MounikaAithagoni
commited on
Upload 2 files
Browse files
Transformer- Part-1_ English-to-Arabic translation.docx
ADDED
Binary file (149 kB). View file
|
|
Transformer_Part_2__English_to_Arabic_translation.ipynb
ADDED
@@ -0,0 +1,1468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "A100"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU",
|
17 |
+
"widgets": {
|
18 |
+
"application/vnd.jupyter.widget-state+json": {
|
19 |
+
"2bea128ff6a84dea98153aa2c398c845": {
|
20 |
+
"model_module": "@jupyter-widgets/controls",
|
21 |
+
"model_name": "HBoxModel",
|
22 |
+
"model_module_version": "1.5.0",
|
23 |
+
"state": {
|
24 |
+
"_dom_classes": [],
|
25 |
+
"_model_module": "@jupyter-widgets/controls",
|
26 |
+
"_model_module_version": "1.5.0",
|
27 |
+
"_model_name": "HBoxModel",
|
28 |
+
"_view_count": null,
|
29 |
+
"_view_module": "@jupyter-widgets/controls",
|
30 |
+
"_view_module_version": "1.5.0",
|
31 |
+
"_view_name": "HBoxView",
|
32 |
+
"box_style": "",
|
33 |
+
"children": [
|
34 |
+
"IPY_MODEL_9860c006ecf841e8ac018927761fadda",
|
35 |
+
"IPY_MODEL_06f1133db9334aa79e927e51220a1561",
|
36 |
+
"IPY_MODEL_f19b60de091948998a0d037896442ac5"
|
37 |
+
],
|
38 |
+
"layout": "IPY_MODEL_e47071d647b04f4683527fc4c5acb592"
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"9860c006ecf841e8ac018927761fadda": {
|
42 |
+
"model_module": "@jupyter-widgets/controls",
|
43 |
+
"model_name": "HTMLModel",
|
44 |
+
"model_module_version": "1.5.0",
|
45 |
+
"state": {
|
46 |
+
"_dom_classes": [],
|
47 |
+
"_model_module": "@jupyter-widgets/controls",
|
48 |
+
"_model_module_version": "1.5.0",
|
49 |
+
"_model_name": "HTMLModel",
|
50 |
+
"_view_count": null,
|
51 |
+
"_view_module": "@jupyter-widgets/controls",
|
52 |
+
"_view_module_version": "1.5.0",
|
53 |
+
"_view_name": "HTMLView",
|
54 |
+
"description": "",
|
55 |
+
"description_tooltip": null,
|
56 |
+
"layout": "IPY_MODEL_78630ac454e54e91b3b46184da36f29b",
|
57 |
+
"placeholder": "",
|
58 |
+
"style": "IPY_MODEL_23c4bde6b4cd4b918d8ddc0a504d263d",
|
59 |
+
"value": "model.safetensors: 100%"
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"06f1133db9334aa79e927e51220a1561": {
|
63 |
+
"model_module": "@jupyter-widgets/controls",
|
64 |
+
"model_name": "FloatProgressModel",
|
65 |
+
"model_module_version": "1.5.0",
|
66 |
+
"state": {
|
67 |
+
"_dom_classes": [],
|
68 |
+
"_model_module": "@jupyter-widgets/controls",
|
69 |
+
"_model_module_version": "1.5.0",
|
70 |
+
"_model_name": "FloatProgressModel",
|
71 |
+
"_view_count": null,
|
72 |
+
"_view_module": "@jupyter-widgets/controls",
|
73 |
+
"_view_module_version": "1.5.0",
|
74 |
+
"_view_name": "ProgressView",
|
75 |
+
"bar_style": "success",
|
76 |
+
"description": "",
|
77 |
+
"description_tooltip": null,
|
78 |
+
"layout": "IPY_MODEL_821c81b459e04c92a3609ae2c017e1a5",
|
79 |
+
"max": 548105171,
|
80 |
+
"min": 0,
|
81 |
+
"orientation": "horizontal",
|
82 |
+
"style": "IPY_MODEL_63aed25f754742948b88a967a1b413d7",
|
83 |
+
"value": 548105171
|
84 |
+
}
|
85 |
+
},
|
86 |
+
"f19b60de091948998a0d037896442ac5": {
|
87 |
+
"model_module": "@jupyter-widgets/controls",
|
88 |
+
"model_name": "HTMLModel",
|
89 |
+
"model_module_version": "1.5.0",
|
90 |
+
"state": {
|
91 |
+
"_dom_classes": [],
|
92 |
+
"_model_module": "@jupyter-widgets/controls",
|
93 |
+
"_model_module_version": "1.5.0",
|
94 |
+
"_model_name": "HTMLModel",
|
95 |
+
"_view_count": null,
|
96 |
+
"_view_module": "@jupyter-widgets/controls",
|
97 |
+
"_view_module_version": "1.5.0",
|
98 |
+
"_view_name": "HTMLView",
|
99 |
+
"description": "",
|
100 |
+
"description_tooltip": null,
|
101 |
+
"layout": "IPY_MODEL_d44d9eaebd4449c39d0a85f8886e3110",
|
102 |
+
"placeholder": "",
|
103 |
+
"style": "IPY_MODEL_7e4fb57794f9468a9de7a1733a21c0b9",
|
104 |
+
"value": " 548M/548M [00:03<00:00, 205MB/s]"
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"e47071d647b04f4683527fc4c5acb592": {
|
108 |
+
"model_module": "@jupyter-widgets/base",
|
109 |
+
"model_name": "LayoutModel",
|
110 |
+
"model_module_version": "1.2.0",
|
111 |
+
"state": {
|
112 |
+
"_model_module": "@jupyter-widgets/base",
|
113 |
+
"_model_module_version": "1.2.0",
|
114 |
+
"_model_name": "LayoutModel",
|
115 |
+
"_view_count": null,
|
116 |
+
"_view_module": "@jupyter-widgets/base",
|
117 |
+
"_view_module_version": "1.2.0",
|
118 |
+
"_view_name": "LayoutView",
|
119 |
+
"align_content": null,
|
120 |
+
"align_items": null,
|
121 |
+
"align_self": null,
|
122 |
+
"border": null,
|
123 |
+
"bottom": null,
|
124 |
+
"display": null,
|
125 |
+
"flex": null,
|
126 |
+
"flex_flow": null,
|
127 |
+
"grid_area": null,
|
128 |
+
"grid_auto_columns": null,
|
129 |
+
"grid_auto_flow": null,
|
130 |
+
"grid_auto_rows": null,
|
131 |
+
"grid_column": null,
|
132 |
+
"grid_gap": null,
|
133 |
+
"grid_row": null,
|
134 |
+
"grid_template_areas": null,
|
135 |
+
"grid_template_columns": null,
|
136 |
+
"grid_template_rows": null,
|
137 |
+
"height": null,
|
138 |
+
"justify_content": null,
|
139 |
+
"justify_items": null,
|
140 |
+
"left": null,
|
141 |
+
"margin": null,
|
142 |
+
"max_height": null,
|
143 |
+
"max_width": null,
|
144 |
+
"min_height": null,
|
145 |
+
"min_width": null,
|
146 |
+
"object_fit": null,
|
147 |
+
"object_position": null,
|
148 |
+
"order": null,
|
149 |
+
"overflow": null,
|
150 |
+
"overflow_x": null,
|
151 |
+
"overflow_y": null,
|
152 |
+
"padding": null,
|
153 |
+
"right": null,
|
154 |
+
"top": null,
|
155 |
+
"visibility": null,
|
156 |
+
"width": null
|
157 |
+
}
|
158 |
+
},
|
159 |
+
"78630ac454e54e91b3b46184da36f29b": {
|
160 |
+
"model_module": "@jupyter-widgets/base",
|
161 |
+
"model_name": "LayoutModel",
|
162 |
+
"model_module_version": "1.2.0",
|
163 |
+
"state": {
|
164 |
+
"_model_module": "@jupyter-widgets/base",
|
165 |
+
"_model_module_version": "1.2.0",
|
166 |
+
"_model_name": "LayoutModel",
|
167 |
+
"_view_count": null,
|
168 |
+
"_view_module": "@jupyter-widgets/base",
|
169 |
+
"_view_module_version": "1.2.0",
|
170 |
+
"_view_name": "LayoutView",
|
171 |
+
"align_content": null,
|
172 |
+
"align_items": null,
|
173 |
+
"align_self": null,
|
174 |
+
"border": null,
|
175 |
+
"bottom": null,
|
176 |
+
"display": null,
|
177 |
+
"flex": null,
|
178 |
+
"flex_flow": null,
|
179 |
+
"grid_area": null,
|
180 |
+
"grid_auto_columns": null,
|
181 |
+
"grid_auto_flow": null,
|
182 |
+
"grid_auto_rows": null,
|
183 |
+
"grid_column": null,
|
184 |
+
"grid_gap": null,
|
185 |
+
"grid_row": null,
|
186 |
+
"grid_template_areas": null,
|
187 |
+
"grid_template_columns": null,
|
188 |
+
"grid_template_rows": null,
|
189 |
+
"height": null,
|
190 |
+
"justify_content": null,
|
191 |
+
"justify_items": null,
|
192 |
+
"left": null,
|
193 |
+
"margin": null,
|
194 |
+
"max_height": null,
|
195 |
+
"max_width": null,
|
196 |
+
"min_height": null,
|
197 |
+
"min_width": null,
|
198 |
+
"object_fit": null,
|
199 |
+
"object_position": null,
|
200 |
+
"order": null,
|
201 |
+
"overflow": null,
|
202 |
+
"overflow_x": null,
|
203 |
+
"overflow_y": null,
|
204 |
+
"padding": null,
|
205 |
+
"right": null,
|
206 |
+
"top": null,
|
207 |
+
"visibility": null,
|
208 |
+
"width": null
|
209 |
+
}
|
210 |
+
},
|
211 |
+
"23c4bde6b4cd4b918d8ddc0a504d263d": {
|
212 |
+
"model_module": "@jupyter-widgets/controls",
|
213 |
+
"model_name": "DescriptionStyleModel",
|
214 |
+
"model_module_version": "1.5.0",
|
215 |
+
"state": {
|
216 |
+
"_model_module": "@jupyter-widgets/controls",
|
217 |
+
"_model_module_version": "1.5.0",
|
218 |
+
"_model_name": "DescriptionStyleModel",
|
219 |
+
"_view_count": null,
|
220 |
+
"_view_module": "@jupyter-widgets/base",
|
221 |
+
"_view_module_version": "1.2.0",
|
222 |
+
"_view_name": "StyleView",
|
223 |
+
"description_width": ""
|
224 |
+
}
|
225 |
+
},
|
226 |
+
"821c81b459e04c92a3609ae2c017e1a5": {
|
227 |
+
"model_module": "@jupyter-widgets/base",
|
228 |
+
"model_name": "LayoutModel",
|
229 |
+
"model_module_version": "1.2.0",
|
230 |
+
"state": {
|
231 |
+
"_model_module": "@jupyter-widgets/base",
|
232 |
+
"_model_module_version": "1.2.0",
|
233 |
+
"_model_name": "LayoutModel",
|
234 |
+
"_view_count": null,
|
235 |
+
"_view_module": "@jupyter-widgets/base",
|
236 |
+
"_view_module_version": "1.2.0",
|
237 |
+
"_view_name": "LayoutView",
|
238 |
+
"align_content": null,
|
239 |
+
"align_items": null,
|
240 |
+
"align_self": null,
|
241 |
+
"border": null,
|
242 |
+
"bottom": null,
|
243 |
+
"display": null,
|
244 |
+
"flex": null,
|
245 |
+
"flex_flow": null,
|
246 |
+
"grid_area": null,
|
247 |
+
"grid_auto_columns": null,
|
248 |
+
"grid_auto_flow": null,
|
249 |
+
"grid_auto_rows": null,
|
250 |
+
"grid_column": null,
|
251 |
+
"grid_gap": null,
|
252 |
+
"grid_row": null,
|
253 |
+
"grid_template_areas": null,
|
254 |
+
"grid_template_columns": null,
|
255 |
+
"grid_template_rows": null,
