File size: 10,280 Bytes
a6f8521 7d405ed a6f8521 3857a74 49b3a73 bfa3982 006099c 36ae03a 421f621 a6f8521 3857a74 a6f8521 7d405ed a6f8521 7d405ed a6f8521 36ae03a 7d405ed e731c90 7d405ed e731c90 7d405ed a6f8521 7d405ed a6f8521 ba42139 a6f8521 7d405ed a6f8521 7d405ed 006099c 7d405ed a6f8521 7d405ed a6f8521 ba42139 a6f8521 7d405ed a6f8521 36ae03a a6f8521 36ae03a a6f8521 36ae03a a6f8521 7d405ed a6f8521 421f621 a6f8521 7d405ed a6f8521 7d405ed a6f8521 ba42139 a6f8521 7d405ed e731c90 a6f8521 7d405ed ba42139 a6f8521 3857a74 e731c90 7d405ed e731c90 7d405ed 3857a74 7d405ed bfa3982 bf5edb4 49b3a73 bf5edb4 7d405ed bf5edb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import gradio as gr
import os
import cv2
import numpy as np
import torch
from PIL import Image
from insightface.app import FaceAnalysis
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL, StableDiffusionXLPipeline
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus
import argparse
import random
from insightface.utils import face_align
from pyngrok import ngrok
import threading
import time
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlusXL
import hashlib
from datetime import datetime
# Argument parser for command line options
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", help="Enable Gradio share option")
parser.add_argument("--num_images", type=int, default=1, help="Number of images to generate")
parser.add_argument("--cache_limit", type=int, default=1, help="Limit for model cache")
parser.add_argument("--ngrok_token", type=str, default=None, help="ngrok authtoken for tunneling")
args = parser.parse_args()
# Add new model names here
static_model_names = [
"SG161222/Realistic_Vision_V6.0_B1_noVAE",
"stablediffusionapi/rev-animated-v122-eol",
"Lykon/DreamShaper",
"stablediffusionapi/toonyou",
"stablediffusionapi/real-cartoon-3d",
"KBlueLeaf/kohaku-v2.1",
"nitrosocke/Ghibli-Diffusion",
"Linaqruf/anything-v3.0",
"jinaai/flat-2d-animerge",
"stablediffusionapi/realcartoon3d",
"stablediffusionapi/disney-pixar-cartoon",
"stablediffusionapi/pastel-mix-stylized-anime",
"stablediffusionapi/anything-v5",
"SG161222/Realistic_Vision_V2.0",
"SG161222/Realistic_Vision_V4.0_noVAE",
"SG161222/Realistic_Vision_V5.1_noVAE",
"stablediffusionapi/anime-illust-diffusion-xl",
"stabilityai/stable-diffusion-xl-base-1.0",
#r"G:\model\model_diffusers"
]
# Cache for loaded models
model_cache = {}
max_cache_size = args.cache_limit
embeddings_cache = {}
def get_image_hash(image):
image_bytes = image.tobytes()
return hashlib.sha256(image_bytes).hexdigest()
def convert_model(checkpoint_path, output_path, isSDXL):
try:
if isSDXL:
pipe = StableDiffusionXLPipeline.from_single_file(checkpoint_path)
pipe.save_pretrained(output_path)
else:
pipe = StableDiffusionPipeline.from_single_file(checkpoint_path)
pipe.save_pretrained(output_path)
return f"Model converted and saved to {output_path}"
except Exception as e:
return f"Error: {str(e)}"
# Function to load and cache model
def load_model(model_name, isSDXL):
if model_name in model_cache:
return model_cache[model_name]
print(f"loading model {model_name}")
# Limit cache size
if len(model_cache) >= max_cache_size:
model_cache.pop(next(iter(model_cache)))
device = "cuda"
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
vae_model_path = "stabilityai/sd-vae-ft-mse"
if isSDXL:
vae_model_path = "stabilityai/sdxl-vae"
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
if isSDXL:
pipe = StableDiffusionXLPipeline.from_pretrained(
model_name,
torch_dtype=torch.float16,
vae=vae,
scheduler=noise_scheduler,
add_watermarker=False,
).to(device)
else:
# Load model based on the selected model name
pipe = StableDiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
feature_extractor=None,
safety_checker=None
).to(device)
if isSDXL:
image_encoder_path = "h94/IP-Adapter/models/image_encoder"
ip_ckpt = "adapters/ip-adapter-faceid-plusv2_sdxl.bin"
ip_model = IPAdapterFaceIDPlusXL(pipe,image_encoder_path, ip_ckpt, device)
else:
image_encoder_path = "h94/IP-Adapter/models/image_encoder"
ip_ckpt = "adapters/ip-adapter-faceid-plusv2_sd15.bin"
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device)
model_cache[model_name] = ip_model
return ip_model
# Function to process image and generate output
def generate_image(input_image, positive_prompt, negative_prompt, width, height, model_name, num_inference_steps, seed, randomize_seed, num_images, batch_size, enable_shortcut, s_scale, custom_model_path, isSDXL,cfg):
saved_images = []
if custom_model_path:
model_name = custom_model_path
# Load and prepare the model
ip_model = load_model(model_name, isSDXL)
# Convert input image to the format expected by the model and calculate its hash
input_image = input_image.convert("RGB")
input_image_cv2 = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
image_hash = get_image_hash(input_image)
# Check if embeddings are cached
if image_hash in embeddings_cache:
faceid_embeds, face_image = embeddings_cache[image_hash]
else:
app = FaceAnalysis(
name="buffalo_l", providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
)
app.prepare(ctx_id=0, det_size=(640, 640))
faces = app.get(input_image_cv2)
if not faces:
raise ValueError("No faces found in the image.")
