File size: 16,916 Bytes
59c7686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
from typing import Any
import flax.linen as nn
import jax.numpy as jnp
import functools
import ml_collections
import jax

###########################
### Helper Modules
### https://github.com/google-research/maskgit/blob/main/maskgit/nets/layers.py
###########################

def get_norm_layer(norm_type):
    """Normalization layer."""
    if norm_type == 'BN':
        raise NotImplementedError
    elif norm_type == 'LN':
        norm_fn = functools.partial(nn.LayerNorm)
    elif norm_type == 'GN':
        norm_fn = functools.partial(nn.GroupNorm)
    else:
        raise NotImplementedError
    return norm_fn


def tensorflow_style_avg_pooling(x, window_shape, strides, padding: str):
    pool_sum = jax.lax.reduce_window(x, 0.0, jax.lax.add,
                                   (1,) + window_shape + (1,),
                                   (1,) + strides + (1,), padding)
    pool_denom = jax.lax.reduce_window(
        jnp.ones_like(x), 0.0, jax.lax.add, (1,) + window_shape + (1,),
        (1,) + strides + (1,), padding)
    return pool_sum / pool_denom

def upsample(x, factor=2):
    n, h, w, c = x.shape
    x = jax.image.resize(x, (n, h * factor, w * factor, c), method='nearest')
    return x

def dsample(x):
    return tensorflow_style_avg_pooling(x, (2, 2), strides=(2, 2), padding='same')

def squared_euclidean_distance(a: jnp.ndarray,
                               b: jnp.ndarray,
                               b2: jnp.ndarray = None) -> jnp.ndarray:
    """Computes the pairwise squared Euclidean distance.

    Args:
        a: float32: (n, d): An array of points.
        b: float32: (m, d): An array of points.
        b2: float32: (d, m): b square transpose.

    Returns:
        d: float32: (n, m): Where d[i, j] is the squared Euclidean distance between
        a[i] and b[j].
    """
    if b2 is None:
        b2 = jnp.sum(b.T**2, axis=0, keepdims=True)
    a2 = jnp.sum(a**2, axis=1, keepdims=True)
    ab = jnp.matmul(a, b.T)
    d = a2 - 2 * ab + b2
    return d

def entropy_loss_fn(affinity, loss_type="softmax", temperature=1.0):
    """Calculates the entropy loss. Affinity is the similarity/distance matrix."""
    flat_affinity = affinity.reshape(-1, affinity.shape[-1])
    flat_affinity /= temperature
    probs = jax.nn.softmax(flat_affinity, axis=-1)
    log_probs = jax.nn.log_softmax(flat_affinity + 1e-5, axis=-1)
    if loss_type == "softmax":
        target_probs = probs
    elif loss_type == "argmax":
        codes = jnp.argmax(flat_affinity, axis=-1)
        onehots = jax.nn.one_hot(
            codes, flat_affinity.shape[-1], dtype=flat_affinity.dtype)
        onehots = probs - jax.lax.stop_gradient(probs - onehots)
        target_probs = onehots
    else:
        raise ValueError("Entropy loss {} not supported".format(loss_type))
    avg_probs = jnp.mean(target_probs, axis=0)
    avg_entropy = -jnp.sum(avg_probs * jnp.log(avg_probs + 1e-5))
    sample_entropy = -jnp.mean(jnp.sum(target_probs * log_probs, axis=-1))
    loss = sample_entropy - avg_entropy
    return loss

def sg(x):
    return jax.lax.stop_gradient(x)




###########################
### Modules
###########################

class ResBlock(nn.Module):
    """Basic Residual Block."""
    filters: int
    norm_fn: Any
    activation_fn: Any

    @nn.compact
    def __call__(self, x):
        input_dim = x.shape[-1]
        residual = x
        x = self.norm_fn()(x)
        x = self.activation_fn(x)
        x = nn.Conv(self.filters, kernel_size=(3, 3), use_bias=False)(x)
        x = self.norm_fn()(x)
        x = self.activation_fn(x)
        x = nn.Conv(self.filters, kernel_size=(3, 3), use_bias=False)(x)

        if input_dim != self.filters:#Basically if input doesn't match output, use a skip
            residual = nn.Conv(self.filters, kernel_size=(1, 1), use_bias=False)(x)
        return x + residual
    
class Encoder(nn.Module):
    """From [H,W,D] image to [H',W',D'] embedding. Using Conv layers."""
    config: ml_collections.ConfigDict