|
256 |
+
"height": null,
|
257 |
+
"justify_content": null,
|
258 |
+
"justify_items": null,
|
259 |
+
"left": null,
|
260 |
+
"margin": null,
|
261 |
+
"max_height": null,
|
262 |
+
"max_width": null,
|
263 |
+
"min_height": null,
|
264 |
+
"min_width": null,
|
265 |
+
"object_fit": null,
|
266 |
+
"object_position": null,
|
267 |
+
"order": null,
|
268 |
+
"overflow": null,
|
269 |
+
"overflow_x": null,
|
270 |
+
"overflow_y": null,
|
271 |
+
"padding": null,
|
272 |
+
"right": null,
|
273 |
+
"top": null,
|
274 |
+
"visibility": null,
|
275 |
+
"width": null
|
276 |
+
}
|
277 |
+
},
|
278 |
+
"63aed25f754742948b88a967a1b413d7": {
|
279 |
+
"model_module": "@jupyter-widgets/controls",
|
280 |
+
"model_name": "ProgressStyleModel",
|
281 |
+
"model_module_version": "1.5.0",
|
282 |
+
"state": {
|
283 |
+
"_model_module": "@jupyter-widgets/controls",
|
284 |
+
"_model_module_version": "1.5.0",
|
285 |
+
"_model_name": "ProgressStyleModel",
|
286 |
+
"_view_count": null,
|
287 |
+
"_view_module": "@jupyter-widgets/base",
|
288 |
+
"_view_module_version": "1.2.0",
|
289 |
+
"_view_name": "StyleView",
|
290 |
+
"bar_color": null,
|
291 |
+
"description_width": ""
|
292 |
+
}
|
293 |
+
},
|
294 |
+
"d44d9eaebd4449c39d0a85f8886e3110": {
|
295 |
+
"model_module": "@jupyter-widgets/base",
|
296 |
+
"model_name": "LayoutModel",
|
297 |
+
"model_module_version": "1.2.0",
|
298 |
+
"state": {
|
299 |
+
"_model_module": "@jupyter-widgets/base",
|
300 |
+
"_model_module_version": "1.2.0",
|
301 |
+
"_model_name": "LayoutModel",
|
302 |
+
"_view_count": null,
|
303 |
+
"_view_module": "@jupyter-widgets/base",
|
304 |
+
"_view_module_version": "1.2.0",
|
305 |
+
"_view_name": "LayoutView",
|
306 |
+
"align_content": null,
|
307 |
+
"align_items": null,
|
308 |
+
"align_self": null,
|
309 |
+
"border": null,
|
310 |
+
"bottom": null,
|
311 |
+
"display": null,
|
312 |
+
"flex": null,
|
313 |
+
"flex_flow": null,
|
314 |
+
"grid_area": null,
|
315 |
+
"grid_auto_columns": null,
|
316 |
+
"grid_auto_flow": null,
|
317 |
+
"grid_auto_rows": null,
|
318 |
+
"grid_column": null,
|
319 |
+
"grid_gap": null,
|
320 |
+
"grid_row": null,
|
321 |
+
"grid_template_areas": null,
|
322 |
+
"grid_template_columns": null,
|
323 |
+
"grid_template_rows": null,
|
324 |
+
"height": null,
|
325 |
+
"justify_content": null,
|
326 |
+
"justify_items": null,
|
327 |
+
"left": null,
|
328 |
+
"margin": null,
|
329 |
+
"max_height": null,
|
330 |
+
"max_width": null,
|
331 |
+
"min_height": null,
|
332 |
+
"min_width": null,
|
333 |
+
"object_fit": null,
|
334 |
+
"object_position": null,
|
335 |
+
"order": null,
|
336 |
+
"overflow": null,
|
337 |
+
"overflow_x": null,
|
338 |
+
"overflow_y": null,
|
339 |
+
"padding": null,
|
340 |
+
"right": null,
|
341 |
+
"top": null,
|
342 |
+
"visibility": null,
|
343 |
+
"width": null
|
344 |
+
}
|
345 |
+
},
|
346 |
+
"7e4fb57794f9468a9de7a1733a21c0b9": {
|
347 |
+
"model_module": "@jupyter-widgets/controls",
|
348 |
+
"model_name": "DescriptionStyleModel",
|
349 |
+
"model_module_version": "1.5.0",
|
350 |
+
"state": {
|
351 |
+
"_model_module": "@jupyter-widgets/controls",
|
352 |
+
"_model_module_version": "1.5.0",
|
353 |
+
"_model_name": "DescriptionStyleModel",
|
354 |
+
"_view_count": null,
|
355 |
+
"_view_module": "@jupyter-widgets/base",
|
356 |
+
"_view_module_version": "1.2.0",
|
357 |
+
"_view_name": "StyleView",
|
358 |
+
"description_width": ""
|
359 |
+
}
|
360 |
+
},
|
361 |
+
"5a3cde9d5eda48d1bacedb3da7a8c36e": {
|
362 |
+
"model_module": "@jupyter-widgets/controls",
|
363 |
+
"model_name": "HBoxModel",
|
364 |
+
"model_module_version": "1.5.0",
|
365 |
+
"state": {
|
366 |
+
"_dom_classes": [],
|
367 |
+
"_model_module": "@jupyter-widgets/controls",
|
368 |
+
"_model_module_version": "1.5.0",
|
369 |
+
"_model_name": "HBoxModel",
|
370 |
+
"_view_count": null,
|
371 |
+
"_view_module": "@jupyter-widgets/controls",
|
372 |
+
"_view_module_version": "1.5.0",
|
373 |
+
"_view_name": "HBoxView",
|
374 |
+
"box_style": "",
|
375 |
+
"children": [
|
376 |
+
"IPY_MODEL_59dfbf89a4a44856853bbdd20e87c1b6",
|
377 |
+
"IPY_MODEL_35a848f438c44b3aa35bc3ec3720fb6d",
|
378 |
+
"IPY_MODEL_50e96a2a7dac40719b2bfac5aebcd802"
|
379 |
+
],
|
380 |
+
"layout": "IPY_MODEL_c23fb59092fd4b019a41e6ba82827880"
|
381 |
+
}
|
382 |
+
},
|
383 |
+
"59dfbf89a4a44856853bbdd20e87c1b6": {
|
384 |
+
"model_module": "@jupyter-widgets/controls",
|
385 |
+
"model_name": "HTMLModel",
|
386 |
+
"model_module_version": "1.5.0",
|
387 |
+
"state": {
|
388 |
+
"_dom_classes": [],
|
389 |
+
"_model_module": "@jupyter-widgets/controls",
|
390 |
+
"_model_module_version": "1.5.0",
|
391 |
+
"_model_name": "HTMLModel",
|
392 |
+
"_view_count": null,
|
393 |
+
"_view_module": "@jupyter-widgets/controls",
|
394 |
+
"_view_module_version": "1.5.0",
|
395 |
+
"_view_name": "HTMLView",
|
396 |
+
"description": "",
|
397 |
+
"description_tooltip": null,
|
398 |
+
"layout": "IPY_MODEL_afbba89a0bfc4a1994e5f5b009f1ff9c",
|
399 |
+
"placeholder": "",
|
400 |
+
"style": "IPY_MODEL_d1562f9faedd457c9b12c8fe88215a0b",
|
401 |
+
"value": "generation_config.json: 100%"
|
402 |
+
}
|
403 |
+
},
|
404 |
+
"35a848f438c44b3aa35bc3ec3720fb6d": {
|
405 |
+
"model_module": "@jupyter-widgets/controls",
|
406 |
+
"model_name": "FloatProgressModel",
|
407 |
+
"model_module_version": "1.5.0",
|
408 |
+
"state": {
|
409 |
+
"_dom_classes": [],
|
410 |
+
"_model_module": "@jupyter-widgets/controls",
|
411 |
+
"_model_module_version": "1.5.0",
|
412 |
+
"_model_name": "FloatProgressModel",
|
413 |
+
"_view_count": null,
|
414 |
+
"_view_module": "@jupyter-widgets/controls",
|
415 |
+
"_view_module_version": "1.5.0",
|
416 |
+
"_view_name": "ProgressView",
|
417 |
+
"bar_style": "success",
|
418 |
+
"description": "",
|
419 |
+
"description_tooltip": null,
|
420 |
+
"layout": "IPY_MODEL_b92e1b10eba743dea4c248022193de45",
|
421 |
+
"max": 124,
|
422 |
+
"min": 0,
|
423 |
+
"orientation": "horizontal",
|
424 |
+
"style": "IPY_MODEL_e5703982607e4ccaa875bf168d29b567",
|
425 |
+
"value": 124
|
426 |
+
}
|
427 |
+
},
|
428 |
+
"50e96a2a7dac40719b2bfac5aebcd802": {
|
429 |
+
"model_module": "@jupyter-widgets/controls",
|
430 |
+
"model_name": "HTMLModel",
|
431 |
+
"model_module_version": "1.5.0",
|
432 |
+
"state": {
|
433 |
+
"_dom_classes": [],
|
434 |
+
"_model_module": "@jupyter-widgets/controls",
|
435 |
+
"_model_module_version": "1.5.0",
|
436 |
+
"_model_name": "HTMLModel",
|
437 |
+
"_view_count": null,
|
438 |
+
"_view_module": "@jupyter-widgets/controls",
|
439 |
+
"_view_module_version": "1.5.0",
|
440 |
+
"_view_name": "HTMLView",
|
441 |
+
"description": "",
|
442 |
+
"description_tooltip": null,
|
443 |
+
"layout": "IPY_MODEL_c42451c719a24442aa0eea5d985f5f21",
|
444 |
+
"placeholder": "",
|
445 |
+
"style": "IPY_MODEL_e01cdc7235bf42ef84a900b1c5bf206e",
|
446 |
+
"value": " 124/124 [00:00<00:00, 8.93kB/s]"
|
447 |
+
}
|
448 |
+
},
|
449 |
+
"c23fb59092fd4b019a41e6ba82827880": {
|
450 |
+
"model_module": "@jupyter-widgets/base",
|
451 |
+
"model_name": "LayoutModel",
|
452 |
+
"model_module_version": "1.2.0",
|
453 |
+
"state": {
|
454 |
+
"_model_module": "@jupyter-widgets/base",
|
455 |
+
"_model_module_version": "1.2.0",
|
456 |
+
"_model_name": "LayoutModel",
|
457 |
+
"_view_count": null,
|
458 |
+
"_view_module": "@jupyter-widgets/base",
|
459 |
+
"_view_module_version": "1.2.0",
|
460 |
+
"_view_name": "LayoutView",
|
461 |
+
"align_content": null,
|
462 |
+
"align_items": null,
|
463 |
+
"align_self": null,
|
464 |
+
"border": null,
|
465 |
+
"bottom": null,
|
466 |
+
"display": null,
|
467 |
+
"flex": null,
|
468 |
+
"flex_flow": null,
|
469 |
+
"grid_area": null,
|
470 |
+
"grid_auto_columns": null,
|
471 |
+
"grid_auto_flow": null,
|
472 |
+
"grid_auto_rows": null,
|
473 |
+
"grid_column": null,
|
474 |
+
"grid_gap": null,
|
475 |
+
"grid_row": null,
|
476 |
+
"grid_template_areas": null,
|
477 |
+
"grid_template_columns": null,
|
478 |
+
"grid_template_rows": null,
|
479 |
+
"height": null,
|
480 |
+
"justify_content": null,
|
481 |
+
"justify_items": null,
|
482 |
+
"left": null,
|
483 |
+
"margin": null,
|
484 |
+
"max_height": null,
|
485 |
+
"max_width": null,
|
486 |
+
"min_height": null,
|
487 |
+
"min_width": null,
|
488 |
+
"object_fit": null,
|
489 |
+
"object_position": null,
|
490 |
+
"order": null,
|
491 |
+
"overflow": null,
|
492 |
+
"overflow_x": null,
|
493 |
+
"overflow_y": null,
|
494 |
+
"padding": null,
|
495 |
+
"right": null,
|
496 |
+
"top": null,
|
497 |
+
"visibility": null,
|
498 |
+
"width": null
|
499 |
+
}
|
500 |
+
},
|
501 |
+
"afbba89a0bfc4a1994e5f5b009f1ff9c": {
|
502 |
+
"model_module": "@jupyter-widgets/base",
|
503 |
+
"model_name": "LayoutModel",
|
504 |
+
"model_module_version": "1.2.0",
|
505 |
+
"state": {
|
506 |
+
"_model_module": "@jupyter-widgets/base",
|
507 |
