File size: 16,837 Bytes
f41f1fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
library_name: transformers
---

# Monet: Mixture of Monosemantic Experts for Transformers

## Model Summary

Monet introduces a novel approach for improving mechanistic interpretability in large language models (LLMs) using a Sparse Mixture-of-Experts (SMoE) architecture with 262,144 experts. By integrating sparse dictionary learning directly into end-to-end pretraining, Monet tackles the core issue of polysemanticity—where single neurons encode multiple unrelated concepts—while preserving overall model performance.


### Resources and Technical Documentation

- **GitHub Repository**: https://github.com/dmis-lab/Monet
- **Paper**: https://arxiv.org/abs/2412.04139
- **Model Hub**: https://huggingface.co/MonetLLM
- **Demo**: https://huggingface.co/spaces/MonetLLM/monet-vd-1.4B-100BT-hf-viewer

### Available Checkpoints

#### Base Models


<table class="center">
    <tr>
        <td align="center"><b>Model</b></td>
        <td align="center"><b>Dataset</b></td>
        <td align="center"><b>#Params</b></td>
        <td align="center"><b>#Tokens</b></td>
        <td align="center"><b>Checkpoint</b></td>
        <td align="center"><b>Demo</b></td>
    </tr>
    <tr>
        <td align="center" rowspan="4"><b>Monet-VD</b></td>
        <td align="center" rowspan="3"><a href="https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu">FineWeb-Edu</a></td>
        <td align="center">850M</td>
        <td align="center">100BT</td>
        <td><a href="https://huggingface.co/MonetLLM/monet-vd-850M-100BT-hf">monet-vd-850M-100BT-hf</a></td>
        <td></td>
    </tr>
    <tr>
        <td align="center">1.4B</td>
        <td align="center">100BT</td>
        <td><a href="https://huggingface.co/MonetLLM/monet-vd-1.4B-100BT-hf">monet-vd-1.4B-100BT-hf</a></td>
        <td><a href="https://huggingface.co/spaces/MonetLLM/monet-vd-1.4B-100BT-hf-viewer">Viewer</a></td>
    </tr>
    <tr>
        <td align="center">4.1B</td>
        <td align="center">100BT</td>
        <td><a href="https://huggingface.co/MonetLLM/monet-vd-4.1B-100BT-hf">monet-vd-4.1B-100BT-hf</a></td>
        <td></td>
    </tr>
    <tr>
        <td align="center"><a href="https://huggingface.co/datasets/bigcode/starcoderdata">StarCoderData</a></td>
        <td align="center">1.4B</td>
        <td align="center">100BT</td>
        <td><a href="https://huggingface.co/MonetLLM/codemonet-vd-1.4B-100BT-hf">codemonet-vd-1.4B-100BT-hf</a></td>
        <td><a href="https://huggingface.co/spaces/MonetLLM/codemonet-vd-1.4B-100BT-hf-viewer">Viewer</a></td>
    </tr>
    <tr>
        <td align="center" rowspan="3"><b>Monet-HD</b></td>
        <td align="center" rowspan="3"><a href="https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu">FineWeb-Edu</a></td>
        <td align="center">850M</td>
        <td align="center">100BT</td>
        <td><a href="https://huggingface.co/MonetLLM/monet-hd-850M-100BT-hf">monet-hd-850M-100BT-hf</a></td>
        <td></td>
    </tr>
    <tr>
        <td align="center">1.4B</td>
        <td align="center">100BT</td>
        <td><a href="https://huggingface.co/MonetLLM/monet-hd-1.4B-100BT-hf">monet-hd-1.4B-100BT-hf</a></td>
        <td></td>
    </tr>
    <tr>
        <td align="center">4.1B</td>
        <td align="center">100BT</td>
        <td><a href="https://huggingface.co/MonetLLM/monet-hd-4.1B-100BT-hf">monet-hd-4.1B-100BT-hf</a></td>
        <td></td>
    </tr>
</table>

