File size: 10,280 Bytes
a6f8521
 
 
 
 
 
 
7d405ed
a6f8521
 
 
 
3857a74
49b3a73
bfa3982
006099c
36ae03a
421f621
a6f8521
 
 
 
 
 
3857a74
 
a6f8521
 
 
 
 
7d405ed
 
 
 
 
 
 
 
 
 
 
 
a6f8521
 
 
7d405ed
 
 
a6f8521
 
 
 
 
 
36ae03a
 
 
 
 
 
7d405ed
e731c90
7d405ed
 
 
 
 
 
e731c90
 
 
 
7d405ed
a6f8521
7d405ed
a6f8521
 
ba42139
a6f8521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d405ed
 
a6f8521
 
7d405ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
006099c
 
 
7d405ed
 
 
 
a6f8521
 
 
 
 
7d405ed
a6f8521
ba42139
 
a6f8521
7d405ed
a6f8521
36ae03a
a6f8521
36ae03a
 
a6f8521
36ae03a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6f8521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d405ed
a6f8521
 
 
 
 
 
 
 
 
421f621
 
a6f8521
 
 
 
 
 
 
 
 
 
 
 
 
 
7d405ed
a6f8521
 
 
 
 
 
 
7d405ed
 
a6f8521
 
 
 
 
 
 
ba42139
a6f8521
 
 
 
 
7d405ed
e731c90
 
 
 
 
a6f8521
 
7d405ed
ba42139
a6f8521
3857a74
e731c90
 
7d405ed
e731c90
 
7d405ed
 
3857a74
7d405ed
 
bfa3982
bf5edb4
 
49b3a73
bf5edb4
7d405ed
 
 
 
bf5edb4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import gradio as gr
import os
import cv2
import numpy as np
import torch
from PIL import Image
from insightface.app import FaceAnalysis
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL, StableDiffusionXLPipeline
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus
import argparse
import random
from insightface.utils import face_align
from pyngrok import ngrok
import threading
import time
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlusXL
import hashlib
from datetime import datetime

# Argument parser for command line options
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", help="Enable Gradio share option")
parser.add_argument("--num_images", type=int, default=1, help="Number of images to generate")
parser.add_argument("--cache_limit", type=int, default=1, help="Limit for model cache")
parser.add_argument("--ngrok_token", type=str, default=None, help="ngrok authtoken for tunneling")

args = parser.parse_args()

# Add new model names here
static_model_names = [
    "SG161222/Realistic_Vision_V6.0_B1_noVAE",
    "stablediffusionapi/rev-animated-v122-eol",
    "Lykon/DreamShaper",
    "stablediffusionapi/toonyou",
    "stablediffusionapi/real-cartoon-3d",
    "KBlueLeaf/kohaku-v2.1",
    "nitrosocke/Ghibli-Diffusion",
    "Linaqruf/anything-v3.0",
    "jinaai/flat-2d-animerge",
    "stablediffusionapi/realcartoon3d",
    "stablediffusionapi/disney-pixar-cartoon",
    "stablediffusionapi/pastel-mix-stylized-anime",
    "stablediffusionapi/anything-v5",    
    "SG161222/Realistic_Vision_V2.0",
    "SG161222/Realistic_Vision_V4.0_noVAE",
    "SG161222/Realistic_Vision_V5.1_noVAE",
    "stablediffusionapi/anime-illust-diffusion-xl",
	"stabilityai/stable-diffusion-xl-base-1.0",
    #r"G:\model\model_diffusers"
]

# Cache for loaded models
model_cache = {}
max_cache_size = args.cache_limit

embeddings_cache = {}

def get_image_hash(image):
    image_bytes = image.tobytes()
    return hashlib.sha256(image_bytes).hexdigest()

def convert_model(checkpoint_path, output_path, isSDXL):
    try:
        if isSDXL:
            pipe = StableDiffusionXLPipeline.from_single_file(checkpoint_path)
            pipe.save_pretrained(output_path)
        else:
            pipe = StableDiffusionPipeline.from_single_file(checkpoint_path)
            pipe.save_pretrained(output_path)
        return f"Model converted and saved to {output_path}"
    except Exception as e:
        return f"Error: {str(e)}"