    def setup(self):
        self.filters = self.config.filters#filters is the original setup
        self.num_res_blocks = self.config.num_res_blocks
        self.channel_multipliers = self.config.channel_multipliers
        self.embedding_dim = self.config.embedding_dim
        self.norm_type = self.config.norm_type
        self.activation_fn = nn.swish

    def pixels(self, x):
        #print("pixel shuffle x shape", x.shape)
        x = pixel_unshuffle(x, 2)
        #print(x.shape)
        B, H, W, C = x.shape
        x = jnp.reshape(x, (B, H, W, int(C/4), 4))
        #print(x.shape)
        x = jnp.mean(x, axis = -1)
        #print(x.shape)
        #exit()
        return x


    @nn.compact
    def __call__(self, x):
        print("Initializing encoder.")
        norm_fn = get_norm_layer(norm_type=self.norm_type)
        block_args = dict(norm_fn=norm_fn, activation_fn=self.activation_fn)
        print("Incoming encoder shape", x.shape)
        x = nn.Conv(self.filters, kernel_size=(3, 3), use_bias=False)(x)
        print('Encoder layer', x.shape)
        num_blocks = len(self.channel_multipliers)

        #The way SD works, is it does 2x resnet, not changing anything, then downsample
        #It does this 3 times, leading to 8x downsample
        #Then it has an extra resnet block, and THEN from 512 to 8 / 4
        
        #So the DCAE architecture is like 4x resnet, down
        #And then efficient vit down
        for i in range(num_blocks):
            filters = self.filters * self.channel_multipliers[i]
            for _ in range(self.num_res_blocks):
                x = ResBlock(filters, **block_args)(x)

            if i < num_blocks - 1:#For each block *except end* do downsample
                print("doing downsample")
                #If we want to do it DCAE style, they do channel averaging between before downsample and after
                if self.channel_multipliers[i] != -1:
                    print("pre pixels", x.shape)
                    pixel_x = self.pixels(x)
                    print("pixel_x", pixel_x.shape)
                    x = dsample(x) + pixel_x
                    print("post", x.shape)
                else:
                    x = dsample(x)
                    print("other post", x.shape)
                
            print('Encoder layer', x.shape)
        
        #After we are done downsampling, we do the 2 resnet, and down below here, we have the 2 midblock?

        for _ in range(self.num_res_blocks):
            x = ResBlock(filters, **block_args)(x)
            print('Encoder layer final', x.shape)

        x = norm_fn()(x)
        x = self.activation_fn(x)
        last_dim = self.embedding_dim*2 if self.config['quantizer_type'] == 'kl' else self.embedding_dim
        x = nn.Conv(last_dim, kernel_size=(1, 1))(x)
        print("Final embeddings are size", x.shape)
        return x
    
class Decoder(nn.Module):
    """From [H',W',D'] embedding to [H,W,D] embedding. Using Conv layers."""

    config: ml_collections.ConfigDict

    def setup(self):
        self.filters = self.config.filters
        self.num_res_blocks = self.config.num_res_blocks
        self.channel_multipliers = self.config.channel_multipliers
        self.norm_type = self.config.norm_type
        self.image_channels = self.config.image_channels
        self.activation_fn = nn.swish

    def pixels(self, x):
        print("pixels shape", x.shape)
        x = jnp.repeat(x, 4, axis = -1)
        print(x.shape)
        x = pixel_shuffle(x, 2)
        print(x.shape)
        print("done duplicating")
        return x

    @nn.compact
    def __call__(self, x):
        norm_fn = get_norm_layer(norm_type=self.norm_type)
        block_args = dict(norm_fn=norm_fn, activation_fn=self.activation_fn,)
        num_blocks = len(self.channel_multipliers)
        filters = self.filters * self.channel_multipliers[-1]
        print("Decoder incoming shape", x.shape)

        #We don't need to do anything here because it'll put it back to 512

        x = nn.Conv(filters, kernel_size=(3, 3), use_bias=True)(x)
        print("Decoder input", x.shape)
        

        #This is the mid block
        for _ in range(self.num_res_blocks):
            x = ResBlock(filters, **block_args)(x)
            print('Mid Block Decoder layer', x.shape)

