Upload MyLLaMa
Browse files- README.md +199 -0
- config.json +16 -0
- configure_for_hf.py +54 -0
- llama.py +430 -0
- model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MyLLaMa"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configure_for_hf.MyLLaMaConfig",
|
7 |
+
"AutoModelForCausalLM": "configure_for_hf.MyLLaMa"
|
8 |
+
},
|
9 |
+
"embed_dim": 1536,
|
10 |
+
"model_type": "LLaMa",
|
11 |
+
"n_chckpnt_segments": 24,
|
12 |
+
"n_heads": 24,
|
13 |
+
"n_layers": 24,
|
14 |
+
"torch_dtype": "float32",
|
15 |
+
"transformers_version": "4.47.0.dev0"
|
16 |
+
}
|
configure_for_hf.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
from transformers import (
|
3 |
+
AutoConfig,
|
4 |
+
AutoModel,
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
PretrainedConfig,
|
7 |
+
PreTrainedModel,
|
8 |
+
)
|
9 |
+
|
10 |
+
from .llama import CustomAttentionLLaMa
|
11 |
+
|
12 |
+
|
13 |
+
class MyLLaMaConfig(PretrainedConfig):
|
14 |
+
model_type = "LLaMa"
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
embed_dim: int = 1536,
|
19 |
+
n_layers: int = 24,
|
20 |
+
n_heads: int = 24,
|
21 |
+
n_chckpnt_segments: int = 24,
|
22 |
+
**kwargs,
|
23 |
+
):
|
24 |
+
self.embed_dim = embed_dim
|
25 |
+
self.n_layers = n_layers
|
26 |
+
self.n_heads = n_heads
|
27 |
+
self.n_chckpnt_segments = n_chckpnt_segments
|
28 |
+
super().__init__(**kwargs)
|
29 |
+
|
30 |
+
|
31 |
+
class MyLLaMa(PreTrainedModel):
|
32 |
+
config_class = MyLLaMaConfig
|
33 |
+
|
34 |
+
def __init__(self, config: MyLLaMaConfig):
|
35 |
+
super().__init__(config)
|
36 |
+
self.model = CustomAttentionLLaMa(
|
37 |
+
config.embed_dim,
|
38 |
+
config.n_layers,
|
39 |
+
config.n_heads,
|
40 |
+
dropout=0,
|
41 |
+
n_chckpnt_segments=config.n_chckpnt_segments,
|
42 |
+
)
|
43 |
+
|
44 |
+
def forward(self, tensor, labels=None):
|
45 |
+
logits = self.model(tensor)["logits"]
|
46 |
+
if labels is not None:
|
47 |
+
loss = nn.functional.cross_entropy(logits, labels)
|
48 |
+
return {"loss": loss, "logits": logits}
|
49 |
+
return {"logits": logits}
|
50 |
+
|
51 |
+
|
52 |
+
AutoConfig.register("LLaMa", MyLLaMaConfig)
|
53 |
+
AutoModel.register(MyLLaMaConfig, MyLLaMa)
|
54 |
+
AutoModelForCausalLM.register(MyLLaMaConfig, MyLLaMa)
|
llama.py
ADDED
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import Tensor, nn
|
3 |
+
from torch.nn import Sequential
|
4 |
+
from torch.utils.checkpoint import checkpoint, checkpoint_sequential
|
5 |
+
from xformers.components.attention.utils import maybe_merge_masks
|
6 |
+
from xformers.components import MultiHeadDispatch
|
7 |
+
from xformers.components.attention import ScaledDotProduct
|
8 |
+
|
9 |
+
from transformers import AutoTokenizer
|
10 |
+
|
11 |
+
|
12 |
+
