MonteXiaofeng
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- BAAI/IndustryInstruction_Automobiles
|
5 |
+
base_model:
|
6 |
+
- meta-llama/Meta-Llama-3.1-8B-Instruct
|
7 |
+
---
|
8 |
+
|
9 |
+
This model is finetuned on the model llama3.1-8b-instruct using the dataset [BAAI/IndustryInstruction_Automobiles](https://huggingface.co/datasets/BAAI/IndustryInstruction_Automobiles) dataset, the dataset details can jump to the repo: [BAAI/IndustryInstruction](https://huggingface.co/datasets/BAAI/IndustryInstruction)
|
10 |
+
|
11 |
+
## training params
|
12 |
+
|
13 |
+
The training framework is llama-factory, template=llama3
|
14 |
+
|
15 |
+
```
|
16 |
+
learning_rate=1e-5
|
17 |
+
lr_scheduler_type=cosine
|
18 |
+
max_length=2048
|
19 |
+
warmup_ratio=0.05
|
20 |
+
batch_size=64
|
21 |
+
epoch=10
|
22 |
+
```
|
23 |
+
|
24 |
+
select best ckpt by the evaluation loss
|
25 |
+
## evaluation
|
26 |
+
|
27 |
+
Duto to there is no evaluation benchmark, we can not eval the model
|
28 |
+
|
29 |
+
## How to use
|
30 |
+
|
31 |
+
```python
|
32 |
+
# !/usr/bin/env python
|
33 |
+
# -*- coding:utf-8 -*-
|
34 |
+
# ==================================================================
|
35 |
+
# [Author] : xiaofeng
|
36 |
+
# [Descriptions] :
|
37 |
+
# ==================================================================
|
38 |
+
|
39 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
40 |
+
import transformers
|
41 |
+
import torch
|
42 |
+
|
43 |
+
|
44 |
+
llama3_jinja = """{% if messages[0]['role'] == 'system' %}
|
45 |
+
{% set offset = 1 %}
|
46 |
+
{% else %}
|
47 |
+
{% set offset = 0 %}
|
48 |
+
{% endif %}
|
49 |
+
|
50 |
+
{{ bos_token }}
|
51 |
+
{% for message in messages %}
|
52 |
+
{% if (message['role'] == 'user') != (loop.index0 % 2 == offset) %}
|
53 |
+
{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
|
54 |
+
{% endif %}
|
55 |
+
|
56 |
+
{{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] | trim + '<|eot_id|>' }}
|
57 |
+
{% endfor %}
|
58 |
+
|
59 |
+
{% if add_generation_prompt %}
|
60 |
+
{{ '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' }}
|
61 |
+
{% endif %}"""
|
62 |
+
|
63 |
+
|
64 |
+
dtype = torch.bfloat16
|
65 |
+
|
66 |
+
model_dir = "MonteXiaofeng/Automobile-llama3_1_8B_instruct"
|
67 |
+
model = AutoModelForCausalLM.from_pretrained(
|
68 |
+
model_dir,
|
69 |
+
device_map="cuda",
|
70 |
+
torch_dtype=dtype,
|
71 |
+
)
|
72 |
+
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
74 |
+
tokenizer.chat_template = llama3_jinja # update template
|
75 |
+
|
76 |
+
message = [
|
77 |
+
{"role": "system", "content": "You are a helpful assistant"},
|
78 |
+
{
|
79 |
+
"role": "user",
|
80 |
+
"content": "随着特斯拉和小米汽车等新势力的崛起,传统车企如何应对互联网和科技公司的挑战,加速向智能化、电动化的方向转型?",
|
81 |
+
},
|
82 |
+
]
|
83 |
+
prompt = tokenizer.apply_chat_template(
|
84 |
+
message, tokenize=False, add_generation_prompt=True
|
85 |
+
)
|
86 |
+
print(prompt)
|
87 |
+
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
88 |
+
prompt_length = len(inputs[0])
|
89 |
+
print(f"prompt_length:{prompt_length}")
|
90 |
+
|
91 |
+
generating_args = {
|
92 |
+
"do_sample": True,
|
93 |
+
"temperature": 1.0,
|
94 |
+
"top_p": 0.5,
|
95 |
+
"top_k": 15,
|
96 |
+
"max_new_tokens": 512,
|
97 |
+
}
|
98 |
+
|
99 |
+
|
100 |
+
generate_output = model.generate(input_ids=inputs.to(model.device), **generating_args)
|
101 |
+
|
102 |
+
response_ids = generate_output[:, prompt_length:]
|
103 |
+
response = tokenizer.batch_decode(
|
104 |
+
response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
105 |
+
)[0]
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
print(f"response:{response}")
|
110 |
+
"""
|
111 |
+
传统车企应积极拥抱互联网和科技公司的挑战,加速向智能化、电动化的方向转型。首先,车企需要加强与科技公司的合作,利用其在人工智能、自动驾驶等领域的技术优势,提升自身产品的智能化水平。其次,车企应加大在电动化领域的投入,研发更多电动车型,满足市场对环保、节能的需求。同时,车企还应加强与电池供应商的合作,提升电动车的续航里程和充电速度,提高用户体验。此外,车企还应加强在智能互联方面的投入,提供更好的车联网服务,满足用户对智能化、便捷化的需求。总之,传统车企应积极应对互联网和科技公司的挑战,加速向智能化、电动化的方向转型,以适应市场的变化,保持竞争力
|
112 |
+
"""
|
113 |
+
|
114 |
+
```
|