broadcast_arrays(a, b)
            if np.any(b == 0):
                a = a + 0.  # promote to at least float
                a[b == 0] = -np.inf

        a_max = np.amax(a, axis=axis, keepdims=True)

        if a_max.ndim > 0:
            a_max[~np.isfinite(a_max)] = 0
        elif not np.isfinite(a_max):
            a_max = 0

        if b is not None:
            b = np.asarray(b)
            tmp = b * np.exp(a - a_max)
        else:
            tmp = np.exp(a - a_max)

        # suppress warnings about log of zero
        with np.errstate(divide='ignore'):
            s = np.sum(tmp, axis=axis, keepdims=keepdims)
            if return_sign:
                sgn = np.sign(s)
                s *= sgn  # /= makes more sense but we need zero -> zero
            out = np.log(s)

        if not keepdims:
            a_max = np.squeeze(a_max, axis=axis)
        out += a_max

        if return_sign:
            return out, sgn
        else:
            return out

    def _set_pixel_scores(self, pixel_scores):
        "get softmaxed properly shaped pixel scores"
        tmp = np.transpose(pixel_scores, (0, 2, 3, 1))
        return self._softmax(tmp, axis=-1)[0, :, :, 1]

    def _set_link_scores(self, link_scores):
        "get softmaxed properly shaped links scores"
        tmp = np.transpose(link_scores, (0, 2, 3, 1))
        tmp_reshaped = tmp.reshape(tmp.shape[:-1] + (8, 2))
        return self._softmax(tmp_reshaped, axis=-1)[0, :, :, :, 1]

    def _find_root(self, point):
        root = point
        update_parent = False
        tmp = self.group_mask[root]
        while tmp is not -1:
            root = tmp
            tmp = self.group_mask[root]
            update_parent = True
        if update_parent:
            self.group_mask[point] = root
        return root

    def _join(self, p1, p2):
        root1 = self._find_root(p1)
        root2 = self._find_root(p2)
        if root1 != root2:
            self.group_mask[root2] = root1

    def _get_index(self, root):
        if root not in self.root_map:
            self.root_map[root] = len(self.root_map) + 1
        return self.root_map[root]

    def _get_all(self):
        self.root_map = {}
        self.mask = np.zeros_like(self.pixel_mask, dtype=np.int32)

        for point in self.points:
            point_root = self._find_root(point)
            bbox_idx = self._get_index(point_root)
            self.mask[point] = bbox_idx

    def _get_neighbours_8(self, x, y):
        w, h = self.w, self.h
        tmp = [(0, x - 1, y - 1), (1, x, y - 1),
               (2, x + 1, y - 1), (3, x - 1, y),
               (4, x + 1, y), (5, x - 1, y + 1),
               (6, x, y + 1), (7, x + 1, y + 1)]

        return [i for i in tmp if i[1] >= 0 and i[1] < w and i[2] >= 0 and i[2] < h]

    def _get_neighbours_4(self, x, y):
        w, h = self.w, self.h
        tmp = [(1, x, y - 1),
               (3, x - 1, y),
               (4, x + 1, y),
               (6, x, y + 1)]

        return [i for i in tmp if i[1] >= 0 and i[1] < w and i[2] >= 0 and i[2] < h]

    def _mask_to_bboxes(self, min_area=300, min_height=10):
        self.bboxes = []
        max_bbox_idx = self.mask.max()
        mask_tmp = cv2.resize(self.mask, (self.image_width, self.image_height), interpolation=cv2.INTER_NEAREST)

        for bbox_idx in range(1, max_bbox_idx + 1):
            bbox_mask = mask_tmp == bbox_idx
            cnts, _ = cv2.findContours(bbox_mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            if len(cnts) == 0:
                continue
            cnt = cnts[0]
            rect, w, h = self._min_area_rect(cnt)
            if min(w, h) < min_height:
                continue
            if w * h < min_area:
                continue
            self.bboxes.append(self._order_points(rect))

    # pylint: disable=no-self-use
    def _min_area_rect(self, cnt):
        rect = cv2.minAreaRect(cnt)
        w, h = rect[1]
        box = cv2.boxPoints(rect)
        box = np.int0(box)
        return box, w, h

    # pylint: disable=no-self-use
    def _order_points(self, rect):
        """ (x, y)
            Order: TL, TR, BR, BL
        """
        tmp = np.zeros_like(rect)
        sums = rect.sum(axis=1)
        tmp[0] = rect[np.argmin(sums)]
        tmp[2] = rect[np.argmax(sums)]
        diff = np.diff(rect, axis=1)
        tmp[1] = rect[np.argmin(diff)]
        tmp[3] = rect[np.argmax(diff)]
        return tmp

    def _decode(self):
        for point in self.points:
            y, x = point
            neighbours = self._get_neighbours(x, y)
            for n_idx, nx, ny in neighbours:
                link_value = self.link_mask[y, x, n_idx]
                pixel_cls = self.pixel_mask[ny, nx]
                if link_value and pixel_cls:
                    self._join(point, (ny, nx))

        self._get_all()
        self._mask_to_bboxes()

class ModelHandler:
    def __init__(self, labels):
        base_dir = os.path.abspath(os.environ.get("MODEL_PATH",
            "/opt/nuclio/open_model_zoo/intel/text-detection-0004/FP32"))
        model_xml = os.path.join(base_dir, "text-detection-0004.xml")
        model_bin = os.path.join(base_dir, "text-detection-0004.bin")
        self.model = ModelLoader(model_xml, model_bin)
        self.labels = labels

    def infer(self, image, pixel_threshold, link_threshold):
        output_layer = self.model.infer(image)

        results = []
        obj_class = 1
        pcd = PixelLinkDecoder(pixel_threshold, link_threshold)

        pcd.decode(image.height, image.width, output_layer)
        for box in pcd.bboxes:
            mask = pcd.pixel_mask
            mask = np.array(mask, dtype=np.uint8)
            mask = cv2.resize(mask, dsize=(image.width, image.height), interpolation=cv2.INTER_CUBIC)
            cv2.normalize(mask, mask, 0, 255, cv2.NORM_MINMAX)

            box = box.ravel().tolist()
            x_min = min(box[::2])
            x_max = max(box[::2])
            y_min = min(box[1::2])
            y_max = max(box[1::2])
            cvat_mask = to_cvat_mask((x_min, y_min, x_max, y_max), mask)

            results.append({
                "confidence": None,
                "label": self.labels.get(obj_class, "unknown"),
                "points": box,
                "mask": cvat_mask,
                "type": "mask",
            })

        return results