class RotaryEmbedding(nn.Module):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
dim_per_head: int,
|
16 |
+
max_seq_len: int = 4096,
|
17 |
+
interpolation_ratio: float | None = 0.25,
|
18 |
+
device=None,
|
19 |
+
dtype=None,
|
20 |
+
):
|
21 |
+
super().__init__()
|
22 |
+
|
23 |
+
self.dim_per_head = dim_per_head
|
24 |
+
self.max_seq_len = max_seq_len
|
25 |
+
freqs = 1.0 / (
|
26 |
+
10000
|
27 |
+
** (
|
28 |
+
torch.arange(0, dim_per_head, 2, device=device, dtype=dtype).float() / 6
|
29 |
+
)
|
30 |
+
)
|
31 |
+
freqs = torch.repeat_interleave(freqs, 2)
|
32 |
+
|
33 |
+
r = (
|
34 |
+
freqs
|
35 |
+
* torch.arange(max_seq_len, device=device, dtype=dtype).float()[:, None]
|
36 |
+
)
|
37 |
+
if interpolation_ratio is not None:
|
38 |
+
r = r * interpolation_ratio
|
39 |
+
|
40 |
+
r1 = r.cos()
|
41 |
+
self.register_buffer("r1", r1)
|
42 |
+
|
43 |
+
r2 = r.sin()
|
44 |
+
self.register_buffer("r2", r2)
|
45 |
+
|
46 |
+
aranged = torch.arange(dim_per_head, device=device, dtype=dtype)
|
47 |
+
|
48 |
+
mask1 = torch.where(
|
49 |
+
aranged % 2 == 1,
|
50 |
+
aranged - 1,
|
51 |
+
aranged + 1,
|
52 |
+
).float()
|
53 |
+
self.register_buffer("mask1", mask1)
|
54 |
+
|
55 |
+
mask2 = torch.where(aranged % 2 == 0, -1, 1).float()
|
56 |
+
self.register_buffer("mask2", mask2)
|
57 |
+
|
58 |
+
def forward(self, x: Tensor):
|
59 |
+
"""
|
60 |
+
Args:
|
61 |
+
x (Tensor): input tensor. shape: (bs, seq_len, n_heads, dim_per_head)
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
Tensor: input tensor with rotary embeddings. shape: (bs, seq_len, n_heads, dim_per_head)
|
65 |
+
"""
|
66 |
+
|
67 |
+
assert (
|
68 |
+
x.ndim == 4
|
69 |
+
), "input must have 4 dimensions: (bs, n_heads, seq_len, dim_per_head)"
|
70 |
+
assert x.shape[3] % 2 == 0, "dim_per_head must be divisible by 2"
|
71 |
+
|
72 |
+
x = x.transpose(1, 2)
|
73 |
+
|
74 |
+
return (
|
75 |
+
x * self.r1[None, : x.shape[1], None, :]
|
76 |
+
+ x[
|
77 |
+
:,
|
78 |
+
:,
|
79 |
+
:,
|
80 |
+
self.mask1,
|
81 |
+
]
|
82 |
+
* self.mask2
|
83 |
+
* self.r2[None, : x.shape[1], None, :]
|
84 |
+
).transpose(1, 2)
|
85 |
+
|
86 |
+
def extra_repr(self) -> str:
|
87 |
+
return f"dim_per_head={self.dim_per_head}, max_seq_len={self.max_seq_len}"
|
88 |
+
|
89 |
+
|
90 |
+
class RMSNorm(nn.Module):
|
91 |
+
def __init__(self, dim: int, eps: float = 1e-9):
|
92 |
+
super().__init__()
|
93 |
+
|
94 |
+
self.dim = dim
|
95 |
+
self.gamma = nn.Parameter(
|
96 |
+
data=torch.nn.init.normal_(torch.zeros((dim,))), requires_grad=True
|
97 |
+
)
|
98 |
+
self.eps = eps
|
99 |
+
|
100 |
+
def forward(self, x: Tensor):
|
101 |
+
"""
|
102 |
+
Args:
|
103 |
+
x (Tensor): input tensor. shape: (bs, seq_len, embed_dim)
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
