--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/nllb-200-distilled-600M tags: - generated_from_trainer metrics: - rouge - bleu model-index: - name: meta-nllb-600m-mt-en-twi-v4 results: [] --- # meta-nllb-600m-mt-en-twi-v4 This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5793 - Rouge1: 0.6092 - Bleu: 22.4778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Bleu | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 480 | 4.1464 | 0.5420 | 15.3433 | | 5.9598 | 2.0 | 960 | 1.8878 | 0.5603 | 16.8733 | | 2.993 | 3.0 | 1440 | 0.7451 | 0.5753 | 18.6067 | | 1.3619 | 4.0 | 1920 | 0.6291 | 0.5880 | 19.9709 | | 0.888 | 5.0 | 2400 | 0.6059 | 0.5953 | 20.4567 | | 0.7774 | 6.0 | 2880 | 0.5961 | 0.6000 | 21.1082 | | 0.7358 | 7.0 | 3360 | 0.5907 | 0.6049 | 21.4798 | | 0.6934 | 8.0 | 3840 | 0.5866 | 0.6068 | 21.6956 | | 0.666 | 9.0 | 4320 | 0.5816 | 0.6058 | 21.8561 | | 0.6533 | 10.0 | 4800 | 0.5799 | 0.6063 | 21.8737 | | 0.6266 | 11.0 | 5280 | 0.5791 | 0.6078 | 22.1400 | | 0.6063 | 12.0 | 5760 | 0.5792 | 0.6106 | 22.3387 | | 0.6058 | 13.0 | 6240 | 0.5790 | 0.6072 | 22.2070 | | 0.5786 | 14.0 | 6720 | 0.5777 | 0.6084 | 22.2723 | | 0.5754 | 15.0 | 7200 | 0.5800 | 0.6079 | 22.2117 | | 0.5707 | 16.0 | 7680 | 0.5784 | 0.6084 | 22.2791 | | 0.557 | 17.0 | 8160 | 0.5790 | 0.6081 | 22.4436 | | 0.5531 | 18.0 | 8640 | 0.5796 | 0.6097 | 22.5290 | | 0.5464 | 19.0 | 9120 | 0.5797 | 0.6085 | 22.3927 | | 0.5499 | 20.0 | 9600 | 0.5793 | 0.6092 | 22.4778 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1