+
"_model_module_version": "1.2.0",
|
508 |
+
"_model_name": "LayoutModel",
|
509 |
+
"_view_count": null,
|
510 |
+
"_view_module": "@jupyter-widgets/base",
|
511 |
+
"_view_module_version": "1.2.0",
|
512 |
+
"_view_name": "LayoutView",
|
513 |
+
"align_content": null,
|
514 |
+
"align_items": null,
|
515 |
+
"align_self": null,
|
516 |
+
"border": null,
|
517 |
+
"bottom": null,
|
518 |
+
"display": null,
|
519 |
+
"flex": null,
|
520 |
+
"flex_flow": null,
|
521 |
+
"grid_area": null,
|
522 |
+
"grid_auto_columns": null,
|
523 |
+
"grid_auto_flow": null,
|
524 |
+
"grid_auto_rows": null,
|
525 |
+
"grid_column": null,
|
526 |
+
"grid_gap": null,
|
527 |
+
"grid_row": null,
|
528 |
+
"grid_template_areas": null,
|
529 |
+
"grid_template_columns": null,
|
530 |
+
"grid_template_rows": null,
|
531 |
+
"height": null,
|
532 |
+
"justify_content": null,
|
533 |
+
"justify_items": null,
|
534 |
+
"left": null,
|
535 |
+
"margin": null,
|
536 |
+
"max_height": null,
|
537 |
+
"max_width": null,
|
538 |
+
"min_height": null,
|
539 |
+
"min_width": null,
|
540 |
+
"object_fit": null,
|
541 |
+
"object_position": null,
|
542 |
+
"order": null,
|
543 |
+
"overflow": null,
|
544 |
+
"overflow_x": null,
|
545 |
+
"overflow_y": null,
|
546 |
+
"padding": null,
|
547 |
+
"right": null,
|
548 |
+
"top": null,
|
549 |
+
"visibility": null,
|
550 |
+
"width": null
|
551 |
+
}
|
552 |
+
},
|
553 |
+
"d1562f9faedd457c9b12c8fe88215a0b": {
|
554 |
+
"model_module": "@jupyter-widgets/controls",
|
555 |
+
"model_name": "DescriptionStyleModel",
|
556 |
+
"model_module_version": "1.5.0",
|
557 |
+
"state": {
|
558 |
+
"_model_module": "@jupyter-widgets/controls",
|
559 |
+
"_model_module_version": "1.5.0",
|
560 |
+
"_model_name": "DescriptionStyleModel",
|
561 |
+
"_view_count": null,
|
562 |
+
"_view_module": "@jupyter-widgets/base",
|
563 |
+
"_view_module_version": "1.2.0",
|
564 |
+
"_view_name": "StyleView",
|
565 |
+
"description_width": ""
|
566 |
+
}
|
567 |
+
},
|
568 |
+
"b92e1b10eba743dea4c248022193de45": {
|
569 |
+
"model_module": "@jupyter-widgets/base",
|
570 |
+
"model_name": "LayoutModel",
|
571 |
+
"model_module_version": "1.2.0",
|
572 |
+
"state": {
|
573 |
+
"_model_module": "@jupyter-widgets/base",
|
574 |
+
"_model_module_version": "1.2.0",
|
575 |
+
"_model_name": "LayoutModel",
|
576 |
+
"_view_count": null,
|
577 |
+
"_view_module": "@jupyter-widgets/base",
|
578 |
+
"_view_module_version": "1.2.0",
|
579 |
+
"_view_name": "LayoutView",
|
580 |
+
"align_content": null,
|
581 |
+
"align_items": null,
|
582 |
+
"align_self": null,
|
583 |
+
"border": null,
|
584 |
+
"bottom": null,
|
585 |
+
"display": null,
|
586 |
+
"flex": null,
|
587 |
+
"flex_flow": null,
|
588 |
+
"grid_area": null,
|
589 |
+
"grid_auto_columns": null,
|
590 |
+
"grid_auto_flow": null,
|
591 |
+
"grid_auto_rows": null,
|
592 |
+
"grid_column": null,
|
593 |
+
"grid_gap": null,
|
594 |
+
"grid_row": null,
|
595 |
+
"grid_template_areas": null,
|
596 |
+
"grid_template_columns": null,
|
597 |
+
"grid_template_rows": null,
|
598 |
+
"height": null,
|
599 |
+
"justify_content": null,
|
600 |
+
"justify_items": null,
|
601 |
+
"left": null,
|
602 |
+
"margin": null,
|
603 |
+
"max_height": null,
|
604 |
+
"max_width": null,
|
605 |
+
"min_height": null,
|
606 |
+
"min_width": null,
|
607 |
+
"object_fit": null,
|
608 |
+
"object_position": null,
|
609 |
+
"order": null,
|
610 |
+
"overflow": null,
|
611 |
+
"overflow_x": null,
|
612 |
+
"overflow_y": null,
|
613 |
+
"padding": null,
|
614 |
+
"right": null,
|
615 |
+
"top": null,
|
616 |
+
"visibility": null,
|
617 |
+
"width": null
|
618 |
+
}
|
619 |
+
},
|
620 |
+
"e5703982607e4ccaa875bf168d29b567": {
|
621 |
+
"model_module": "@jupyter-widgets/controls",
|
622 |
+
"model_name": "ProgressStyleModel",
|
623 |
+
"model_module_version": "1.5.0",
|
624 |
+
"state": {
|
625 |
+
"_model_module": "@jupyter-widgets/controls",
|
626 |
+
"_model_module_version": "1.5.0",
|
627 |
+
"_model_name": "ProgressStyleModel",
|
628 |
+
"_view_count": null,
|
629 |
+
"_view_module": "@jupyter-widgets/base",
|
630 |
+
"_view_module_version": "1.2.0",
|
631 |
+
"_view_name": "StyleView",
|
632 |
+
"bar_color": null,
|
633 |
+
"description_width": ""
|
634 |
+
}
|
635 |
+
},
|
636 |
+
"c42451c719a24442aa0eea5d985f5f21": {
|
637 |
+
"model_module": "@jupyter-widgets/base",
|
638 |
+
"model_name": "LayoutModel",
|
639 |
+
"model_module_version": "1.2.0",
|
640 |
+
"state": {
|
641 |
+
"_model_module": "@jupyter-widgets/base",
|
642 |
+
"_model_module_version": "1.2.0",
|
643 |
+
"_model_name": "LayoutModel",
|
644 |
+
"_view_count": null,
|
645 |
+
"_view_module": "@jupyter-widgets/base",
|
646 |
+
"_view_module_version": "1.2.0",
|
647 |
+
"_view_name": "LayoutView",
|
648 |
+
"align_content": null,
|
649 |
+
"align_items": null,
|
650 |
+
"align_self": null,
|
651 |
+
"border": null,
|
652 |
+
"bottom": null,
|
653 |
+
"display": null,
|
654 |
+
"flex": null,
|
655 |
+
"flex_flow": null,
|
656 |
+
"grid_area": null,
|
657 |
+
"grid_auto_columns": null,
|
658 |
+
"grid_auto_flow": null,
|
659 |
+
"grid_auto_rows": null,
|
660 |
+
"grid_column": null,
|
661 |
+
"grid_gap": null,
|
662 |
+
"grid_row": null,
|
663 |
+
"grid_template_areas": null,
|
664 |
+
"grid_template_columns": null,
|
665 |
+
"grid_template_rows": null,
|
666 |
+
"height": null,
|
667 |
+
"justify_content": null,
|
668 |
+
"justify_items": null,
|
669 |
+
"left": null,
|
670 |
+
"margin": null,
|
671 |
+
"max_height": null,
|
672 |
+
"max_width": null,
|
673 |
+
"min_height": null,
|
674 |
+
"min_width": null,
|
675 |
+
"object_fit": null,
|
676 |
+
"object_position": null,
|
677 |
+
"order": null,
|
678 |
+
"overflow": null,
|
679 |
+
"overflow_x": null,
|
680 |
+
"overflow_y": null,
|
681 |
+
"padding": null,
|
682 |
+
"right": null,
|
683 |
+
"top": null,
|
684 |
+
"visibility": null,
|
685 |
+
"width": null
|
686 |
+
}
|
687 |
+
},
|
688 |
+
"e01cdc7235bf42ef84a900b1c5bf206e": {
|
689 |
+
"model_module": "@jupyter-widgets/controls",
|
690 |
+
"model_name": "DescriptionStyleModel",
|
691 |
+
"model_module_version": "1.5.0",
|
692 |
+
"state": {
|
693 |
+
"_model_module": "@jupyter-widgets/controls",
|
694 |
+
"_model_module_version": "1.5.0",
|
695 |
+
"_model_name": "DescriptionStyleModel",
|
696 |
+
"_view_count": null,
|
697 |
+
"_view_module": "@jupyter-widgets/base",
|
698 |
+
"_view_module_version": "1.2.0",
|
699 |
+
"_view_name": "StyleView",
|
700 |
+
"description_width": ""
|
701 |
+
}
|
702 |
+
}
|
703 |
+
}
|
704 |
+
}
|
705 |
+
},
|
706 |
+
"cells": [
|
707 |
+
{
|
708 |
+
"cell_type": "markdown",
|
709 |
+
"source": [
|
710 |
+
"**Arabic text to English GPT2 Translator**"
|
711 |
+
],
|
712 |
+
"metadata": {
|
713 |
+
"id": "OJm9SnOwmMuN"
|
714 |
+
}
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"cell_type": "code",
|
718 |
+
"source": [
|
719 |
+
"!pip install datasets transformers sacrebleu\n",
|
720 |
+
"!pip install sentencepiece\n",
|
721 |
+
"!pip install sacrebleu"
|
722 |
+
],
|
723 |
+
"metadata": {
|
724 |
+
"colab": {
|
725 |
+
"base_uri": "https://localhost:8080/"
|
726 |
+
},
|
727 |
+
"id": "GsW0HEokd85l",
|
728 |
+
"outputId": "38867062-0272-4a26-bff4-fff72abc74ef"
|
729 |
+
},
|
730 |
+
"execution_count": 1,
|
731 |
+
"outputs": [
|
732 |
+
{
|
733 |
+
"output_type": "stream",
|
734 |
+
"name": "stdout",
|
735 |
+
"text": [
|
736 |
+
"Collecting datasets\n",
|
737 |
+
" Downloading datasets-3.2.0-py3-none-any.whl.metadata (20 kB)\n",
|
738 |
+
"Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.46.3)\n",
|
739 |
+
"Collecting sacrebleu\n",
|
740 |
+
" Downloading sacrebleu-2.4.3-py3-none-any.whl.metadata (51 kB)\n",
|
741 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.8/51.8 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
742 |
+
"\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets) (3.16.1)\n",
|
743 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.26.4)\n",
|
744 |
+
"Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (17.0.0)\n",
|
745 |
+
"Collecting dill<0.3.9,>=0.3.0 (from datasets)\n",
|
746 |
+
" Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n",
|
747 |
+
"Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (2.2.2)\n",
|
748 |
+
"Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.10/dist-packages (from datasets) (2.32.3)\n",
|
749 |
+
"Requirement already satisfied: tqdm>=4.66.3 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.66.6)\n",
|
750 |
+
"Collecting xxhash (from datasets)\n",
|
751 |
+
" Downloading xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n",
|
752 |
+
"Collecting multiprocess<0.70.17 (from datasets)\n",
|
753 |
+
" Downloading multiprocess-0.70.16-py310-none-any.whl.metadata (7.2 kB)\n",
|
754 |
+
"Collecting fsspec<=2024.9.0,>=2023.1.0 (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets)\n",