Tensor: input tensor with rotary embeddings. shape: (bs, seq_len, embed_dim)
|
107 |
+
"""
|
108 |
+
|
109 |
+
assert x.ndim == 3, "input must have 3 dimensions: (bs, seq_len, embed_dim)"
|
110 |
+
|
111 |
+
return (
|
112 |
+
x
|
113 |
+
/ torch.sqrt_(torch.mean(torch.square(x), dim=-1) + self.eps)[:, :, None]
|
114 |
+
* self.gamma
|
115 |
+
)
|
116 |
+
|
117 |
+
def extra_repr(self) -> str:
|
118 |
+
return f"dim={self.dim}, eps={self.eps}"
|
119 |
+
|
120 |
+
|
121 |
+
class SiLU(nn.Module):
|
122 |
+
def __init__(self):
|
123 |
+
super().__init__()
|
124 |
+
|
125 |
+
def forward(self, x: Tensor):
|
126 |
+
"""
|
127 |
+
Args:
|
128 |
+
x (Tensor): input
|
129 |
+
"""
|
130 |
+
return x * x.sigmoid()
|
131 |
+
|
132 |
+
|
133 |
+
class SwiGLU(nn.Module):
|
134 |
+
def __init__(self, dim: int) -> None:
|
135 |
+
super().__init__()
|
136 |
+
self.linear_inp1 = nn.Linear(dim, (8 * dim) // 3, bias=False)
|
137 |
+
self.linear_inp2 = nn.Linear(dim, (8 * dim) // 3, bias=False)
|
138 |
+
self.linear_out = nn.Linear((8 * dim) // 3, dim, bias=False)
|
139 |
+
self.silu = SiLU()
|
140 |
+
|
141 |
+
# nn.init.xavier_uniform_(self.linear_inp1.weight)
|
142 |
+
# nn.init.xavier_uniform_(self.linear_inp2.weight)
|
143 |
+
# nn.init.xavier_uniform_(self.linear_out.weight)
|
144 |
+
|
145 |
+
def forward(self, x: Tensor):
|
146 |
+
"""
|
147 |
+
Args:
|
148 |
+
x (Tensor): input tensor
|
149 |
+
"""
|
150 |
+
return self.linear_out(self.silu(self.linear_inp1(x)) * self.linear_inp2(x))
|
151 |
+
|
152 |
+
|
153 |
+
class MistralTokenizer(nn.Module):
|
154 |
+
def __init__(self, max_length=1024, *args, **kwargs):
|
155 |
+
super().__init__()
|
156 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
157 |
+
"mistralai/Mistral-7B-v0.1", *args, **kwargs
|
158 |
+
)
|
159 |
+
self.tokenizer.add_special_tokens({"pad_token": "<pad>"})
|
160 |
+
self.special_tokens_ids = {
|
161 |
+
token: id
|
162 |
+
for token, id in zip(
|
163 |
+
self.tokenizer.special_tokens_map.keys(), self.tokenizer.all_special_ids
|
164 |
+
)
|
165 |
+
}
|
166 |
+
self.max_length = max_length
|
167 |
+
self.pad_token_id = self.tokenizer.pad_token_id
|
168 |
+
|
169 |
+
def forward(self, text):
|
170 |
+
return self.tokenizer(
|
171 |
+
text,
|
172 |
+
return_tensors="pt",
|
173 |
+
return_attention_mask=False,
|
174 |
+
max_length=self.max_length,
|
175 |
+
truncation=True,
|
176 |
+
padding=True,
|
177 |
+
padding_side="right",
|
178 |
+
)
|
179 |
+
|
180 |
+
def convert_ids_to_tokens(self, ids):
|
181 |
+
return self.tokenizer.convert_ids_to_tokens(ids)
|
182 |
+
|
183 |
+
def decode(self, x):
|
184 |
+
return self.tokenizer.batch_decode(x)
|
185 |
+
|
186 |
+
def __len__(self):
|
187 |
+
return len(self.tokenizer)