#### Instruction-Tuned Models

<table class="center">
    <tr>
        <td align="center"><b>Model</b></td>
        <td align="center"><b>Purpose</b></td>
        <td align="center"><b>Recipe</b></td>
        <td align="center"><b>#Params</b></td>
        <td align="center"><b>Checkpoint</b></td>
    </tr>
    <tr>
        <td align="center" rowspan="2"><b>Monet-VD</b></td>
        <td align="center">Chat Completion</td>
        <td align="center"><a href="https://github.com/huggingface/alignment-handbook/tree/main/recipes/smollm">SmolLM</a></td>
        <td align="center">1.4B</td>
        <td><a href="https://huggingface.co/MonetLLM/monet-vd-1.4B-100BT-chat-hf">monet-vd-1.4B-100BT-chat-hf</a></td>
    </tr>
    <tr>
        <td align="center">Vision-Language Model</td>
        <td align="center"><a href="https://github.com/haotian-liu/LLaVA">LLaVA</a></td>
        <td align="center">1.6B</td>
        <td><a href="https://huggingface.co/MonetLLM/visionmonet-vd-1.4B-100BT-hf">visionmonet-vd-1.4B-100BT-hf</a></td>
    </tr>
</table>

## Evaluation

### Open-Ended LLM Benchmarks 
<table>
<thead>
<th>Model</th><th>MMLU</th><th>ARC</th><th>WG</th><th>PIQA</th><th>SIQA</th><th>OBQA</th><th>HS</th><th>CSQA</th><th>Avg.</th>
</thead>
<tbody>
<tr><td colspan="10" align="center"><b>0-shot</b></td></tr>
<tr><td align="center"><b>Monet-HD 850M</b></td><td align="center">0.320</td><td align="center">0.460</td><td align="center">0.506</td><td align="center">0.699</td><td align="center">0.416</td><td align="center">0.364</td><td align="center">0.465</td><td align="center">0.337</td><td align="center">0.446</td></tr>
<tr><td align="center"><b>Monet-VD 850M</b></td><td align="center">0.328</td><td align="center">0.456</td><td align="center">0.530</td><td align="center">0.708</td><td align="center">0.417</td><td align="center">0.356</td><td align="center">0.488</td><td align="center">0.343</td><td align="center">0.453</td></tr>
<tr><td align="center"><b>Monet-HD 1.4B</b></td><td align="center">0.338</td><td align="center">0.471</td><td align="center">0.538</td><td align="center">0.714</td><td align="center">0.418</td><td align="center">0.382</td><td align="center">0.501</td><td align="center">0.339</td><td align="center">0.463</td></tr>
<tr><td align="center"><b>Monet-VD 1.4B</b></td><td align="center">0.352</td><td align="center">0.495</td><td align="center">0.522</td><td align="center">0.727</td><td align="center">0.423</td><td align="center">0.418</td><td align="center">0.529</td><td align="center">0.363</td><td align="center">0.478</td></tr>
<tr><td align="center"><b>Monet-HD 4.1B</b></td><td align="center">0.375</td><td align="center">0.558</td><td align="center">0.560</td><td align="center">0.741</td><td align="center">0.427</td><td align="center">0.414</td><td align="center">0.571</td><td align="center">0.379</td><td align="center">0.503</td></tr>
<tr><td align="center"><b>Monet-VD 4.1B</b></td><td align="center">0.380</td><td align="center">0.547</td><td align="center">0.557</td><td align="center">0.751</td><td align="center">0.437</td><td align="center">0.424</td><td align="center">0.604</td><td align="center">0.389</td><td align="center">0.511</td></tr>
<tr><td colspan="10" align="center"><b>5-shot</b></td></tr>
<tr><td align="center"><b>Monet-HD 850M</b></td><td align="center">0.332</td><td align="center">0.537</td><td align="center">0.510</td><td align="center">0.697</td><td align="center">0.409</td><td align="center">0.346</td><td align="center">0.479</td><td align="center">0.420</td><td align="center">0.466</td></tr>
<tr><td align="center"><b>Monet-VD 850M</b></td><td align="center">0.341</td><td align="center">0.548</td><td align="center">0.520</td><td align="center">0.709</td><td align="center">0.437</td><td align="center">0.368</td><td align="center">0.504</td><td align="center">0.454</td><td align="center">0.485</td></tr>
<tr><td align="center"><b>Monet-HD 1.4B</b></td><td align="center">0.352</td><td align="center">0.544</td><td align="center">0.530</td><td align="center">0.720</td><td align="center">0.432</td><td align="center">0.360</td><td align="center">0.518</td><td align="center">0.441</td><td align="center">0.487</td></tr>
<tr><td align="center"><b>Monet-VD 1.4B</b></td><td align="center">0.360</td><td align="center">0.547</td><td align="center">0.526</td><td align="center">0.730</td><td align="center">0.441</td><td align="center">0.422</td><td align="center">0.551</td><td align="center">0.501</td><td align="center">0.510</td></tr>
<tr><td align="center"><b>Monet-HD 4.1B</b></td><td align="center">0.385</td><td align="center">0.603</td><td align="center">0.545</td><td align="center">0.742</td><td align="center">0.463</td><td align="center">0.412</td><td align="center">0.588</td><td align="center">0.545</td><td align="center">0.535</td></tr>
<tr><td align="center"><b>Monet-VD 4.1B</b></td><td align="center">0.398</td><td align="center">0.625</td><td align="center">0.564</td><td align="center">0.761</td><td align="center">0.470</td><td align="center">0.438</td><td align="center">0.619</td><td align="center">0.525</td><td align="center">0.550</td></tr>
</tbody>
</table>

