Monster23 commited on
Commit
0a0f544
·
1 Parent(s): af0b7e2

Model save

Browse files
README.md CHANGED
@@ -14,13 +14,16 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.0668
18
  - Number-a: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
19
  - Number-q: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
 
 
 
20
  - Overall Precision: 0.0
21
  - Overall Recall: 0.0
22
  - Overall F1: 0.0
23
- - Overall Accuracy: 0.9848
24
 
25
  ## Model description
26
 
@@ -40,33 +43,23 @@ More information needed
40
 
41
  The following hyperparameters were used during training:
42
  - learning_rate: 3e-05
43
- - train_batch_size: 16
44
- - eval_batch_size: 8
45
  - seed: 42
46
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
  - lr_scheduler_type: linear
48
- - num_epochs: 15
49
  - mixed_precision_training: Native AMP
50
 
51
  ### Training results
52
 
53
- | Training Loss | Epoch | Step | Validation Loss | Number-a | Number-q | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
- |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
- | 1.1627 | 1.0 | 1 | 1.1422 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.2713 |
56
- | 1.1655 | 2.0 | 2 | 1.1422 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.2713 |
57
- | 1.1695 | 3.0 | 3 | 1.1422 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.2713 |
58
- | 1.1661 | 4.0 | 4 | 0.8227 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.8093 |
59
- | 0.8478 | 5.0 | 5 | 0.5718 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9744 |
60
- | 0.5975 | 6.0 | 6 | 0.3821 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 |
61
- | 0.4052 | 7.0 | 7 | 0.2537 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 |
62
- | 0.2676 | 8.0 | 8 | 0.1673 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 |
63
- | 0.1775 | 9.0 | 9 | 0.1173 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 |
64
- | 0.1266 | 10.0 | 10 | 0.0942 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 |
65
- | 0.1017 | 11.0 | 11 | 0.0842 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 |
66
- | 0.0891 | 12.0 | 12 | 0.0786 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 |
67
- | 0.0845 | 13.0 | 13 | 0.0741 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 |
68
- | 0.0788 | 14.0 | 14 | 0.0702 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 |
69
- | 0.0763 | 15.0 | 15 | 0.0668 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | 0.0 | 0.0 | 0.0 | 0.9848 |
70
 
71
 
72
  ### Framework versions
 
14
 
15
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 1.2568
18
  - Number-a: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
19
  - Number-q: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
20
+ - Of-destination: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
21
+ - Of-loading: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
22
+ - Tin: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26}
23
  - Overall Precision: 0.0
24
  - Overall Recall: 0.0
25
  - Overall F1: 0.0
26
+ - Overall Accuracy: 0.9118
27
 
28
  ## Model description
29
 
 
43
 
44
  The following hyperparameters were used during training:
45
  - learning_rate: 3e-05
46
+ - train_batch_size: 20
47
+ - eval_batch_size: 10
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
+ - num_epochs: 5
52
  - mixed_precision_training: Native AMP
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Number-a | Number-q | Of-destination | Of-loading | Tin | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:--------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 1.8024 | 1.0 | 1 | 1.8275 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.013513513513513514, 'recall': 0.75, 'f1': 0.026548672566371685, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26} | 0.0051 | 0.0714 | 0.0095 | 0.1338 |
59
+ | 1.8012 | 2.0 | 2 | 1.8275 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.013513513513513514, 'recall': 0.75, 'f1': 0.026548672566371685, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26} | 0.0051 | 0.0714 | 0.0095 | 0.1338 |
60
+ | 1.7979 | 3.0 | 3 | 1.8275 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.013513513513513514, 'recall': 0.75, 'f1': 0.026548672566371685, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26} | 0.0051 | 0.0714 | 0.0095 | 0.1338 |
61
+ | 1.8022 | 4.0 | 4 | 1.4916 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26} | 0.0 | 0.0 | 0.0 | 0.6594 |
62
+ | 1.4811 | 5.0 | 5 | 1.2568 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26} | 0.0 | 0.0 | 0.0 | 0.9118 |
 
 
 
 
 
 
 
 
 
 
63
 
64
 
65
  ### Framework versions
logs/events.out.tfevents.1701939863.ysw.113000.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0b649e4182ec2875ce1564aa57695eb3b80775dd29f0aea2a675ba94afce0da1
3
- size 128564
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc40c9ebdd976402610e3640aa635e65c52a8c97626c0a7d61cccdf5118d3ac1
3
+ size 135528
logs/events.out.tfevents.1701941436.ysw.125732.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:319fce8f6a577dc0788d46e553de991a7282254c3de0817f903e74e6c2e38505
3
+ size 17825
logs/events.out.tfevents.1701941678.ysw.127616.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:454bbb091a1cbad1f4d6e554241f546cb026c9d38613a6b1af680db110739560
3
+ size 17825
logs/events.out.tfevents.1701942067.ysw.130599.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a19dfd289dc7f367ab03b3a54a5fec2b3d8f20f369d0bc5085e84a5eb4ceda8b
3
+ size 8089
logs/events.out.tfevents.1701942326.ysw.132428.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aba9b82561dd61af1be1a211c7631955dd939529e8ad1a7def9697858a2ed1aa
3
+ size 8089
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:52387e55b921c2a5c25d258527a3e8aa4e236a900455e976ad83002bb9004c32
3
  size 450555136
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:290e9410e54f8495a4c29c9e9d62a89264673ceed3093829850e03afba05c434
3
  size 450555136
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e3e303cd2ece0a23b351be57e93ecfc555b03c455b1a24ef3bc337179c794b05
3
  size 4600
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cf63f3d2fe3606d41b3d3d44347478238bd06838cda4e7e1c4450dcbd130358
3
  size 4600