|
188 |
+
|
189 |
+
|
190 |
+
class MultiHeadAttention(nn.Module):
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
emb_size: int,
|
194 |
+
n_heads: int,
|
195 |
+
dropout: float = 0.0,
|
196 |
+
use_rotary_embeddings: bool = False,
|
197 |
+
bias_qkv: bool = False,
|
198 |
+
bias_out: bool = False,
|
199 |
+
):
|
200 |
+
super().__init__()
|
201 |
+
self.emb_size = emb_size
|
202 |
+
self.n_heads = n_heads
|
203 |
+
assert (
|
204 |
+
self.emb_size % n_heads == 0
|
205 |
+
), "Embedding size needs to be divisible by heads"
|
206 |
+
|
207 |
+
self.head_dim = emb_size // n_heads
|
208 |
+
|
209 |
+
self.use_rotary_embeddings = use_rotary_embeddings
|
210 |
+
if self.use_rotary_embeddings:
|
211 |
+
self.rotary_embed = RotaryEmbedding(self.head_dim)
|
212 |
+
|
213 |
+
self.qkv = nn.Linear(emb_size, emb_size * 3, bias=bias_qkv)
|
214 |
+
self.dropout = nn.Dropout(dropout)
|
215 |
+
self.out = nn.Linear(emb_size, emb_size, bias=bias_out)
|
216 |
+
|
217 |
+
self.scaling = self.head_dim**-0.5
|
218 |
+
|
219 |
+
def forward(self, x: Tensor, att_mask: Tensor = None):
|
220 |
+
qkv = self.qkv(x).chunk(3, dim=-1)
|
221 |
+
q, k, v = map(
|
222 |
+
lambda t: t.reshape(x.shape[0], -1, self.n_heads, self.head_dim).transpose(
|
223 |
+
1, 2
|
224 |
+
),
|
225 |
+
qkv,
|
226 |
+
) # [batch_size, n_heads, seq_len, head_dim]
|
227 |
+
|
228 |
+
if self.use_rotary_embeddings:
|
229 |
+
q, k = self.rotary_embed(q), self.rotary_embed(k)
|
230 |
+
|
231 |
+
dots = (
|
232 |
+
torch.matmul(q, k.transpose(-1, -2)) * self.scaling
|
233 |
+
) # [batch_size, n_heads, seq_len, seq_len]
|
234 |
+
|
235 |
+
if att_mask is not None:
|
236 |
+
dots = dots + att_mask
|
237 |
+
|
238 |
+
attn = self.dropout(torch.softmax(dots, dim=-1))
|
239 |
+
out = (
|
240 |
+
torch.matmul(attn, v).transpose(1, 2).reshape(x.shape[0], -1, self.emb_size)
|
241 |
+
)
|
242 |
+
out = self.out(out)
|
243 |
+
|
244 |
+
return out
|
245 |
+
|
246 |
+
|
247 |
+
class LLaMADecoderLayer(nn.Module):
|
248 |
+
def __init__(
|
249 |
+
self,
|
250 |
+
emb_size: int,
|
251 |
+
n_heads: int,
|
252 |
+
dropout: float,
|
253 |
+
) -> None:
|
254 |
+
super().__init__()
|
255 |
+
self.emb_size = emb_size
|
256 |
+
self.multihead_attn = MultiHeadDispatch(
|
257 |
+
dim_model=emb_size,
|
258 |
+
num_heads=n_heads,
|
259 |
+
attention=ScaledDotProduct(
|
260 |
+
dropout=dropout,
|
261 |
+
),
|
262 |
+
bias=(False, False, False, False),
|
263 |
+
use_rotary_embeddings=True,
|
264 |
+
)
|
265 |
+
self.rmsnorm1 = nn.RMSNorm(emb_size, eps=1e-9)
|
266 |
+
self.rmsnorm2 = nn.RMSNorm(emb_size, eps=1e-9)
|
267 |
+
self.swiglu = SwiGLU(emb_size)
|
268 |
+
self.n_heads = n_heads
|
269 |
+
|
270 |
+
def forward(self, in_tuple) -> Tensor:
|
271 |
+
"""
|