        #First two SET of blocks is just 3 resnet, no channel changes, we are already at 4x = 512
        
        for i in reversed(range(num_blocks)):
            filters = self.filters * self.channel_multipliers[i]
            for _ in range(self.num_res_blocks + 1):
                x = ResBlock(filters, **block_args)(x)
            if i > 0:
                #We do pixel channel downsampling every time we downsample spatially.
                pixel = self.pixels(x)
                print("pre up", x.shape)
                x = upsample(x, 2)
                print("post up", x.shape)
                x = x + pixel
                x = nn.Conv(filters, kernel_size=(3, 3))(x)
            print('Decoder layer', x.shape)
        x = norm_fn()(x)
        x = self.activation_fn(x)
        x = nn.Conv(self.image_channels, kernel_size=(3, 3))(x)
        return x
    
class VectorQuantizer(nn.Module):
    """Basic vector quantizer."""
    config: ml_collections.ConfigDict
    train: bool

    @nn.compact
    def __call__(self, x):
        codebook_size = self.config.codebook_size
        emb_dim = x.shape[-1]
        codebook = self.param(
            "codebook",
            jax.nn.initializers.variance_scaling(scale=1.0, mode="fan_in", distribution="uniform"),
            (codebook_size, emb_dim))
        codebook = jnp.asarray(codebook) # (codebook_size, emb_dim)
        distances = jnp.reshape(
            squared_euclidean_distance(jnp.reshape(x, (-1, emb_dim)), codebook),
            x.shape[:-1] + (codebook_size,)) # [x, codebook_size] similarity matrix.
        encoding_indices = jnp.argmin(distances, axis=-1)
        encoding_onehot = jax.nn.one_hot(encoding_indices, codebook_size)
        quantized = self.quantize(encoding_onehot)
        result_dict = dict()
        if self.train:
            e_latent_loss = jnp.mean((sg(quantized) - x)**2) * self.config.commitment_cost
            q_latent_loss = jnp.mean((quantized - sg(x))**2)
            entropy_loss = 0.0
            if self.config.entropy_loss_ratio != 0:
                entropy_loss = entropy_loss_fn(
                    -distances,
                    loss_type=self.config.entropy_loss_type,
                    temperature=self.config.entropy_temperature
                ) * self.config.entropy_loss_ratio
            e_latent_loss = jnp.asarray(e_latent_loss, jnp.float32)
            q_latent_loss = jnp.asarray(q_latent_loss, jnp.float32)
            entropy_loss = jnp.asarray(entropy_loss, jnp.float32)
            loss = e_latent_loss + q_latent_loss + entropy_loss
            result_dict = dict(
                quantizer_loss=loss,
                e_latent_loss=e_latent_loss,
                q_latent_loss=q_latent_loss,
                entropy_loss=entropy_loss)
            quantized = x + jax.lax.stop_gradient(quantized - x)

        result_dict.update({
            "z_ids": encoding_indices,
        })
        return quantized, result_dict

    def quantize(self, encoding_onehot: jnp.ndarray) -> jnp.ndarray:
        codebook = jnp.asarray(self.variables["params"]["codebook"])
        return jnp.dot(encoding_onehot, codebook)

    def decode_ids(self, ids: jnp.ndarray) -> jnp.ndarray:
        codebook = self.variables["params"]["codebook"]
        return jnp.take(codebook, ids, axis=0)

class KLQuantizer(nn.Module):
    config: ml_collections.ConfigDict
    train: bool

    @nn.compact
    def __call__(self, x):
        emb_dim = x.shape[-1] // 2 # Use half as means, half as logvars.
        means = x[..., :emb_dim]
        logvars = x[..., emb_dim:]
        if not self.train:
            result_dict = dict()
            return means, result_dict
        else:
            noise = jax.random.normal(self.make_rng("noise"), means.shape)
            stds = jnp.exp(0.5 * logvars)
            z = means + stds * noise
            kl_loss = -0.5 * jnp.mean(1 + logvars - means**2 - jnp.exp(logvars))
            result_dict = dict(quantizer_loss=kl_loss)
            return z, result_dict
        
class AEQuantizer(nn.Module): #cooking
    config: ml_collections.ConfigDict
    train: bool

    @nn.compact
    def __call__(self, x):
        result_dict = dict()
        return x, result_dict

from einops import rearrange

def pixel_unshuffle(x, factor):

    x = rearrange(x, '... (h b1) (w b2) c -> ... h w (c b1 b2)', b1=factor, b2=factor)
    return x
def pixel_shuffle(x, factor):
    x = rearrange(x, '... h w (c b1 b2) -> ... (h b1) (w b2) c', b1=factor, b2=factor)
    return x

class KLQuantizerTwo(nn.Module):
    config: ml_collections.ConfigDict
    train: bool

    @nn.compact
    def __call__(self, x):
        #emb_dim = x.shape[-1] // 2 # Use half as means, half as logvars.
        #means = x[..., :emb_dim]
        #logvars = x[..., emb_dim:]

        #Wwe actually wanna do mean and STD on the batch axis?