### Detoxification

Detoxification task performances are evaluated on the [Monet-VD 1.4B](MonetLLM/monet-vd-1.4B-100BT-hf) model.

#### RealToxicityPrompts

<table>
  <thead>
    <tr>
      <th rowspan="2">Masking<br/>Threshold</th>
      <th rowspan="2">Masking<br/>Ratio</th>
      <th colspan="2">Exp. Max. Toxicity</th>
      <th colspan="2">Toxicity Prob.</th>
      <th rowspan="2">Avg. Perf.</th>
    </tr>
    <tr>
      <th>Toxic</th>
      <th>Non-Toxic</th>
      <th>Toxic</th>
      <th>Non-Toxic</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">0.795</td>
      <td align="center">0.269</td>
      <td align="center">0.926</td>
      <td align="center">0.08</td>
      <td align="center"><b>0.478</b></td>
    </tr>
    <tr>
      <td align="center">0.2</td>
      <td align="center">1.0%</td>
      <td align="center">0.767</td>
      <td align="center">0.268</td>
      <td align="center">0.909</td>
      <td align="center">0.07</td>
      <td align="center"><b>0.479</b></td>
    </tr>
    <tr>
      <td align="center">0.1</td>
      <td align="center">4.1%</td>
      <td align="center">0.657</td>
      <td align="center">0.270</td>
      <td align="center">0.768</td>
      <td align="center">0.08</td>
      <td align="center"><b>0.478</b></td>
    </tr>
    <tr>
      <td align="center">0.05</td>
      <td align="center">14.4%</td>
      <td align="center"><b>0.552</b></td>
      <td align="center"><b>0.256</b></td>
      <td align="center"><b>0.564</b></td>
      <td align="center"><b>0.05</b></td>
      <td align="center">0.467</td>
    </tr>
  </tbody>
</table>

#### ToxiGen
<table>
  <thead>
    <tr>
      <th rowspan="2">Masking<br/>Threshold</th>
      <th rowspan="2">Masking<br/>Ratio</th>
      <th colspan="2">RoBERTa Score</th>
      <th rowspan="2">Avg. Perf.</th>
    </tr>
    <tr>
      <th>Hate</th>
      <th>Neutral</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td align="center">–</td>
      <td align="center">–</td>
      <td align="center">0.642</td>
      <td align="center">0.035</td>
      <td align="center"><b>0.478</b></td>
    </tr>
    <tr>
      <td align="center">0.2</td>
      <td align="center">1.4%</td>
      <td align="center">0.643</td>
      <td align="center">0.033</td>
      <td align="center"><b>0.478</b></td>
    </tr>
    <tr>
      <td align="center">0.1</td>
      <td align="center">5.4%</td>
      <td align="center">0.504</td>
      <td align="center">0.028</td>
      <td align="center">0.473</td>
    </tr>
    <tr>
      <td align="center">0.05</td>
      <td align="center">15.0%</td>
      <td align="center"><b>0.430</b></td>
      <td align="center"><b>0.027</b></td>
      <td align="center">0.455</td>
    </tr>
  </tbody>
</table>


## Examples

### Text Generation

```python
from transformers import pipeline

model_name = "MonetLLM/monet-vd-1.4B-100BT-hf"
pipe = pipeline(
    "text-generation",
    model_name,
    tokenizer=AutoTokenizer.from_pretrained(model_name),
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True,
)
print(pipe("The key to life is", max_new_tokens=20, do_sample=True)[0]["generated_text"])
```