272 |
+
Args:
|
273 |
+
in_tuple (tuple[Tensor, Tensor, Tensor]): tuple, containing 3 tensors:
|
274 |
+
x (Tensor): input tensor (bs, seq_len, dim)
|
275 |
+
attn_mask (Tensor): attention mask (seq_len, seq_len)
|
276 |
+
padding_mask (Tensor): padding mask (bs, seq_len)
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
Tensor: output tensor
|
280 |
+
"""
|
281 |
+
assert len(in_tuple) == 2, "input tuple must have 2 elements"
|
282 |
+
x, mask = in_tuple
|
283 |
+
|
284 |
+
x = self.multihead_attn(self.rmsnorm1(x), att_mask=mask) + x
|
285 |
+
return self.swiglu(self.rmsnorm2(x)) + x, mask
|
286 |
+
|
287 |
+
|
288 |
+
class CustomAttentionLLaMaDecoder(LLaMADecoderLayer):
|
289 |
+
def __init__(
|
290 |
+
self,
|
291 |
+
emb_size: int,
|
292 |
+
n_heads: int,
|
293 |
+
dropout: float,
|
294 |
+
) -> None:
|
295 |
+
super().__init__(emb_size, n_heads, dropout)
|
296 |
+
self.multihead_attn = MultiHeadAttention(
|
297 |
+
emb_size=emb_size,
|
298 |
+
n_heads=n_heads,
|
299 |
+
bias_qkv=False,
|
300 |
+
bias_out=False,
|
301 |
+
use_rotary_embeddings=True,
|
302 |
+
dropout=dropout,
|
303 |
+
)
|
304 |
+
self.rmsnorm1 = RMSNorm(emb_size, eps=1e-9)
|
305 |
+
self.rmsnorm2 = RMSNorm(emb_size, eps=1e-9)
|
306 |
+
|
307 |
+
|
308 |
+
class LLaMaBase(nn.Module):
|
309 |
+
def __init__(
|
310 |
+
self,
|
311 |
+
embed_dim: int = 512,
|
312 |
+
n_layers: int = 2,
|
313 |
+
n_heads: int = 8,
|
314 |
+
dropout: int = 0.0,
|
315 |
+
n_chckpnt_segments: int = 1,
|
316 |
+
tokenizer=MistralTokenizer(),
|
317 |
+
**kwargs,
|
318 |
+
):
|
319 |
+
"""
|
320 |
+
Args:
|
321 |
+
n_feats (int): number of input features.
|
322 |
+
n_class (int): number of classes.
|
323 |
+
fc_hidden (int): number of hidden features.
|
324 |
+
"""
|
325 |
+
super().__init__()
|
326 |
+
|
327 |
+
self.tokenizer = tokenizer
|
328 |
+
self.vocab_len = len(tokenizer)
|
329 |
+
self.n_heads = n_heads
|
330 |
+
self.dropout = dropout
|
331 |
+
self.n_layers = n_layers
|
332 |
+
self.embed_dim = embed_dim
|
333 |
+
self.n_segments = n_chckpnt_segments
|
334 |
+
|
335 |
+
self.embed = nn.Embedding(
|
336 |
+
self.vocab_len, embed_dim, padding_idx=self.tokenizer.pad_token_id
|
337 |
+
)
|
338 |
+
self.head = nn.Linear(embed_dim, self.vocab_len, bias=False)
|
339 |
+
|
340 |
+
def forward(self, src: Tensor, attn_mask: Tensor, pad_mask: Tensor, **batch):
|
341 |
+
"""
|
342 |
+
Model forward method.
|
343 |
+
|
344 |
+
Args:
|
345 |
+
tokenized (Tensor): input text. shape: (batch_size, seq_len)
|
346 |
+
Returns:
|
347 |
+
output (dict): output dict containing logits.
|
348 |
+
"""
|
349 |
+
|
350 |
+
raise NotImplementedError
|
351 |
+
|
352 |
+
def __str__(self):
|
353 |
+
"""
|
354 |
+
Model prints with the number of parameters.
