MouezYazidi commited on
Commit
e18cf3c
1 Parent(s): 2ddcb45

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md CHANGED
@@ -13,6 +13,83 @@ datasets:
13
  - iamtarun/python_code_instructions_18k_alpaca
14
  ---
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  # Uploaded model
17
 
18
  - **Developed by:** MouezYazidi
 
13
  - iamtarun/python_code_instructions_18k_alpaca
14
  ---
15
 
16
+ # Model Description
17
+
18
+ This model is fine-tuned from **Falcon3-10B**. This model is enhanced to improve coding capabilities, particularly in Python, as it was fine-tuned on a dataset of 18,000 Python samples using Alpaca prompt instructions.
19
+
20
+ Please refer to this repository when using the model.
21
+
22
+ ## To perform inference using these LoRA adapters, please use the following code:
23
+
24
+
25
+ ````Python
26
+ # Installs Unsloth, Xformers (Flash Attention) and all other packages!
27
+ !pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
28
+ !pip install --no-deps "xformers<0.0.27" "trl<0.9.0" peft accelerate bitsandbytes
29
+ ````
30
+
31
+ ````Python
32
+ from unsloth import FastLanguageModel
33
+ model, tokenizer = FastLanguageModel.from_pretrained(
34
+ model_name = "MouezYazidi/Falcon3Coder-10B-Base_LoRA",
35
+ max_seq_length = 2048,
36
+ dtype = None,
37
+ load_in_4bit = True,
38
+ )
39
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
40
+
41
+ alpaca_prompt = """Below is an instruction describing a task, along with an input providing additional context. Your task is to generate a clear, concise, and accurate Python code response that fulfills the given request.
42
+
43
+ ### Instruction:
44
+ {}
45
+
46
+ ### Input:
47
+ {}
48
+
49
+ ### Response:
50
+ {}"""
51
+
52
+ inputs = tokenizer(
53
+ [
54
+ alpaca_prompt.format(
55
+ "", # instruction
56
+ """Write a Python function that generates and prints the first n rows of Pascal's Triangle. Ensure the function accepts a positive integer n as input and produces the rows in a well-formatted structure (e.g., lists within a list or as strings). If you use any external libraries, make sure to explicitly import them in your code.""", # input
57
+ "", # output - leave this blank for generation!
58
+ )
59
+ ], return_tensors = "pt").to("cuda")
60
+
61
+ from transformers import TextStreamer
62
+ text_streamer = TextStreamer(tokenizer)
63
+ _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 512)
64
+ ````
65
+
66
+ ````Markdown
67
+
68
+ The Outout is:
69
+
70
+ <s> Below is an instruction describing a task, along with an input providing additional context. Your task is to generate a clear, concise, and accurate Python code response that fulfills the given request.
71
+
72
+ ### Instruction:
73
+
74
+
75
+ ### Input:
76
+ Write a Python function that generates and prints the first n rows of Pascal's Triangle. Ensure the function accepts a positive integer n as input and produces the rows in a well-formatted structure (e.g., lists within a list or as strings). If you use any external libraries, make sure to explicitly import them in your code.
77
+
78
+ ### Response:
79
+ def pascal_triangle(n):
80
+ triangle = [[1]]
81
+ for i in range(1, n):
82
+ row = [1]
83
+ for j in range(1, i):
84
+ row.append(triangle[i-1][j-1] + triangle[i-1][j])
85
+ row.append(1)
86
+ triangle.append(row)
87
+ return triangle
88
+
89
+ print(pascal_triangle(5))</s>
90
+
91
+ ````
92
+
93
  # Uploaded model
94
 
95
  - **Developed by:** MouezYazidi