--- license: apache-2.0 datasets: - BAAI/IndustryInstruction - BAAI/IndustryInstruction_Technology-Research base_model: - meta-llama/Meta-Llama-3.1-8B-Instruct tags: - 科学研究 - 中英文语言模型 --- This model is finetuned on the model llama3.1-8b-instruct using the dataset [BAAI/IndustryInstruction_Technology-Research](https://huggingface.co/datasets/BAAI/IndustryInstruction_Technology-Research) dataset, the dataset details can jump to the repo: [BAAI/IndustryInstruction](https://huggingface.co/datasets/BAAI/IndustryInstruction) ## training params The training framework is llama-factory, template=llama3 ``` learning_rate=1e-5 lr_scheduler_type=cosine max_length=2048 warmup_ratio=0.05 batch_size=64 epoch=10 ``` select best ckpt by the evaluation loss ## evaluation Duto to there is no evaluation benchmark, we can not eval the model ## How to use ```python # !/usr/bin/env python # -*- coding:utf-8 -*- # ================================================================== # [Author] : xiaofeng # [Descriptions] : # ================================================================== from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch llama3_jinja = """{% if messages[0]['role'] == 'system' %} {% set offset = 1 %} {% else %} {% set offset = 0 %} {% endif %} {{ bos_token }} {% for message in messages %} {% if (message['role'] == 'user') != (loop.index0 % 2 == offset) %} {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }} {% endif %} {{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] | trim + '<|eot_id|>' }} {% endfor %} {% if add_generation_prompt %} {{ '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' }} {% endif %}""" dtype = torch.bfloat16 model_dir = "MonteXiaofeng/Technology-llama3_1_8B_instruct" model = AutoModelForCausalLM.from_pretrained( model_dir, device_map="cuda", torch_dtype=dtype, ) tokenizer = AutoTokenizer.from_pretrained(model_dir) tokenizer.chat_template = llama3_jinja # update template message = [ {"role": "system", "content": "You are a helpful assistant"}, { "role": "user", "content": "请详细描述科技研究如何改变了我们的教育系统。", }, ] prompt = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) print(prompt) inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") prompt_length = len(inputs[0]) print(f"prompt_length:{prompt_length}") generating_args = { "do_sample": True, "temperature": 1.0, "top_p": 0.5, "top_k": 15, "max_new_tokens": 512, } generate_output = model.generate(input_ids=inputs.to(model.device), **generating_args) response_ids = generate_output[:, prompt_length:] response = tokenizer.batch_decode( response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True )[0] """ 科技研究对我们的教育系统产生了深远的影响。首先,科技研究使得教育变得更加普及。通过互联网和数字化技术,学生可以在任何时间、任何地点接受教育,这大大增加了教育的可获取性。其次,科技研究也使得教育变得更加个性化。通过大数据和人工智能等技术,教育系统可以根据每个学生的学习情况和需求,提供定制化的教学方案。此外,科技研究还促进了教育的互动性。通过虚拟现实、增强现实等技术,学生可以更好地参与到学习中来,提高学习的趣味性和效果。总的来说,科技研究正在不断地推动教育系统的发展,使教育更加普及、个性化和互动。 """ print(f"response:{response}") ```