|
755 |
+
" Downloading fsspec-2024.9.0-py3-none-any.whl.metadata (11 kB)\n",
|
756 |
+
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.11.9)\n",
|
757 |
+
"Requirement already satisfied: huggingface-hub>=0.23.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.26.3)\n",
|
758 |
+
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (24.2)\n",
|
759 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.2)\n",
|
760 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2024.9.11)\n",
|
761 |
+
"Requirement already satisfied: tokenizers<0.21,>=0.20 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.20.3)\n",
|
762 |
+
"Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.5)\n",
|
763 |
+
"Collecting portalocker (from sacrebleu)\n",
|
764 |
+
" Downloading portalocker-3.0.0-py3-none-any.whl.metadata (8.5 kB)\n",
|
765 |
+
"Requirement already satisfied: tabulate>=0.8.9 in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (0.9.0)\n",
|
766 |
+
"Collecting colorama (from sacrebleu)\n",
|
767 |
+
" Downloading colorama-0.4.6-py2.py3-none-any.whl.metadata (17 kB)\n",
|
768 |
+
"Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (5.3.0)\n",
|
769 |
+
"Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (2.4.4)\n",
|
770 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
|
771 |
+
"Requirement already satisfied: async-timeout<6.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
|
772 |
+
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (24.2.0)\n",
|
773 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.5.0)\n",
|
774 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.1.0)\n",
|
775 |
+
"Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (0.2.1)\n",
|
776 |
+
"Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.18.3)\n",
|
777 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.23.0->datasets) (4.12.2)\n",
|
778 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets) (3.4.0)\n",
|
779 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets) (3.10)\n",
|
780 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets) (2.2.3)\n",
|
781 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets) (2024.8.30)\n",
|
782 |
+
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
|
783 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2024.2)\n",
|
784 |
+
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2024.2)\n",
|
785 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.16.0)\n",
|
786 |
+
"Downloading datasets-3.2.0-py3-none-any.whl (480 kB)\n",
|
787 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m480.6/480.6 kB\u001b[0m \u001b[31m13.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
788 |
+
"\u001b[?25hDownloading sacrebleu-2.4.3-py3-none-any.whl (103 kB)\n",
|
789 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m104.0/104.0 kB\u001b[0m \u001b[31m12.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
790 |
+
"\u001b[?25hDownloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
|
791 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m12.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
792 |
+
"\u001b[?25hDownloading fsspec-2024.9.0-py3-none-any.whl (179 kB)\n",
|
793 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m19.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
794 |
+
"\u001b[?25hDownloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n",
|
795 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m14.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
796 |
+
"\u001b[?25hDownloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n",
|
797 |
+
"Downloading portalocker-3.0.0-py3-none-any.whl (19 kB)\n",
|
798 |
+
"Downloading xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n",
|
799 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
800 |
+
"\u001b[?25hInstalling collected packages: xxhash, portalocker, fsspec, dill, colorama, sacrebleu, multiprocess, datasets\n",
|
801 |
+
" Attempting uninstall: fsspec\n",
|
802 |
+
" Found existing installation: fsspec 2024.10.0\n",
|
803 |
+
" Uninstalling fsspec-2024.10.0:\n",
|
804 |
+
" Successfully uninstalled fsspec-2024.10.0\n",
|
805 |
+
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
806 |
+
"gcsfs 2024.10.0 requires fsspec==2024.10.0, but you have fsspec 2024.9.0 which is incompatible.\u001b[0m\u001b[31m\n",
|
807 |
+
"\u001b[0mSuccessfully installed colorama-0.4.6 datasets-3.2.0 dill-0.3.8 fsspec-2024.9.0 multiprocess-0.70.16 portalocker-3.0.0 sacrebleu-2.4.3 xxhash-3.5.0\n",
|
808 |
+
"Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (0.2.0)\n",
|
809 |
+
"Requirement already satisfied: sacrebleu in /usr/local/lib/python3.10/dist-packages (2.4.3)\n",
|
810 |
+
"Requirement already satisfied: portalocker in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (3.0.0)\n",
|
811 |
+
"Requirement already satisfied: regex in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (2024.9.11)\n",
|
812 |
+
"Requirement already satisfied: tabulate>=0.8.9 in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (0.9.0)\n",
|
813 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (1.26.4)\n",
|
814 |
+
"Requirement already satisfied: colorama in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (0.4.6)\n",
|
815 |
+
"Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (5.3.0)\n"
|
816 |
+
]
|
817 |
+
}
|
818 |
+
]
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"cell_type": "code",
|
822 |
+
"source": [
|
823 |
+
"import re\n",
|
824 |
+
"import json\n",
|
825 |
+
"import torch\n",
|
826 |
+
"import matplotlib.pyplot as plt\n",
|
827 |
+
"from datasets import Dataset\n",
|
828 |
+
"from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments, DataCollatorForLanguageModeling\n",
|
829 |
+
"from nltk.translate.bleu_score import corpus_bleu\n",
|
830 |
+
"from collections import Counter\n",
|
831 |
+
"import sacrebleu"
|
832 |
+
],
|
833 |
+
"metadata": {
|
834 |
+
"id": "UhaWaa9Jf1LD"
|
835 |
+
},
|
836 |
+
"execution_count": 2,
|
837 |
+
"outputs": []
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"cell_type": "code",
|
841 |
+
"source": [
|
842 |
+
"# Load and preprocess dataset\n",
|
843 |
+
"with open('/content/Arabic.json', 'r', encoding='utf-8') as f:\n",
|
844 |
+
" data = json.load(f)\n",
|
845 |
+
"\n",
|
846 |
+
"# Extract and align English and Arabic sentences\n",
|
847 |
+
"en_sentences = [entry['input'] for entry in data[:1000]]\n",
|
848 |
+
"ar_sentences = [entry['output'] for entry in data[:1000]]\n",
|
849 |
+
"\n",
|
850 |
+
"# Print the first 5 English and Arabic sentences\n",
|
851 |
+
"print(\"First 5 English sentences:\")\n",
|
852 |
+
"for sentence in en_sentences[:5]:\n",
|
853 |
+
" print(sentence)\n",
|
854 |
+
"\n",
|
855 |
+
"print(\"\\nFirst 5 Arabic sentences:\")\n",
|
856 |
+
"for sentence in ar_sentences[:5]:\n",
|
857 |
+
" print(sentence)\n",
|
858 |
+
"\n",
|
859 |
+
"# Initialize tokenizer with custom separator\n",
|
860 |
+
"tokenizer = GPT2Tokenizer.from_pretrained(\"gpt2\")\n",
|
861 |
+
"tokenizer.add_special_tokens({'additional_special_tokens': [\"<|sep|>\"]})\n",
|
862 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
863 |
+
"\n",
|
864 |
+
"# Tokenizer helper for vocabulary creation\n",
|
865 |
+
"tokenizer_func = lambda x: x.split()\n",
|
866 |
+
"\n",
|
867 |
+
"def build_vocab(sentences):\n",
|
868 |
+
" counter = Counter()\n",
|
869 |
+
" for sentence in sentences:\n",
|
870 |
+
" counter.update(tokenizer_func(sentence))\n",
|
871 |
+
" return counter\n",
|
872 |
+
"\n",
|
873 |
+
"en_vocab = build_vocab(en_sentences)\n",
|
874 |
+
"ar_vocab = build_vocab(ar_sentences)\n",
|
875 |
+
"\n",
|
876 |
+
"# Adding special tokens to vocabulary\n",
|
877 |
+
"en_vocab = {'<s>': 1, '</s>': 2, '<pad>': 0, '<unk>': 3, **en_vocab}\n",
|
878 |
+
"ar_vocab = {'<s>': 1, '</s>': 2, '<pad>': 0, '<unk>': 3, **ar_vocab}\n",
|
879 |
+
"\n",
|
880 |
+
"def sentence_to_tensor(sentence, vocab, max_len=128):\n",
|
881 |
+
" tokens = tokenizer_func(sentence)\n",
|
882 |
+
" indices = [vocab.get(token, vocab['<unk>']) for token in tokens]\n",
|
883 |
+
" indices = [vocab['<s>']] + indices + [vocab['</s>']]\n",
|
884 |
+
" if len(indices) < max_len:\n",
|
885 |
+
" indices += [vocab['<pad>']] * (max_len - len(indices))\n",
|
886 |
+
" else:\n",
|
887 |
+
" indices = indices[:max_len]\n",
|
888 |
+
" return torch.tensor(indices)"
|
889 |
+
],
|
890 |
+
"metadata": {
|
891 |
+
"colab": {
|
892 |
+
"base_uri": "https://localhost:8080/"
|
893 |
+
},
|
894 |
+
"id": "Pba9TQp5f8VY",
|
895 |
+
"outputId": "ab643aa5-e690-4f1f-da86-8a5b233af53e"
|
896 |
+
},
|
897 |
+
"execution_count": 18,
|
898 |
+
"outputs": [
|
899 |
+
{
|
900 |
+
"output_type": "stream",
|
901 |
+
"name": "stdout",
|
902 |
+
"text": [
|
903 |
+
"First 5 English sentences:\n",
|
904 |
+
"Give three tips for staying healthy.\n",
|
905 |