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
face_image = face_align.norm_crop(input_image_cv2, landmark=faces[0].kps, image_size=224)
# Cache the embeddings
embeddings_cache[image_hash] = (faceid_embeds, face_image)
for image_index in range(num_images):
if randomize_seed or image_index > 0:
seed = random.randint(0, 2**32 - 1)
# Generate the image with the new parameters
generated_images = ip_model.generate(
prompt=positive_prompt,
negative_prompt=negative_prompt,
faceid_embeds=faceid_embeds,
face_image=face_image,
num_samples=batch_size,
shortcut=enable_shortcut,
s_scale=s_scale,
width=width,
height=height,
guidance_scale=cfg,
num_inference_steps=num_inference_steps,
seed=seed,
)
# Save and prepare the generated images for display
outputs_dir = "outputs"
if not os.path.exists(outputs_dir):
os.makedirs(outputs_dir)
for i, img in enumerate(generated_images, start=1):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
image_path = os.path.join(outputs_dir, f"{timestamp}_image_{len(os.listdir(outputs_dir)) + i}.png")
img.save(image_path)
saved_images.append(image_path)
return saved_images, f"Saved images: {', '.join(saved_images)}", seed
# Gradio interface, using the static list of models
with gr.Blocks() as demo:
gr.Markdown("Developed by SECourses - only distributed on https://www.patreon.com/posts/95759342")
with gr.Row():
input_image = gr.Image(type="pil")
generate_btn = gr.Button("Generate")
with gr.Row():
width = gr.Number(value=512, label="Width")
height = gr.Number(value=768, label="Height")
cfg = gr.Number(value=7.5, label="CFG")
with gr.Row():
num_inference_steps = gr.Number(value=30, label="Number of Inference Steps", step=1, minimum=10, maximum=100)
seed = gr.Number(value=2023, label="Seed")
randomize_seed = gr.Checkbox(value=True, label="Randomize Seed")
with gr.Row():
num_images = gr.Number(value=args.num_images, label="Number of Images to Generate", step=1, minimum=1)
batch_size = gr.Number(value=1, label="Batch Size", step=1)
with gr.Row():
isSDXL = gr.Checkbox(value=False, label="Activate SDXL")
enable_shortcut = gr.Checkbox(value=True, label="Enable Shortcut")
s_scale = gr.Number(value=1.0, label="Scale Factor (s_scale)", step=0.1, minimum=0.5, maximum=4.0)
with gr.Row():
positive_prompt = gr.Textbox(label="Positive Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
with gr.Row():
model_selector = gr.Dropdown(label="Select Model", choices=static_model_names, value=static_model_names[0])
custom_model_path = gr.Textbox(label="Custom Model Path (Optional)")
with gr.Column():
output_gallery = gr.Gallery(label="Generated Images")
output_text = gr.Textbox(label="Output Info")
display_seed = gr.Textbox(label="Used Seed", interactive=False)
with gr.Row():
checkpoint_path_input = gr.Textbox(label="Enter Checkpoint File Path .e.g G:\model\model.safetensors", )
output_path_input = gr.Textbox(label="Enter Output Folder Path, e.g. G:\model\model_diffusers")
convert_btn = gr.Button("Convert Model")
generate_btn.click(
generate_image,
inputs=[input_image, positive_prompt, negative_prompt, width, height, model_selector, num_inference_steps, seed, randomize_seed, num_images, batch_size, enable_shortcut, s_scale, custom_model_path, isSDXL,cfg],
outputs=[output_gallery, output_text, display_seed]
)
convert_btn.click(
convert_model,
inputs=[checkpoint_path_input, output_path_input, isSDXL],
outputs=[gr.Text(label="Conversion Status")],
)
# Function to start ngrok for tunneling
def start_ngrok():
print("Starting ngrok...")
time.sleep(10) # Delay to ensure Gradio starts first
ngrok.set_auth_token(args.ngrok_token)
public_url = ngrok.connect(port=7860) # Adjust to your Gradio app's port
print(f"ngrok tunnel started at {public_url}")
if __name__ == "__main__":
if args.ngrok_token:
# Start ngrok in a separate thread with a delay
ngrok_thread = threading.Thread(target=start_ngrok, daemon=True)
ngrok_thread.start()
# Launch the Gradio app
demo.launch(share=args.share, inbrowser=True)
|