# Function to load and cache model
def load_model(model_name, isSDXL):
    if model_name in model_cache:
        return model_cache[model_name]
    print(f"loading model {model_name}")
    # Limit cache size
    if len(model_cache) >= max_cache_size:
        model_cache.pop(next(iter(model_cache)))

    device = "cuda"
    noise_scheduler = DDIMScheduler(
        num_train_timesteps=1000,
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="scaled_linear",
        clip_sample=False,
        set_alpha_to_one=False,
        steps_offset=1,
    )
    vae_model_path = "stabilityai/sd-vae-ft-mse"
    if isSDXL:
        vae_model_path = "stabilityai/sdxl-vae"
    vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)

    if isSDXL:
        pipe = StableDiffusionXLPipeline.from_pretrained(
            model_name,
            torch_dtype=torch.float16,
            vae=vae,
            scheduler=noise_scheduler,
            add_watermarker=False,
        ).to(device)
    else:
        # Load model based on the selected model name
        pipe = StableDiffusionPipeline.from_pretrained(
            model_name,
            torch_dtype=torch.float16,
            scheduler=noise_scheduler,
            vae=vae,
            feature_extractor=None,
            safety_checker=None
        ).to(device)

    if isSDXL:
        image_encoder_path = "h94/IP-Adapter/models/image_encoder"
        ip_ckpt = "adapters/ip-adapter-faceid-plusv2_sdxl.bin"
        ip_model = IPAdapterFaceIDPlusXL(pipe,image_encoder_path, ip_ckpt, device)
    else:
        image_encoder_path = "h94/IP-Adapter/models/image_encoder"
        ip_ckpt = "adapters/ip-adapter-faceid-plusv2_sd15.bin"
        ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device)

    model_cache[model_name] = ip_model
    return ip_model

# Function to process image and generate output
def generate_image(input_image, positive_prompt, negative_prompt, width, height, model_name, num_inference_steps, seed, randomize_seed, num_images, batch_size, enable_shortcut, s_scale, custom_model_path, isSDXL,cfg):
    saved_images = []
    if custom_model_path:
        model_name = custom_model_path
    # Load and prepare the model
    ip_model = load_model(model_name, isSDXL)

    # Convert input image to the format expected by the model and calculate its hash
    input_image = input_image.convert("RGB")
    input_image_cv2 = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
    image_hash = get_image_hash(input_image)

    # Check if embeddings are cached
    if image_hash in embeddings_cache:
        faceid_embeds, face_image = embeddings_cache[image_hash]
    else:
        app = FaceAnalysis(
            name="buffalo_l", providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
        )
        app.prepare(ctx_id=0, det_size=(640, 640))
        faces = app.get(input_image_cv2)
        if not faces:
            raise ValueError("No faces found in the image.")

        faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
        face_image = face_align.norm_crop(input_image_cv2, landmark=faces[0].kps, image_size=224)
        # Cache the embeddings
        embeddings_cache[image_hash] = (faceid_embeds, face_image)

    for image_index in range(num_images):
        if randomize_seed or image_index > 0:
            seed = random.randint(0, 2**32 - 1)

        # Generate the image with the new parameters
        generated_images = ip_model.generate(
            prompt=positive_prompt,
            negative_prompt=negative_prompt,
            faceid_embeds=faceid_embeds,
            face_image=face_image,
            num_samples=batch_size,
            shortcut=enable_shortcut,
            s_scale=s_scale,
            width=width,
            height=height,
			guidance_scale=cfg,
            num_inference_steps=num_inference_steps,
            seed=seed,
        )