+
"1. Eat a balanced and nutritious diet: Make sure your meals are inclusive of a variety of fruits and vegetables, lean protein, whole grains, and healthy fats. This helps to provide your body with the essential nutrients to function at its best and can help prevent chronic diseases.\n",
|
906 |
+
"\n",
|
907 |
+
"2. Engage in regular physical activity: Exercise is crucial for maintaining strong bones, muscles, and cardiovascular health. Aim for at least 150 minutes of moderate aerobic exercise or 75 minutes of vigorous exercise each week.\n",
|
908 |
+
"\n",
|
909 |
+
"3. Get enough sleep: Getting enough quality sleep is crucial for physical and mental well-being. It helps to regulate mood, improve cognitive function, and supports healthy growth and immune function. Aim for 7-9 hours of sleep each night.\n",
|
910 |
+
"What are the three primary colors?\n",
|
911 |
+
"The three primary colors are red, blue, and yellow. These colors are called primary because they cannot be created by mixing other colors and all other colors can be made by combining them in various proportions. In the additive color system, used for light, the primary colors are red, green, and blue (RGB).\n",
|
912 |
+
"Describe the structure of an atom.\n",
|
913 |
+
"\n",
|
914 |
+
"First 5 Arabic sentences:\n",
|
915 |
+
" أعط ثلاث نصائح للبقاء بصحة جيدة.\n",
|
916 |
+
" 1. تناول نظامًا غذائيًا متوازنًا ومغذيًا: تأكد من أن وجباتك تشمل مجموعة متنوعة من الفواكه والخضروات ، والبروتينات الخالية من الدهون ، والحبوب الكاملة ، والدهون الصحية. يساعد ذلك على تزويد جسمك بالعناصر الغذائية الأساسية ليعمل في أفضل حالاته ويمكن أن يساعد في الوقاية من الأمراض المزمنة. 2. انخرط في نشاط بدني منتظم: التمرين ضروري للحفاظ على قوة العظام والعضلات وصحة القلب والأوعية الدموية. استهدف ما لا يقل عن 150 دقيقة من التمارين الهوائية المعتدلة أو 75 دقيقة من التمارين القوية كل أسبوع. 3. الحصول على قسط كافٍ من النوم: الحصول على قسط كافٍ من النوم الجيد أمر بالغ الأهمية للصحة الجسدية والعقلية. يساعد على تنظيم الحالة المزاجية ، وتحسين الوظيفة الإدراكية ، ويدعم النمو الصحي ووظيفة المناعة. اهدف إلى النوم لمدة 7-9 ساعات كل ليلة.\n",
|
917 |
+
" ما هي الألوان الثلاثة الأساسية؟\n",
|
918 |
+
"الألوان الثلاثة الأساسية هي الأحمر والأزرق والأصفر. تسمى هذه الألوان الأساسية لأنه لا يمكن إنشاؤها عن طريق مزج الألوان الأخرى ويمكن صنع كل الألوان الأخرى بدمجها بنسب مختلفة. في نظام الألوان المضافة ، المستخدم للضوء ، تكون الألوان الأساسية هي الأحمر والأخضر والأزرق (RGB).\n",
|
919 |
+
" صف بنية الذرة.\n"
|
920 |
+
]
|
921 |
+
}
|
922 |
+
]
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"cell_type": "code",
|
926 |
+
"source": [
|
927 |
+
"# Data preparation\n",
|
928 |
+
"def encode_translation_pairs(inputs, outputs, tokenizer, max_len=128):\n",
|
929 |
+
" translations = [\n",
|
930 |
+
" f\"{inputs[i]} <|sep|> {outputs[i]}\"\n",
|
931 |
+
" for i in range(len(inputs))\n",
|
932 |
+
" ]\n",
|
933 |
+
" return tokenizer(\n",
|
934 |
+
" translations,\n",
|
935 |
+
" max_length=max_len,\n",
|
936 |
+
" truncation=True,\n",
|
937 |
+
" padding=\"max_length\",\n",
|
938 |
+
" return_tensors=\"pt\"\n",
|
939 |
+
" )[\"input_ids\"]\n",
|
940 |
+
"\n",
|
941 |
+
"encoded_data = encode_translation_pairs(en_sentences, ar_sentences, tokenizer)\n",
|
942 |
+
"\n",
|
943 |
+
"# Create a Dataset object\n",
|
944 |
+
"dataset = Dataset.from_dict({\"input_ids\": encoded_data, \"labels\": encoded_data})\n",
|
945 |
+
"\n",
|
946 |
+
"# Split datasets\n",
|
947 |
+
"train_size = int(0.8 * len(dataset))\n",
|
948 |
+
"val_size = (len(dataset) - train_size) // 2\n",
|
949 |
+
"train_dataset, temp_dataset = dataset.train_test_split(train_size=train_size).values()\n",
|
950 |
+
"val_dataset, test_dataset = temp_dataset.train_test_split(train_size=val_size).values()"
|
951 |
+
],
|
952 |
+
"metadata": {
|
953 |
+
"id": "KEz2EDWhgF2n"
|
954 |
+
},
|
955 |
+
"execution_count": 4,
|
956 |
+
"outputs": []
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"cell_type": "code",
|
960 |
+
"source": [
|
961 |
+
"# Load and configure the model\n",
|
962 |
+
"model = GPT2LMHeadModel.from_pretrained(\"gpt2\")\n",
|
963 |
+
"model.resize_token_embeddings(len(tokenizer))\n",
|
964 |
+
"\n",
|
965 |
+
"# Print the model configuration\n",
|
966 |
+
"print(model.config)\n"
|
967 |
+
],
|
968 |
+
"metadata": {
|
969 |
+
"colab": {
|
970 |
+
"base_uri": "https://localhost:8080/",
|
971 |
+
"height": 813,
|
972 |
+
"referenced_widgets": [
|
973 |
+
"2bea128ff6a84dea98153aa2c398c845",
|
974 |
+
"9860c006ecf841e8ac018927761fadda",
|
975 |
+
"06f1133db9334aa79e927e51220a1561",
|
976 |
+
"f19b60de091948998a0d037896442ac5",
|
977 |
+
"e47071d647b04f4683527fc4c5acb592",
|
978 |
+
"78630ac454e54e91b3b46184da36f29b",
|
979 |
+
"23c4bde6b4cd4b918d8ddc0a504d263d",
|
980 |
+
"821c81b459e04c92a3609ae2c017e1a5",
|
981 |
+
"63aed25f754742948b88a967a1b413d7",
|
982 |
+
"d44d9eaebd4449c39d0a85f8886e3110",
|
983 |
+
"7e4fb57794f9468a9de7a1733a21c0b9",
|
984 |
+
"5a3cde9d5eda48d1bacedb3da7a8c36e",
|
985 |
+
"59dfbf89a4a44856853bbdd20e87c1b6",
|
986 |
+
"35a848f438c44b3aa35bc3ec3720fb6d",
|
987 |
+
"50e96a2a7dac40719b2bfac5aebcd802",
|
988 |
+
"c23fb59092fd4b019a41e6ba82827880",
|
989 |
+
"afbba89a0bfc4a1994e5f5b009f1ff9c",
|
990 |
+
"d1562f9faedd457c9b12c8fe88215a0b",
|
991 |
+
"b92e1b10eba743dea4c248022193de45",
|
992 |
+
"e5703982607e4ccaa875bf168d29b567",
|
993 |
+
"c42451c719a24442aa0eea5d985f5f21",
|
994 |
+
"e01cdc7235bf42ef84a900b1c5bf206e"
|
995 |
+
]
|
996 |
+
},
|
997 |
+
"id": "YPkbhpWKhLas",
|
998 |
+
"outputId": "75e529e8-3b80-4336-a367-b314c90f97de"
|
999 |
+
},
|
1000 |
+
"execution_count": 5,
|
1001 |
+
"outputs": [
|
1002 |
+
{
|
1003 |
+
"output_type": "display_data",
|
1004 |
+
"data": {
|
1005 |
+
"text/plain": [
|
1006 |
+
"model.safetensors: 0%| | 0.00/548M [00:00<?, ?B/s]"
|
1007 |
+
],
|
1008 |
+
"application/vnd.jupyter.widget-view+json": {
|
1009 |
+
"version_major": 2,
|
1010 |
+
"version_minor": 0,
|
1011 |
+
"model_id": "2bea128ff6a84dea98153aa2c398c845"
|
1012 |
+
}
|
1013 |
+
},
|
1014 |
+
"metadata": {}
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"output_type": "display_data",
|
1018 |
+
"data": {
|
1019 |
+
"text/plain": [
|
1020 |
+
"generation_config.json: 0%| | 0.00/124 [00:00<?, ?B/s]"
|
1021 |
+
],
|
1022 |
+
"application/vnd.jupyter.widget-view+json": {
|
1023 |
+
"version_major": 2,
|
1024 |
+
"version_minor": 0,
|
1025 |
+
"model_id": "5a3cde9d5eda48d1bacedb3da7a8c36e"
|
1026 |
+
}
|
1027 |
+
},
|
1028 |
+
"metadata": {}
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"output_type": "stream",
|
1032 |
+
"name": "stderr",
|
1033 |
+
"text": [
|
1034 |
+
"The new embeddings will be initialized from a multivariate normal distribution that has old embeddings' mean and covariance. As described in this article: https://nlp.stanford.edu/~johnhew/vocab-expansion.html. To disable this, use `mean_resizing=False`\n"
|
1035 |
+
]
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"output_type": "stream",
|
1039 |
+
"name": "stdout",
|
1040 |
+
"text": [
|
1041 |
+
"GPT2Config {\n",
|
1042 |
+
" \"_attn_implementation_autoset\": true,\n",
|
1043 |
+
" \"_name_or_path\": \"gpt2\",\n",
|
1044 |
+
" \"activation_function\": \"gelu_new\",\n",
|
1045 |
+
" \"architectures\": [\n",
|
1046 |
+
" \"GPT2LMHeadModel\"\n",
|
1047 |
+
" ],\n",
|
1048 |
+
" \"attn_pdrop\": 0.1,\n",
|
1049 |
+
" \"bos_token_id\": 50256,\n",
|
1050 |
+
" \"embd_pdrop\": 0.1,\n",
|
1051 |
+
" \"eos_token_id\": 50256,\n",
|
1052 |
+
" \"initializer_range\": 0.02,\n",
|
1053 |
+
" \"layer_norm_epsilon\": 1e-05,\n",
|
1054 |
+
" \"model_type\": \"gpt2\",\n",
|
1055 |
+
" \"n_ctx\": 1024,\n",
|
1056 |
+
" \"n_embd\": 768,\n",
|
1057 |
+
" \"n_head\": 12,\n",
|
1058 |
+
" \"n_inner\": null,\n",
|
1059 |
+
" \"n_layer\": 12,\n",
|
1060 |
+
" \"n_positions\": 1024,\n",
|
1061 |
+
" \"reorder_and_upcast_attn\": false,\n",
|
1062 |
+
" \"resid_pdrop\": 0.1,\n",
|
1063 |
+
" \"scale_attn_by_inverse_layer_idx\": false,\n",
|
1064 |
+
" \"scale_attn_weights\": true,\n",
|
1065 |
+
" \"summary_activation\": null,\n",
|
1066 |
+
" \"summary_first_dropout\": 0.1,\n",
|
1067 |
+
" \"summary_proj_to_labels\": true,\n",
|
1068 |
+
" \"summary_type\": \"cls_index\",\n",
|
1069 |
+
" \"summary_use_proj\": true,\n",
|
1070 |
+
" \"task_specific_params\": {\n",
|
1071 |
+
" \"text-generation\": {\n",
|
1072 |
+
" \"do_sample\": true,\n",
|
1073 |
+
" \"max_length\": 50\n",
|
1074 |
+
" }\n",
|
1075 |
+
" },\n",
|
1076 |
+
" \"transformers_version\": \"4.46.3\",\n",
|
1077 |
+
" \"use_cache\": true,\n",
|
1078 |
+
" \"vocab_size\": 50258\n",
|
1079 |
+
"}\n",
|
1080 |
+
"\n"
|
1081 |
+
]
|
1082 |
+
}
|
1083 |
+
]
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"cell_type": "code",
|
1087 |
+
"source": [
|
1088 |
+
"# Data Collator\n",
|
1089 |
+
"data_collator = DataCollatorForLanguageModeling(\n",
|
1090 |
+