        #we start as b hw 8, go to b hw 4, with mean and std over those.

        if not self.train:
            result_dict = dict()
            return x, result_dict
        else:
            #Previous run is mean over axis 0..
            means = jnp.mean(x, axis = [1,2,3])
            stds = jnp.std(x, axis = [1,2,3])

            noise = jax.random.normal(self.make_rng("noise"), means.shape)

            logvars = .5 * jnp.log(stds)

            z = means + stds * noise
            #We just... don't need to return Z for this, but instead we return X
            #This is the denoising version
            kl_loss = -0.5 * jnp.mean(1 + logvars - means**2 - jnp.exp(logvars))
            result_dict = dict(quantizer_loss=kl_loss)
            return x, result_dict

        
class FSQuantizer(nn.Module):
    config: ml_collections.ConfigDict
    train: bool

    @nn.compact
    def __call__(self, x):
        assert self.config['fsq_levels'] % 2 == 1, "FSQ levels must be odd."
        z = jnp.tanh(x) # [-1, 1]
        z = z * (self.config['fsq_levels']-1) / 2 # [-fsq_levels/2, fsq_levels/2]
        zhat = jnp.round(z) # e.g. [-2, -1, 0, 1, 2]
        quantized = z + jax.lax.stop_gradient(zhat - z)
        quantized = quantized / (self.config['fsq_levels'] // 2) # [-1, 1], but quantized.
        result_dict = dict()

        # Diagnostics for codebook usage.
        zhat_scaled = zhat + self.config['fsq_levels'] // 2
        basis = jnp.concatenate((jnp.array([1]), jnp.cumprod(jnp.array([self.config['fsq_levels']] * (x.shape[-1]-1))))).astype(jnp.uint32)
        idx = (zhat_scaled * basis).sum(axis=-1).astype(jnp.uint32)
        idx_flat = idx.reshape(-1)
        usage = jnp.bincount(idx_flat, length=self.config['fsq_levels']**x.shape[-1])

        result_dict.update({
            "z_ids": zhat,
            'usage': usage
        })
        return quantized, result_dict

class VQVAE(nn.Module):
    """VQVAE model."""
    config: ml_collections.ConfigDict
    train: bool

    def setup(self):
        """VQVAE setup."""
        if self.config['quantizer_type'] == 'vq':
            self.quantizer = VectorQuantizer(config=self.config, train=self.train)
        elif self.config['quantizer_type'] == 'kl':
            self.quantizer = KLQuantizer(config=self.config, train=self.train)
        elif self.config['quantizer_type'] == 'fsq':
            self.quantizer = FSQuantizer(config=self.config, train=self.train)
        elif self.config['quantizer_type'] == 'ae':
            self.quantizer = AEQuantizer(config=self.config, train=self.train)
        elif self.config["quantizer_type"] == "kl_two":
            self.quantizer = KLQuantizerTwo(config=self.config, train=self.train)
        self.encoder = Encoder(config=self.config)
        self.decoder = Decoder(config=self.config)

    def encode(self, image):
        encoded_feature = self.encoder(image)
        quantized, result_dict = self.quantizer(encoded_feature)
        print("After quant", quantized.shape)
        return quantized, result_dict

    def decode(self, z_vectors):
        print("z_vectors shape", z_vectors.shape)
        reconstructed = self.decoder(z_vectors)
        return reconstructed

    def decode_from_indices(self, z_ids):
        z_vectors = self.quantizer.decode_ids(z_ids)
        reconstructed_image = self.decode(z_vectors)
        return reconstructed_image

    def encode_to_indices(self, image):
        encoded_feature = self.encoder(image)
        _, result_dict = self.quantizer(encoded_feature)
        ids = result_dict["z_ids"]
        return ids

    def __call__(self, input_dict):
        quantized, result_dict = self.encode(input_dict)
        outputs = self.decoder(quantized)
        return outputs, result_dict