|
355 |
+
"""
|
356 |
+
all_parameters = sum([p.numel() for p in self.parameters()])
|
357 |
+
trainable_parameters = sum(
|
358 |
+
[p.numel() for p in self.parameters() if p.requires_grad]
|
359 |
+
)
|
360 |
+
embedding_parameters = sum([p.numel() for p in self.embed.parameters()])
|
361 |
+
|
362 |
+
result_info = super().__str__()
|
363 |
+
result_info = result_info + f"\nAll parameters: {all_parameters}"
|
364 |
+
result_info = result_info + f"\nTrainable parameters: {trainable_parameters}"
|
365 |
+
result_info = (
|
366 |
+
result_info
|
367 |
+
+ f"\nWithout embedding: {trainable_parameters - embedding_parameters}"
|
368 |
+
)
|
369 |
+
|
370 |
+
return result_info
|
371 |
+
|
372 |
+
|
373 |
+
class CustomAttentionLLaMa(LLaMaBase):
|
374 |
+
def __init__(
|
375 |
+
self,
|
376 |
+
embed_dim: int = 512,
|
377 |
+
n_layers: int = 2,
|
378 |
+
n_heads: int = 8,
|
379 |
+
dropout: int = 0.0,
|
380 |
+
n_chckpnt_segments: int = 1,
|
381 |
+
tokenizer=MistralTokenizer(),
|
382 |
+
**kwargs,
|
383 |
+
):
|
384 |
+
"""
|
385 |
+
Args:
|
386 |
+
n_feats (int): number of input features.
|
387 |
+
n_class (int): number of classes.
|
388 |
+
fc_hidden (int): number of hidden features.
|
389 |
+
"""
|
390 |
+
super().__init__(
|
391 |
+
embed_dim,
|
392 |
+
n_layers,
|
393 |
+
n_heads,
|
394 |
+
dropout,
|
395 |
+
n_chckpnt_segments,
|
396 |
+
tokenizer,
|
397 |
+
)
|
398 |
+
|
399 |
+
self.decoders = nn.Sequential(
|
400 |
+
*[
|
401 |
+
CustomAttentionLLaMaDecoder(
|
402 |
+
emb_size=embed_dim, n_heads=self.n_heads, dropout=dropout
|
403 |
+
)
|
404 |
+
for _ in range(n_layers)
|
405 |
+
]
|
406 |
+
)
|
407 |
+
self.rmsnorm = RMSNorm(embed_dim, eps=1e-9)
|
408 |
+
|
409 |
+
def forward(self, src: Tensor, attn_mask: Tensor, pad_mask: Tensor, **batch):
|
410 |
+
"""
|
411 |
+
Model forward method.
|
412 |
+
|
413 |
+
Args:
|
414 |
+
tokenized (Tensor): input text. shape: (batch_size, seq_len)
|
415 |
+
Returns:
|
416 |
+
output (dict): output dict containing logits.
|
417 |
+
"""
|
418 |
+
x = self.embed(src) # embeds shape: [batch_size, seq_len, embed_dim]
|
419 |
+
sizes = x.shape
|
420 |
+
mask = maybe_merge_masks(
|
421 |
+
attn_mask, pad_mask, sizes[0], sizes[1], self.n_heads
|
422 |
+
).view(x.shape[0], self.n_heads, sizes[1], sizes[1])
|
423 |
+
x, _ = checkpoint_sequential(self.decoders, self.n_segments, input=(x, mask))
|
424 |
+
# for decoder in self.decoders:
|
425 |
+
# x, _, _ = decoder((x, attn_mask, pad_mask))
|
426 |
+
|
427 |
+
logits = self.head(self.rmsnorm(x))
|
428 |
+
return {
|
429 |
+
"logits": logits.permute(0, 2, 1)
|
430 |
+
} # logits shape: [batch_size, vocab_len, seq_len]
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6380bd512c40cdd9705099299688b1b4965a8da9da94f8f9d4b29a5b3ac5bf06
|
3 |
+
size 3161813608
|