" tokenizer=tokenizer,\n",
|
1091 |
+
" mlm=False # No masking\n",
|
1092 |
+
")\n",
|
1093 |
+
"\n",
|
1094 |
+
"# Training Arguments\n",
|
1095 |
+
"training_args = TrainingArguments(\n",
|
1096 |
+
" output_dir=\"./results\",\n",
|
1097 |
+
" evaluation_strategy=\"epoch\",\n",
|
1098 |
+
" save_strategy=\"epoch\",\n",
|
1099 |
+
" logging_strategy=\"steps\",\n",
|
1100 |
+
" logging_steps=10,\n",
|
1101 |
+
" learning_rate=5e-5,\n",
|
1102 |
+
" per_device_train_batch_size=4,\n",
|
1103 |
+
" per_device_eval_batch_size=4,\n",
|
1104 |
+
" num_train_epochs=10,\n",
|
1105 |
+
" weight_decay=0.01,\n",
|
1106 |
+
" save_total_limit=2,\n",
|
1107 |
+
" load_best_model_at_end=True,\n",
|
1108 |
+
" fp16=torch.cuda.is_available(),\n",
|
1109 |
+
" report_to=[]\n",
|
1110 |
+
")\n",
|
1111 |
+
"\n",
|
1112 |
+
"# Trainer\n",
|
1113 |
+
"trainer = Trainer(\n",
|
1114 |
+
" model=model,\n",
|
1115 |
+
" args=training_args,\n",
|
1116 |
+
" train_dataset=train_dataset,\n",
|
1117 |
+
" eval_dataset=val_dataset,\n",
|
1118 |
+
" tokenizer=tokenizer,\n",
|
1119 |
+
" data_collator=data_collator,\n",
|
1120 |
+
")\n",
|
1121 |
+
"\n",
|
1122 |
+
"# Train the model\n",
|
1123 |
+
"print(\"Training started!\")\n",
|
1124 |
+
"trainer.train()\n",
|
1125 |
+
"print(\"Training complete!\")\n"
|
1126 |
+
],
|
1127 |
+
"metadata": {
|
1128 |
+
"colab": {
|
1129 |
+
"base_uri": "https://localhost:8080/",
|
1130 |
+
"height": 531
|
1131 |
+
},
|
1132 |
+
"id": "Zjb1mbHJgKrJ",
|
1133 |
+
"outputId": "cc9d2f83-c9c9-46ad-ddfb-0ebec390acce"
|
1134 |
+
},
|
1135 |
+
"execution_count": 6,
|
1136 |
+
"outputs": [
|
1137 |
+
{
|
1138 |
+
"output_type": "stream",
|
1139 |
+
"name": "stderr",
|
1140 |
+
"text": [
|
1141 |
+
"/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1568: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
|
1142 |
+
" warnings.warn(\n",
|
1143 |
+
"<ipython-input-6-a52d4ab58833>:26: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class` instead.\n",
|
1144 |
+
" trainer = Trainer(\n"
|
1145 |
+
]
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"output_type": "stream",
|
1149 |
+
"name": "stdout",
|
1150 |
+
"text": [
|
1151 |
+
"Training started!\n"
|
1152 |
+
]
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"output_type": "display_data",
|
1156 |
+
"data": {
|
1157 |
+
"text/plain": [
|
1158 |
+
"<IPython.core.display.HTML object>"
|
1159 |
+
],
|
1160 |
+
"text/html": [
|
1161 |
+
"\n",
|
1162 |
+
" <div>\n",
|
1163 |
+
" \n",
|
1164 |
+
" <progress value='2000' max='2000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1165 |
+
" [2000/2000 02:07, Epoch 10/10]\n",
|
1166 |
+
" </div>\n",
|
1167 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1168 |
+
" <thead>\n",
|
1169 |
+
" <tr style=\"text-align: left;\">\n",
|
1170 |
+
" <th>Epoch</th>\n",
|
1171 |
+
" <th>Training Loss</th>\n",
|
1172 |
+
" <th>Validation Loss</th>\n",
|
1173 |
+
" </tr>\n",
|
1174 |
+
" </thead>\n",
|
1175 |
+
" <tbody>\n",
|
1176 |
+
" <tr>\n",
|
1177 |
+
" <td>1</td>\n",
|
1178 |
+
" <td>2.445600</td>\n",
|
1179 |
+
" <td>2.390493</td>\n",
|
1180 |
+
" </tr>\n",
|
1181 |
+
" <tr>\n",
|
1182 |
+
" <td>2</td>\n",
|
1183 |
+
" <td>2.091400</td>\n",
|
1184 |
+
" <td>2.346333</td>\n",
|
1185 |
+
" </tr>\n",
|
1186 |
+
" <tr>\n",
|
1187 |
+
" <td>3</td>\n",
|
1188 |
+
" <td>1.971000</td>\n",
|
1189 |
+
" <td>2.335375</td>\n",
|
1190 |
+
" </tr>\n",
|
1191 |
+
" <tr>\n",
|
1192 |
+
" <td>4</td>\n",
|
1193 |
+
" <td>1.770700</td>\n",
|
1194 |
+
" <td>2.391809</td>\n",
|
1195 |
+
" </tr>\n",
|
1196 |
+
" <tr>\n",
|
1197 |
+
" <td>5</td>\n",
|
1198 |
+
" <td>1.638600</td>\n",
|
1199 |
+
" <td>2.447893</td>\n",
|
1200 |
+
" </tr>\n",
|
1201 |
+
" <tr>\n",
|
1202 |
+
" <td>6</td>\n",
|
1203 |
+
" <td>1.352900</td>\n",
|
1204 |
+
" <td>2.500594</td>\n",
|
1205 |
+
" </tr>\n",
|
1206 |
+
" <tr>\n",
|
1207 |
+
" <td>7</td>\n",
|
1208 |
+
" <td>1.298600</td>\n",
|
1209 |
+
" <td>2.558636</td>\n",
|
1210 |
+
" </tr>\n",
|
1211 |
+
" <tr>\n",
|
1212 |
+
" <td>8</td>\n",
|
1213 |
+
" <td>1.350600</td>\n",
|
1214 |
+
" <td>2.575015</td>\n",
|
1215 |
+
" </tr>\n",
|
1216 |
+
" <tr>\n",
|
1217 |
+
" <td>9</td>\n",
|
1218 |
+
" <td>1.249300</td>\n",
|
1219 |
+
" <td>2.616520</td>\n",
|
1220 |
+
" </tr>\n",
|
1221 |
+
" <tr>\n",
|
1222 |
+
" <td>10</td>\n",
|
1223 |
+
" <td>1.253400</td>\n",
|
1224 |
+
" <td>2.634244</td>\n",
|
1225 |
+
" </tr>\n",
|
1226 |
+
" </tbody>\n",
|
1227 |
+
"</table><p>"
|
1228 |
+
]
|
1229 |
+
},
|
1230 |
+
"metadata": {}
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"output_type": "stream",
|
1234 |
+
"name": "stderr",
|
1235 |
+
"text": [
|
1236 |
+
"There were missing keys in the checkpoint model loaded: ['lm_head.weight'].\n"
|
1237 |
+
]
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"output_type": "stream",
|
1241 |
+
"name": "stdout",
|
1242 |
+
"text": [
|
1243 |
+
"Training complete!\n"
|
1244 |
+
]
|
1245 |
+
}
|
1246 |
+
]
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"cell_type": "code",
|
1250 |
+
"execution_count": 14,
|
1251 |
+
"metadata": {
|
1252 |
+
"colab": {
|
1253 |
+
"base_uri": "https://localhost:8080/"
|
1254 |
+
},
|
1255 |
+
"id": "35r0qHABcmIK",
|
1256 |
+
"outputId": "ce27e146-2ef1-41fb-bb65-78aaf761b2ea"
|
1257 |
+
},
|
1258 |
+
"outputs": [
|
1259 |
+
{
|
1260 |
+
"output_type": "stream",
|
1261 |
+
"name": "stdout",
|
1262 |
+
"text": [
|
1263 |
+
"\n",
|
1264 |
+
"Test Sentence Translations:\n",
|
1265 |
+
"English: The cat is sitting on the window.\n",
|
1266 |
+
"Arabic: أجد في المقالة وتواسلها من: \"��بع\" = 10/4ر\n",
|
1267 |
+
"1) 9-5 cm x 6cm (2). 2)(\n",
|
1268 |
+
"\n",
|
1269 |
+
"English: I need to buy a new phone.\n",
|
1270 |
+
"Arabic: أعد كتابة مثليق المسبوان والره�, \"Budu\". #102625 https://tribalnews3rv4p\n",
|
1271 |
+
"\n",
|
1272 |
+
"English: She loves reading books during her free time.\n",
|
1273 |
+
"Arabic: هذه البانتي إلى مساعة ومعدور (ال1) https://www2h4xl8y7n5/diyar-al\n",
|
1274 |
+
"\n",
|
1275 |
+
"English: The train arrives at 7 PM.\n",
|
1276 |
+
"Arabic: بإنتاسيار موعلة 5 فهمد 3 البالً 4 وسَ� 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24\n",
|
1277 |
+
"\n",
|
1278 |
+
"English: I enjoy listening to music while working.\n",
|
1279 |
+
"Arabic: أحمد في النترقائة والعباول مسه, #al-Baqara https://tribulationworld.wordpress/\n",
|
1280 |
+
"‹�Euph\n",
|
1281 |
+
"\n",
|
1282 |
+
"English: The meeting has been scheduled for tomorrow.\n",
|
1283 |
+
"Arabic: أعد كتابة الجملين والورباهً مسی \"Jihad\". #jihadi\n",
|
1284 |
+
"’- The following is a list of the items that\n",
|
1285 |
+
"\n",
|
1286 |
+
"English: Can you recommend a good restaurant nearby?\n",
|
1287 |
+
"Arabic: أعد قائمة الصنيف والسبار. مهوتل: \"A great meal at the best price\". #jihadpics\n",
|
1288 |
+
"\n",
|
1289 |
+
"\n",
|
1290 |
+
"English: I have finished my homework for the day.\n",
|
1291 |
+
"Arabic: كتبين بالمشاء العلاقة وهو مسرد \"Amar\" (5) 1/2\". #93529\n",
|
1292 |
+
"The following morning, I woke\n",
|
1293 |
+
"\n",
|
1294 |
+
"English: The city is known for its beautiful parks.\n",
|
1295 |
+
"Arabic: يمشكون إليها مراسعة البدال وستیک \"Husain\" = the mountain of mountains, which stands at top and meets with\n",
|
1296 |
+
"\n",
|
1297 |
+
"English: Do you prefer tea or coffee?\n",
|
1298 |
+
"Arabic: أعد قصير من الكلمة والتواعبا.\n",
|
1299 |
+
"سهِ: \"I like to go on walks and try new things.\" #tea pic 1 https\n",
|
1300 |
+
"\n"
|
1301 |
+
]
|
1302 |
+
}
|
1303 |
+
],
|
1304 |
+
"source": [
|
1305 |
+
"\n",
|
1306 |
+
"import re\n",
|
1307 |
+
"import torch\n",
|
1308 |
+
"from transformers import GPT2Tokenizer, GPT2LMHeadModel\n",
|
1309 |
+
"\n",
|
1310 |
+
"# Test sentences for translation (these are just examples)\n",
|
1311 |
+
"test_samples = [\n",
|
1312 |
+
" \"The cat is sitting on the window.\",\n",
|
1313 |
+
" \"I need to buy a new phone.\",\n",
|
1314 |
+
" \"She loves reading books during her free time.\",\n",
|
1315 |
+
" \"The train arrives at 7 PM.\",\n",
|
1316 |
+
" \"I enjoy listening to music while working.\",\n",
|
1317 |
+
" \"The meeting has been scheduled for tomorrow.\",\n",
|
1318 |
+
" \"Can you recommend a good restaurant nearby?\",\n",
|
1319 |
+
" \"I have finished my homework for the day.\",\n",
|
1320 |
+
" \"The city is known for its beautiful parks.\",\n",
|
1321 |
+
" \"Do you prefer tea or coffee?\"\n",
|
1322 |
+
"]\n",
|
1323 |
+
"\n",
|
1324 |
+
"\n",
|
1325 |
+
"# Add a special token for separator\n",
|
1326 |
+
"tokenizer.add_special_tokens({'additional_special_tokens': [\"<|sep|>\"]})\n",
|
1327 |
+
"model.resize_token_embeddings(len(tokenizer))\n",
|
1328 |
+
"\n",
|
1329 |
+
"# Function to translate sentences\n",
|
1330 |
+
"def translate_sentence(model, tokenizer, sentence):\n",
|
1331 |
+
" input_text = f\"{sentence} <|sep|>\"\n",
|
1332 |
+