### Code Generation

```python
from transformers import pipeline

model_name = "MonetLLM/codemonet-vd-1.4B-100BT-hf"
pipe = pipeline(
    "text-generation",
    model_name,
    tokenizer=AutoTokenizer.from_pretrained(model_name),
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True,
)

text = '''
def print_len(x: str):
    """For a given string x, print the length of x."""
'''
print(pipe(text, max_new_tokens=10)[0]["generated_text"].split("\n\n")[0])
```

### Chat Completion

```python
from transformers import pipeline

model_name = "MonetLLM/codemonet-vd-1.4B-100BT-chat-hf"
pipe = pipeline(
    "text-generation",
    model_name,
    tokenizer=AutoTokenizer.from_pretrained(model_name),
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True,
)

text = tokenizer.apply_chat_template(
    [{"role": "user", "content": "Hi! How are you?"}],
    add_generation_prompt=True,
    tokenize=False,
)
print(pipe(text, max_new_tokens=30, do_sample=True)[0]["generated_text"])
```

### Using vLLM

The custom implementation of vLLM is provided in [the repository](https://github.com/dmis-lab/Monet/blob/main/modeling_monet_vllm.py).

```python
from vllm import LLM, ModelRegistry, SamplingParams
from modeling_monet_vllm import MonetForCausalLM

# Register Monet architecture with vLLM
ModelRegistry.register_model("MonetForCausalLM", MonetForCausalLM)

model = LLM(
    "MonetLLM/monet-vd-1.4B-100BT-hf",
    trust_remote_code=True,
    dtype="bfloat16",
    gpu_memory_utilization=0.8
)
sampling_params = SamplingParams(max_tokens=20, temperature=1.0)
print(model.generate("The key to life is", sampling_params)[0].outputs[0].text)
```

## Training
### Model
- Architecture: Monet
- Pretraining tokens: 100B
- Precision: bfloat16
### Hardware
- TPUs: TPU-v4-64 Pod Slice (supported by [TRC Program](https://sites.research.google/trc/about/))
### Software
- Training Framework: [Jax](https://github.com/jax-ml/jax), [Flax](https://github.com/google/flax)

## Intended Use

### Primary Intended Uses
 This model is designed to advance research on language models and serve as a foundational component for generative AI-driven functionalities. Its primary applications, mostly in English, include:

- Mechanistic interpretability research for language models
- Text generation with enhanced interpretability
- Code generation (CodeMonet variant)
- Chat completion (instruction-tuned variant)
- Vision-language tasks (VisionMonet variant)

### Out-of-Scope Uses
 This model has not been explicitly developed or tested for all potential downstream applications. Therefore:

1. Limitations & Mitigations: Developers should be mindful of common language model limitations, and thoroughly evaluate and mitigate risks regarding accuracy, safety, and fairness—especially in high-stakes or high-risk scenarios.
2. Legal & Regulatory Compliance: Developers must comply with any applicable laws and regulations (e.g., privacy, trade compliance), taking into account the model’s English-focused training (refer to <a href="https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu">FineWeb-Edu</a>).
3. No License Modification: Nothing in this Model Card modifies or restricts the license under which this model is released.
4. Unsupported Programming Languages: Programming in languages not covered by <a href="https://huggingface.co/datasets/bigcode/starcoderdata">StarCoderData</a>(CodeMonet variant) is not within the model’s intended scope.

## Model Architecture

Monet introduces a novel Mixture-of-Experts (MoE) architecture with several key innovations:

- Parameter-efficient expert decomposition: overall parameter count grows in proportion to the square root of the number of experts
- Fine-grained expert specialization: offers clear insight into model behavior
- Precise manipulation of knowledge: enables control over domain knowledge, programming language capabilities, and toxicity level.

## Ethical Considerations

### Transparency
- Designed specifically for enhanced interpretability
- Enables understanding of internal model behavior
- Allows tracking of knowledge attribution

### Control
- Supports toxicity mitigation
- Enables domain-specific knowledge control
- Maintains performance while adjusting behavior

## License and Usage
Monet is licensed under the Apache 2.0 license. The model is primarily intended for research and educational use. Important licensing notes:

- Instruction-tuned models have been fine-tuned using a dataset mix with outputs generated from third party models
- Research and educational use is encouraged
- Commercial use is subject to Apache 2.0 license terms

## Citation
```bibtex
@article{park2024monet,
      title={{Monet: Mixture of Monosemantic Experts for Transformers}}, 
      author={Jungwoo Park and Young Jin Ahn and Kee-Eung Kim and Jaewoo Kang},
      journal={arXiv preprint arXiv:2404.05567},
      year={2024}
}
```