        # Save and prepare the generated images for display
        outputs_dir = "outputs"
        if not os.path.exists(outputs_dir):
            os.makedirs(outputs_dir)
        for i, img in enumerate(generated_images, start=1):
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            image_path = os.path.join(outputs_dir, f"{timestamp}_image_{len(os.listdir(outputs_dir)) + i}.png")
            img.save(image_path)
            saved_images.append(image_path)

    return saved_images, f"Saved images: {', '.join(saved_images)}", seed

# Gradio interface, using the static list of models
with gr.Blocks() as demo:
    gr.Markdown("Developed by SECourses - only distributed on https://www.patreon.com/posts/95759342")
    with gr.Row():
        input_image = gr.Image(type="pil")
        generate_btn = gr.Button("Generate")
        with gr.Row():
            width = gr.Number(value=512, label="Width")
            height = gr.Number(value=768, label="Height")
            cfg = gr.Number(value=7.5, label="CFG")
        with gr.Row():        
            num_inference_steps = gr.Number(value=30, label="Number of Inference Steps", step=1, minimum=10, maximum=100)
            seed = gr.Number(value=2023, label="Seed")
            randomize_seed = gr.Checkbox(value=True, label="Randomize Seed")
        with gr.Row():                    
            num_images = gr.Number(value=args.num_images, label="Number of Images to Generate", step=1, minimum=1)
            batch_size = gr.Number(value=1, label="Batch Size", step=1)
        with gr.Row():  
            isSDXL = gr.Checkbox(value=False, label="Activate SDXL")
            enable_shortcut = gr.Checkbox(value=True, label="Enable Shortcut")
            s_scale = gr.Number(value=1.0, label="Scale Factor (s_scale)", step=0.1, minimum=0.5, maximum=4.0)
    with gr.Row():
        positive_prompt = gr.Textbox(label="Positive Prompt")
        negative_prompt = gr.Textbox(label="Negative Prompt")    
    with gr.Row():            
        model_selector = gr.Dropdown(label="Select Model", choices=static_model_names, value=static_model_names[0])
        custom_model_path = gr.Textbox(label="Custom Model Path (Optional)")

    with gr.Column():
        output_gallery = gr.Gallery(label="Generated Images")
        output_text = gr.Textbox(label="Output Info")
        display_seed = gr.Textbox(label="Used Seed", interactive=False)
        
    with gr.Row():
        checkpoint_path_input = gr.Textbox(label="Enter Checkpoint File Path .e.g G:\model\model.safetensors", )
        output_path_input = gr.Textbox(label="Enter Output Folder Path, e.g. G:\model\model_diffusers")
        convert_btn = gr.Button("Convert Model")

    generate_btn.click(
        generate_image,
        inputs=[input_image, positive_prompt, negative_prompt, width, height, model_selector, num_inference_steps, seed, randomize_seed, num_images, batch_size, enable_shortcut, s_scale, custom_model_path, isSDXL,cfg],
        outputs=[output_gallery, output_text, display_seed]
    )
	
    convert_btn.click(
        convert_model,
        inputs=[checkpoint_path_input, output_path_input, isSDXL],
        outputs=[gr.Text(label="Conversion Status")],
    )	

# Function to start ngrok for tunneling
def start_ngrok():
    print("Starting ngrok...")
    time.sleep(10)  # Delay to ensure Gradio starts first
    ngrok.set_auth_token(args.ngrok_token)
    public_url = ngrok.connect(port=7860)  # Adjust to your Gradio app's port
    print(f"ngrok tunnel started at {public_url}")

if __name__ == "__main__":
    if args.ngrok_token:
        # Start ngrok in a separate thread with a delay
        ngrok_thread = threading.Thread(target=start_ngrok, daemon=True)
        ngrok_thread.start()

    # Launch the Gradio app
    demo.launch(share=args.share, inbrowser=True)