" input_ids = tokenizer(input_text, return_tensors=\"pt\").input_ids.to(model.device)\n",
|
1333 |
+
" attention_mask = tokenizer(input_text, return_tensors=\"pt\").attention_mask.to(model.device)\n",
|
1334 |
+
"\n",
|
1335 |
+
" # Generate translation\n",
|
1336 |
+
" outputs = model.generate(\n",
|
1337 |
+
" input_ids,\n",
|
1338 |
+
" attention_mask=attention_mask,\n",
|
1339 |
+
" max_new_tokens=50,\n",
|
1340 |
+
" do_sample=True,\n",
|
1341 |
+
" temperature=0.7,\n",
|
1342 |
+
" top_p=0.9,\n",
|
1343 |
+
" top_k=50,\n",
|
1344 |
+
" repetition_penalty=3.0,\n",
|
1345 |
+
" early_stopping=True,\n",
|
1346 |
+
" pad_token_id=tokenizer.pad_token_id\n",
|
1347 |
+
" )\n",
|
1348 |
+
"\n",
|
1349 |
+
" translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
1350 |
+
"\n",
|
1351 |
+
" # Clean up translated text (remove anything before punctuation marks)\n",
|
1352 |
+
" match = re.search(r'[.?!]', translated_text)\n",
|
1353 |
+
" if match:\n",
|
1354 |
+
" translated_text = translated_text[match.end():].strip()\n",
|
1355 |
+
"\n",
|
1356 |
+
" return translated_text\n",
|
1357 |
+
"\n",
|
1358 |
+
"# Translate test sentences\n",
|
1359 |
+
"print(\"\\nTest Sentence Translations:\")\n",
|
1360 |
+
"for sentence in test_samples:\n",
|
1361 |
+
" translation = translate_sentence(model, tokenizer, sentence)\n",
|
1362 |
+
" print(f\"English: {sentence}\")\n",
|
1363 |
+
" print(f\"Arabic: {translation}\\n\")\n"
|
1364 |
+
]
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"cell_type": "code",
|
1368 |
+
"source": [
|
1369 |
+
"# Perplexity Calculation\n",
|
1370 |
+
"# Perplexity Calculation\n",
|
1371 |
+
"def calculate_perplexity(model, tokenizer, sentences):\n",
|
1372 |
+
" inputs = tokenizer(sentences, return_tensors=\"pt\", padding=True, truncation=True, max_length=128)\n",
|
1373 |
+
" input_ids = inputs['input_ids'].to(model.device)\n",
|
1374 |
+
" attention_mask = inputs['attention_mask'].to(model.device)\n",
|
1375 |
+
"\n",
|
1376 |
+
" with torch.no_grad():\n",
|
1377 |
+
" outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids)\n",
|
1378 |
+
" loss = outputs.loss\n",
|
1379 |
+
" return torch.exp(loss).item()\n",
|
1380 |
+
"\n",
|
1381 |
+
"# CHRF Score Calculation\n",
|
1382 |
+
"def calculate_chrf_score(references, translations):\n",
|
1383 |
+
" # sacrebleu's chrf_score expects the references and translations as a list of strings.\n",
|
1384 |
+
" chrf = sacrebleu.corpus_chrf(references, translations)\n",
|
1385 |
+
" return chrf.score\n",
|
1386 |
+
"\n",
|
1387 |
+
"# BLEU Score Calculation\n",
|
1388 |
+
"def calculate_bleu_score(references, translations):\n",
|
1389 |
+
" references = [[ref.split()] for ref in references]\n",
|
1390 |
+
" translations = [trans.split() for trans in translations]\n",
|
1391 |
+
" return corpus_bleu(references, translations)\n",
|
1392 |
+
"\n",
|
1393 |
+
"# Evaluate translations\n",
|
1394 |
+
"translated_sentences = [translate_sentence(model, tokenizer, s) for s in en_sentences[:5]]\n",
|
1395 |
+
"perplexity = calculate_perplexity(model, tokenizer, en_sentences[:5])\n",
|
1396 |
+
"bleu_score = calculate_bleu_score(ar_sentences[:5], translated_sentences)\n",
|
1397 |
+
"chrf = calculate_chrf_score(ar_sentences[:5], translated_sentences)\n",
|
1398 |
+
"\n",
|
1399 |
+
"print(f\"\\nPerplexity: {perplexity}\")\n",
|
1400 |
+
"print(f\"BLEU Score: {bleu_score}\")\n",
|
1401 |
+
"print(f\"CHRF Score: {chrf}\")\n",
|
1402 |
+
"\n",
|
1403 |
+
"\n"
|
1404 |
+
],
|
1405 |
+
"metadata": {
|
1406 |
+
"colab": {
|
1407 |
+
"base_uri": "https://localhost:8080/"
|
1408 |
+
},
|
1409 |
+
"id": "lDmYGA_PgSdW",
|
1410 |
+
"outputId": "1098d48f-db88-4756-81d3-902fdcf84edc"
|
1411 |
+
},
|
1412 |
+
"execution_count": 15,
|
1413 |
+
"outputs": [
|
1414 |
+
{
|
1415 |
+
"output_type": "stream",
|
1416 |
+
"name": "stdout",
|
1417 |
+
"text": [
|
1418 |
+
"\n",
|
1419 |
+
"Perplexity: 2849.4482421875\n",
|
1420 |
+
"BLEU Score: 0\n",
|
1421 |
+
"CHRF Score: 16.0\n"
|
1422 |
+
]
|
1423 |
+
}
|
1424 |
+
]
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"cell_type": "code",
|
1428 |
+
"source": [
|
1429 |
+
"# Plotting Results\n",
|
1430 |
+
"def plot_results(perplexity, bleu_score, chrf):\n",
|
1431 |
+
" # Metrics for plotting\n",
|
1432 |
+
" metrics = ['Perplexity', 'BLEU Score', 'CHRF Score']\n",
|
1433 |
+
" values = [perplexity, bleu_score, chrf]\n",
|
1434 |
+
"\n",
|
1435 |
+
" plt.figure(figsize=(8, 6))\n",
|
1436 |
+
" plt.bar(metrics, values, color=['blue', 'green', 'orange'])\n",
|
1437 |
+
" plt.xlabel('Metrics')\n",
|
1438 |
+
" plt.ylabel('Scores')\n",
|
1439 |
+
" plt.title('Model Evaluation Metrics')\n",
|
1440 |
+
" plt.show()\n",
|
1441 |
+
"\n",
|
1442 |
+
"# Plot the results\n",
|
1443 |
+
"plot_results(perplexity, bleu_score, chrf)"
|
1444 |
+
],
|
1445 |
+
"metadata": {
|
1446 |
+
"colab": {
|
1447 |
+
"base_uri": "https://localhost:8080/",
|
1448 |
+
"height": 564
|
1449 |
+
},
|
1450 |
+
"id": "WxIoO2bbmh3g",
|
1451 |
+
"outputId": "99e44007-a372-45e1-b672-7344afecc9ef"
|
1452 |
+
},
|
1453 |
+
"execution_count": 19,
|
1454 |
+
"outputs": [
|
1455 |
+
{
|
1456 |
+
"output_type": "display_data",
|
1457 |
+
"data": {
|
1458 |
+
"text/plain": [
|
1459 |
+
"<Figure size 800x600 with 1 Axes>"
|
1460 |
+
],
|
1461 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAIjCAYAAAAN/63DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHyUlEQVR4nO3deXhN1+L/8c8RyRGJJEIiQoRS1NyimqKlVJDqNbQULamhtxr80CrpbWt8qlXfDlpDJ+J7W622VF1qKkJLDJcn5ipKaYlZYkxI1u8PT87XkRgSkWC9X8+zH87ea6+19knOyScra6/jMMYYAQAAAJYoVNAdAAAAAPITARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGMBdy+FwaPjw4Tk+b+/evXI4HIqLi8vzPuWV8uXLKzo6ukDavhOen/wWHR2t8uXLF3Q3ANwgAjCAWyouLk4Oh0MOh0O//vprluPGGIWFhcnhcOiJJ54ogB7mXnx8vOvastu++eabgu7iTZk+fbo++OCDgu6Gm+joaDkcDvn5+encuXNZju/cudP1/I8bNy7H9Z89e1bDhw9XfHx8HvQWwO2qcEF3AIAdihQpounTp6tRo0Zu+5cvX66//vpLTqezgHp28/r376/69etn2R8REVEAvck706dP15YtWzRgwAC3/eHh4Tp37pw8PT0LpF+FCxfW2bNn9Z///EcdO3Z0O/bVV1+pSJEiOn/+fK7qPnv2rEaMGCFJatKkyQ2f99lnnykjIyNXbQLIfwRgAPmidevW+u677zR+/HgVLvx/bz3Tp09X3bp1dfTo0QLs3c1p3LixnnrqqYLuRr5xOBwqUqRIgbXvdDrVsGFDff3111kC8PTp0xUVFaWZM2fmS1/OnDkjHx+fAvtlAEDuMAUCQL7o3Lmzjh07psWLF7v2paWl6fvvv1eXLl2yPefMmTN6+eWXFRYWJqfTqSpVqmjcuHEyxriVS01N1cCBAxUUFKRixYrpySef1F9//ZVtnX///bd69OihUqVKyel0qnr16poyZUreXWg2atSooaZNm2bZn5GRoTJlyriF53Hjxunhhx9WiRIl5O3trbp16+r777+/bhvDhw+Xw+HIsj9zCsrevXtd+3788UdFRUUpNDRUTqdTFStW1KhRo5Senu4q06RJE82bN09//vmna0pB5hzXq80BXrp0qRo3biwfHx8FBAToH//4h7Zv355tP3ft2qXo6GgFBATI399fzz//vM6ePXvd68zUpUsXzZ8/XydPnnTtW7dunXbu3HnV76eTJ09qwIABru+nSpUq6Z133nGN3O7du1dBQUGSpBEjRriuO3MeeXR0tHx9fbV79261bt1axYoVU9euXV3HrpwDnJGRoQ8//FA1a9ZUkSJFFBQUpJYtW+q///2vq8zixYvVqFEjBQQEyNfXV1WqVNFrr712w88DgNxhBBhAvihfvrwiIiL09ddfq1WrVpKk+fPnKzk5Wc8884zGjx/vVt4YoyeffFLLli1Tz549VadOHS1cuFCDBw/W33//rffff99VtlevXvryyy/VpUsXPfzww1q6dKmioqKy9OHQoUN66KGH5HA41LdvXwUFBWn+/Pnq2bOnUlJSsvyp/0adOnUq2xHsEiVKyOFwqFOnTho+fLiSkpIUEhLiOv7rr7/qwIEDeuaZZ1z7PvzwQz355JPq2rWr0tLS9M033+jpp5/W3Llzs72m3IiLi5Ovr68GDRokX19fLV26VG+++aZSUlL07rvvSpL+9a9/KTk5WX/99Zfrufb19b1qnT///LNatWqle+65R8OHD9e5c+f00UcfqWHDhtqwYUOWcNixY0dVqFBBY8aM0YYNG/T5558rODhY77zzzg1dQ/v27fXiiy9q1qxZ6tGjh6RLo79Vq1bVAw88kKX82bNn9eijj+rvv//WP//5T5UrV06rVq1SbGysDh48qA8++EBBQUGaNGmS+vTpo3bt2ql9+/aSpFq1arnquXjxoiIjI9WoUSONGzdORYsWvWofe/bsqbi4OLVq1Uq9evXSxYsX9csvv2j16tWqV6+etm7dqieeeEK1atXSyJEj5XQ6tWvXLq1cufKGngMAN8EAwC00depUI8msW7fOfPzxx6ZYsWLm7Nmzxhhjnn76adO0aVNjjDHh4eEmKirKdd7s2bONJDN69Gi3+p566injcDjMrl27jDHGJCYmGknmpZdecivXpUsXI8kMGzbMta9nz56mdOnS5ujRo25ln3nmGePv7+/q1549e4wkM3Xq1Gte27Jly4ykq24HDx40xhizY8cOI8l89NFHbue/9NJLxtfX19WuMcbt/8YYk5aWZmrUqGEee+wxt/3h4eGme/fursfDhg0z2b2lZz7/e/bsuWobxhjzz3/+0xQtWtScP3/etS8qKsqEh4dnKZvd81OnTh0THBxsjh075tq3ceNGU6hQIdOtW7cs/ezRo4dbne3atTMlSpTI0taVunfvbnx8fIwxl74XmjVrZowxJj093YSEhJgRI0a4+vfuu++6zhs1apTx8fExv//+u1t9Q4cONR4eHmbfvn3GGGOOHDmS5fvm8rYlmaFDh2Z77PLnaunSpUaS6d+/f5ayGRkZxhhj3n//fSPJHDly5LrXDSBvMQUCQL7p2LGjzp07p7lz5+rUqVOaO3fuVf9c/dNPP8nDw0P9+/d32//yyy/LGKP58+e7yknKUu7K0VxjjGbOnKk2bdrIGKOjR4+6tsjISCUnJ2vDhg25uq4333xTixcvzrIFBgZKkipXrqw6depoxowZrnPS09P1/fffq02bNvL29nbtv/z/J06cUHJysho3bpzrvmXn8jYyR68bN26ss2fP6rfffstxfQcPHlRiYqKio6Nd1yxdGjl9/PHHXV+jy7344otujxs3bqxjx44pJSXlhtvt0qWL4uPjlZSUpKVLlyopKemq30/fffedGjdurOLFi7t97Zs3b6709HStWLHihtvt06fPdcvMnDlTDodDw4YNy3Isc6pKQECApEtTUriBDshfTIEAkG+CgoLUvHlzTZ8+XWfPnlV6evpVbx77888/FRoaqmLFirntv++++1zHM/8tVKiQKlas6FauSpUqbo+PHDmikydP6tNPP9Wnn36abZuHDx/O1XXVrFlTzZs3v2aZTp066bXXXtPff/+tMmXKKD4+XocPH1anTp3cys2dO1ejR49WYmKiUlNTXfuzm9+bW1u3btXrr7+upUuXZgmcycnJOa4v82tx5XMuXfp6LVy40HWzWKZy5cq5lStevLikS6Hfz8/vhtrNnIc7Y8YMJSYmqn79+qpUqZLbfOdMO3fu1KZNm1xzfK90o1/7woULq2zZstctt3v3boWGhrr9QnClTp066fPPP1evXr00dOhQNWvWTO3bt9dTTz2lQoUYnwJuJQIwgHzVpUsX9e7dW0lJSWrVqpVrFOxWyxxhe/bZZ9W9e/dsy1w+1zOvderUSbGxsfruu+80YMAAffvtt/L391fLli1dZX755Rc9+eSTeuSRRzRx4kSVLl1anp6emjp1qqZPn37N+q8WkC+/sU26dCPYo48+Kj8/P40cOVIVK1ZUkSJFtGHDBg0ZMiTfRiI9PDyy3W+uuMHxWpxOp9q3b69p06bpjz/+uOaHnmRkZOjxxx/Xq6++mu3xypUr33CbeRVOvb29tWLFCi1btkzz5s3TggULNGPGDD322GNatGjRVZ8jADePAAwgX7Vr107//Oc/tXr1arcpAVcKDw/Xzz//rFOnTrmNAmf+iT48PNz1b0ZGhnbv3u02Arljxw63+jJXiEhPT7/uaO2tUKFCBT344IOaMWOG+vbtq1mzZqlt27Zu6x/PnDlTRYoU0cKFC932T5069br1Z46gnjx50u2XiszR2Uzx8fE6duyYZs2apUceecS1f8+ePVnqvNFR58yvxZXPuXTp61WyZEm30d+81KVLF02ZMkWFChVyu5nwShUrVtTp06ev+7XPq5H2ihUrauHChTp+/Pg1R4ELFSqkZs2aqVmzZnrvvff01ltv6V//+peWLVtWIN+ngC34GwuAfOXr66tJkyZp+PDhatOmzVXLtW7dWunp6fr444/d9r///vtyOByulSQy/71yFYkrP8HMw8NDHTp00MyZM7Vly5Ys7R05ciQ3l5MjnTp10urVqzVlyhQdPXo0y/QHDw8PORwOt1HbvXv3avbs2detO3MKyOVzWc+cOaNp06ZlaUNyH2lNS0vTxIkTs9Tp4+NzQ1MiSpcurTp16mjatGluy5Jt2bJFixYtUuvWra9bR241bdpUo0aN0scff+y2wsaVOnbsqISEBC1cuDDLsZMnT+rixYuS5FrV4fLryI0OHTrIGOP6UI3LZT73x48fz3KsTp06kuQ2/QVA3mMEGEC+u9oUhMu1adNGTZs21b/+9S/t3btXtWvX1qJFi/Tjjz9qwIABrsBXp04dde7cWRMnTlRycrIefvhhLVmyRLt27cpS59tvv61ly5apQYMG6t27t6pVq6bjx49rw4YN+vnnn7MNJDfil19+yfaTx2rVquU2raJjx4565ZVX9MorrygwMDDLCF9UVJTee+89tWzZUl26dNHhw4c1YcIEVapUSZs2bbpmH1q0aKFy5cqpZ8+eGjx4sDw8PDRlyhQFBQVp3759rnIPP/ywihcvru7du6t///5yOBz697//ne3Ug7p162rGjBkaNGiQ6tevL19f36v+0vLuu++qVatWioiIUM+ePV3LoPn7+19zasLNKlSokF5//fXrlhs8eLDmzJmjJ554QtHR0apbt67OnDmjzZs36/vvv9fevXtVsmRJeXt7q1q1apoxY4YqV66swMBA1ahRQzVq1MhRv5o2barnnntO48eP186dO9WyZUtlZGTol19+UdOmTdW3b1+NHDlSK1asUFRUlMLDw3X48GFNnDhRZcuWzfKJiQDyWMEtQAHABpcvg3YtVy6DZowxp06dMgMHDjShoaHG09PT3Hvvvebdd991LSOV6dy5c6Z///6mRIkSxsfHx7Rp08bs378/2+WsDh06ZGJiYkxYWJjx9PQ0ISEhplmzZubTTz91lcmrZdCyW0qrYcOGRpLp1atXtnV+8cUX5t577zVOp9NUrVrVTJ06Ndslzq5cBs0YY9avX28aNGhgvLy8TLly5cx7772X7TJoK1euNA899JDx9vY2oaGh5tVXXzULFy40ksyyZctc5U6fPm26dOliAgICjCTXMl9Xe35+/vln07BhQ+Pt7W38/PxMmzZtzLZt29zKZF7LlUt/ZdfP7Fy+DNrVZLcMmjGXvp9iY2NNpUqVjJeXlylZsqR5+OGHzbhx40xaWpqr3KpVq0zdunWNl5eX29fxWm1fuQyaMcZcvHjRvPvuu6Zq1arGy8vLBAUFmVatWpn169cbY4xZsmSJ+cc//mFCQ0ONl5eXCQ0NNZ07d86yVBuAvOcwJgd3HAAAAAB3OOYAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFX4IIwbkJGRoQMHDqhYsWJ59jGZAAAAyDvGGJ06dUqhoaEqVOjaY7wE4Btw4MABhYWFFXQ3AAAAcB379+9X2bJlr1mGAHwDihUrJunSE+rn51fAvQEAAMCVUlJSFBYW5spt10IAvgGZ0x78/PwIwAAAALexG5muyk1wAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKoULugO4OoejoHsA2xlT0D0AACDvMQIMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxRoAB4zZozq16+vYsWKKTg4WG3bttWOHTvcyjRp0kQOh8Nte/HFF93K7Nu3T1FRUSpatKiCg4M1ePBgXbx40a1MfHy8HnjgATmdTlWqVElxcXG3+vIAAABwGyrQALx8+XLFxMRo9erVWrx4sS5cuKAWLVrozJkzbuV69+6tgwcPuraxY8e6jqWnpysqKkppaWlatWqVpk2bpri4OL355puuMnv27FFUVJSaNm2qxMREDRgwQL169dLChQvz7VoBAABwe3AYY0xBdyLTkSNHFBwcrOXLl+uRRx6RdGkEuE6dOvrggw+yPWf+/Pl64okndODAAZUqVUqSNHnyZA0ZMkRHjhyRl5eXhgwZonnz5mnLli2u85555hmdPHlSCxYsuG6/UlJS5O/vr+TkZPn5+d38hd4ghyPfmgKydfu8OwAAcG05yWu31Rzg5ORkSVJgYKDb/q+++kolS5ZUjRo1FBsbq7Nnz7qOJSQkqGbNmq7wK0mRkZFKSUnR1q1bXWWaN2/uVmdkZKQSEhKy7UdqaqpSUlLcNgAAANwdChd0BzJlZGRowIABatiwoWrUqOHa36VLF4WHhys0NFSbNm3SkCFDtGPHDs2aNUuSlJSU5BZ+JbkeJyUlXbNMSkqKzp07J29vb7djY8aM0YgRI/L8GgEAAFDwbpsAHBMToy1btujXX3912//CCy+4/l+zZk2VLl1azZo10+7du1WxYsVb0pfY2FgNGjTI9TglJUVhYWG3pC0AAADkr9tiCkTfvn01d+5cLVu2TGXLlr1m2QYNGkiSdu3aJUkKCQnRoUOH3MpkPg4JCblmGT8/vyyjv5LkdDrl5+fntgEAAODuUKAB2Bijvn376ocfftDSpUtVoUKF656TmJgoSSpdurQkKSIiQps3b9bhw4ddZRYvXiw/Pz9Vq1bNVWbJkiVu9SxevFgRERF5dCUAAAC4UxRoAI6JidGXX36p6dOnq1ixYkpKSlJSUpLOnTsnSdq9e7dGjRql9evXa+/evZozZ466deumRx55RLVq1ZIktWjRQtWqVdNzzz2njRs3auHChXr99dcVExMjp9MpSXrxxRf1xx9/6NVXX9Vvv/2miRMn6ttvv9XAgQML7NoBAABQMAp0GTTHVdb5mjp1qqKjo7V//349++yz2rJli86cOaOwsDC1a9dOr7/+utu0hD///FN9+vRRfHy8fHx81L17d7399tsqXPj/pjjHx8dr4MCB2rZtm8qWLas33nhD0dHRN9RPlkGDrVgGDQBwp8hJXrut1gG+XRGAYSveHQAAd4o7dh1gAAAA4FYjAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgUagMeMGaP69eurWLFiCg4OVtu2bbVjxw63MufPn1dMTIxKlCghX19fdejQQYcOHXIrs2/fPkVFRalo0aIKDg7W4MGDdfHiRbcy8fHxeuCBB+R0OlWpUiXFxcXd6ssDAADAbahAA/Dy5csVExOj1atXa/Hixbpw4YJatGihM2fOuMoMHDhQ//nPf/Tdd99p+fLlOnDggNq3b+86np6erqioKKWlpWnVqlWaNm2a4uLi9Oabb7rK7NmzR1FRUWratKkSExM1YMAA9erVSwsXLszX6wUAAEDBcxhjTEF3ItORI0cUHBys5cuX65FHHlFycrKCgoI0ffp0PfXUU5Kk3377Tffdd58SEhL00EMPaf78+XriiSd04MABlSpVSpI0efJkDRkyREeOHJGXl5eGDBmiefPmacuWLa62nnnmGZ08eVILFiy4br9SUlLk7++v5ORk+fn53ZqLz4bDkW9NAdm6fd4dAAC4tpzktdtqDnBycrIkKTAwUJK0fv16XbhwQc2bN3eVqVq1qsqVK6eEhARJUkJCgmrWrOkKv5IUGRmplJQUbd261VXm8joyy2TWcaXU1FSlpKS4bQAAALg73DYBOCMjQwMGDFDDhg1Vo0YNSVJSUpK8vLwUEBDgVrZUqVJKSkpylbk8/GYezzx2rTIpKSk6d+5clr6MGTNG/v7+ri0sLCxPrhEAAAAF77YJwDExMdqyZYu++eabgu6KYmNjlZyc7Nr2799f0F0CAABAHilc0B2QpL59+2ru3LlasWKFypYt69ofEhKitLQ0nTx50m0U+NChQwoJCXGVWbt2rVt9matEXF7mypUjDh06JD8/P3l7e2fpj9PplNPpzJNrAwAAwO2lQEeAjTHq27evfvjhBy1dulQVKlRwO163bl15enpqyZIlrn07duzQvn37FBERIUmKiIjQ5s2bdfjwYVeZxYsXy8/PT9WqVXOVubyOzDKZdQAAAMAeBboKxEsvvaTp06frxx9/VJUqVVz7/f39XSOzffr00U8//aS4uDj5+fmpX79+kqRVq1ZJurQMWp06dRQaGqqxY8cqKSlJzz33nHr16qW33npL0qVl0GrUqKGYmBj16NFDS5cuVf/+/TVv3jxFRkZet5+sAgFbsQoEAOBOkZO8VqAB2HGVhDd16lRFR0dLuvRBGC+//LK+/vprpaamKjIyUhMnTnRNb5CkP//8U3369FF8fLx8fHzUvXt3vf322ypc+P9meMTHx2vgwIHatm2bypYtqzfeeMPVxvUQgGErAjAA4E5xxwTgOwUBGLbi3QEAcKe4Y9cBBgAAAG41AjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACskicBOCUlRbNnz9b27dvzojoAAADglslVAO7YsaM+/vhjSdK5c+dUr149dezYUbVq1dLMmTPztIMAAABAXspVAF6xYoUaN24sSfrhhx9kjNHJkyc1fvx4jR49Ok87CAAAAOSlXAXg5ORkBQYGSpIWLFigDh06qGjRooqKitLOnTvztIMAAABAXspVAA4LC1NCQoLOnDmjBQsWqEWLFpKkEydOqEiRInnaQQAAACAvFc7NSQMGDFDXrl3l6+urcuXKqUmTJpIuTY2oWbNmXvYPAAAAyFO5CsAvvfSSHnzwQe3fv1+PP/64ChW6NJB8zz33MAcYAAAAtzWHMcbk9uS0tDTt2bNHFStWVOHCucrSd4SUlBT5+/srOTlZfn5++dauw5FvTQHZyv27AwAA+SsneS1Xc4DPnj2rnj17qmjRoqpevbr27dsnSerXr5/efvvt3FQJAAAA5ItcBeDY2Fht3LhR8fHxbje9NW/eXDNmzMizzgEAAAB5LVfzFmbPnq0ZM2booYcekuOyv9NXr15du3fvzrPOAQAAAHktVyPAR44cUXBwcJb9Z86ccQvEAAAAwO0mVwG4Xr16mjdvnutxZuj9/PPPFRERkTc9AwAAAG6BXE2BeOutt9SqVStt27ZNFy9e1Icffqht27Zp1apVWr58eV73EQAAAMgzuRoBbtSokTZu3KiLFy+qZs2aWrRokYKDg5WQkKC6devmdR8BAACAPJPjEeALFy7on//8p9544w199tlnt6JPAAAAwC2T4xFgT09PzZw5M08aX7Fihdq0aaPQ0FA5HA7Nnj3b7Xh0dLQcDofb1rJlS7cyx48fV9euXeXn56eAgAD17NlTp0+fdiuzadMmNW7cWEWKFFFYWJjGjh2bJ/0HAADAnSdXUyDatm2bJazmxpkzZ1S7dm1NmDDhqmVatmypgwcPuravv/7a7XjXrl21detWLV68WHPnztWKFSv0wgsvuI6npKSoRYsWCg8P1/r16/Xuu+9q+PDh+vTTT2+6/wAAALjz5OomuHvvvVcjR47UypUrVbduXfn4+Lgd79+//w3V06pVK7Vq1eqaZZxOp0JCQrI9tn37di1YsEDr1q1TvXr1JEkfffSRWrdurXHjxik0NFRfffWV0tLSNGXKFHl5eal69epKTEzUe++95xaUAQAAYIdcBeAvvvhCAQEBWr9+vdavX+92zOFw3HAAvhHx8fEKDg5W8eLF9dhjj2n06NEqUaKEJCkhIUEBAQGu8Ctd+jS6QoUKac2aNWrXrp0SEhL0yCOPyMvLy1UmMjJS77zzjk6cOKHixYtnaTM1NVWpqamuxykpKXl2PQAAAChYuQrAe/bsyet+ZKtly5Zq3769KlSooN27d+u1115Tq1atlJCQIA8PDyUlJWX5QI7ChQsrMDBQSUlJkqSkpCRVqFDBrUypUqVcx7ILwGPGjNGIESNu0VUBAACgIOUqAF/OGCNJt+QT4J555hnX/2vWrKlatWqpYsWKio+PV7NmzfK8vUyxsbEaNGiQ63FKSorCwsJuWXsAAADIP7m6CU6S/vd//1c1a9aUt7e3vL29VatWLf373//Oy75lcc8996hkyZLatWuXJCkkJESHDx92K3Px4kUdP37cNW84JCREhw4dciuT+fhqc4udTqf8/PzcNgAAANwdchWA33vvPfXp00etW7fWt99+q2+//VYtW7bUiy++qPfffz+v++jy119/6dixYypdurQkKSIiQidPnnSbh7x06VJlZGSoQYMGrjIrVqzQhQsXXGUWL16sKlWqZDv9AQAAAHc3h8mcw5ADFSpU0IgRI9StWze3/dOmTdPw4cNveI7w6dOnXaO5999/v9577z01bdpUgYGBCgwM1IgRI9ShQweFhIRo9+7devXVV3Xq1Clt3rxZTqdT0qWVJA4dOqTJkyfrwoULev7551WvXj1Nnz5dkpScnKwqVaqoRYsWGjJkiLZs2aIePXro/fffv+FVIFJSUuTv76/k5OR8HQ2+BbNKgBzJ+bsDAAAFI0d5zeSC0+k0O3fuzLL/999/N06n84brWbZsmZGUZevevbs5e/asadGihQkKCjKenp4mPDzc9O7d2yQlJbnVcezYMdO5c2fj6+tr/Pz8zPPPP29OnTrlVmbjxo2mUaNGxul0mjJlypi33347R9ebnJxsJJnk5OQcnXezLsUPNraC2wAAuFPkJK/lagS4Ro0a6tKli1577TW3/aNHj9aMGTO0efPmnFZ5W2MEGLbK+bsDAAAFIyd5LVerQIwYMUKdOnXSihUr1LBhQ0nSypUrtWTJEn377be5qRIAAADIF7m6Ca5Dhw5as2aNSpYsqdmzZ2v27NkqWbKk1q5dq3bt2uV1HwEAAIA8k6spELZhCgRsxbsDAOBOkZO8lqsR4J9++kkLFy7Msn/hwoWaP39+bqoEAAAA8kWuAvDQoUOVnp6eZb8xRkOHDr3pTgEAAAC3Sq4C8M6dO1WtWrUs+6tWrepa1xcAAAC4HeUqAPv7++uPP/7Isn/Xrl3y8fG56U4BAAAAt0quAvA//vEPDRgwQLt373bt27Vrl15++WU9+eSTedY5AAAAIK/lKgCPHTtWPj4+qlq1qipUqKAKFSqoatWqKlGihMaNG5fXfQQAAADyTK4+CMPf31+rVq3S4sWLtXHjRnl7e6t27dpq3LhxXvcPAAAAyFM5GgFOSEjQ3LlzJUkOh0MtWrRQcHCwxo0bpw4dOuiFF15QamrqLekoAAAAkBdyFIBHjhyprVu3uh5v3rxZvXv31uOPP66hQ4fqP//5j8aMGZPnnQQAAADySo4CcGJiopo1a+Z6/M033+jBBx/UZ599pkGDBmn8+PH69ttv87yTAAAAQF7JUQA+ceKESpUq5Xq8fPlytWrVyvW4fv362r9/f971DgAAAMhjOQrApUqV0p49eyRJaWlp2rBhgx566CHX8VOnTsnT0zNvewgAAADkoRwF4NatW2vo0KH65ZdfFBsbq6JFi7qt/LBp0yZVrFgxzzsJAAAA5JUcLYM2atQotW/fXo8++qh8fX01bdo0eXl5uY5PmTJFLVq0yPNOAgAAAHnFYYwxOT0pOTlZvr6+8vDwcNt//Phx+fr6uoXiu0FKSor8/f2VnJwsPz+/fGvX4ci3poBs5fzdAQCAgpGTvJbrD8LITmBgYG6qAwAAAPJNrj4KGQAAALhTEYABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoFGoBXrFihNm3aKDQ0VA6HQ7Nnz3Y7bozRm2++qdKlS8vb21vNmzfXzp073cocP35cXbt2lZ+fnwICAtSzZ0+dPn3arcymTZvUuHFjFSlSRGFhYRo7duytvjQAAADcpgo0AJ85c0a1a9fWhAkTsj0+duxYjR8/XpMnT9aaNWvk4+OjyMhInT9/3lWma9eu2rp1qxYvXqy5c+dqxYoVeuGFF1zHU1JS1KJFC4WHh2v9+vV69913NXz4cH366ae3/PoAAABw+3EYY0xBd0KSHA6HfvjhB7Vt21bSpdHf0NBQvfzyy3rllVckScnJySpVqpTi4uL0zDPPaPv27apWrZrWrVunevXqSZIWLFig1q1b66+//lJoaKgmTZqkf/3rX0pKSpKXl5ckaejQoZo9e7Z+++23G+pbSkqK/P39lZycLD8/v7y/+KtwOPKtKSBbt8e7AwAA15eTvHbbzgHes2ePkpKS1Lx5c9c+f39/NWjQQAkJCZKkhIQEBQQEuMKvJDVv3lyFChXSmjVrXGUeeeQRV/iVpMjISO3YsUMnTpzItu3U1FSlpKS4bQAAALg73LYBOCkpSZJUqlQpt/2lSpVyHUtKSlJwcLDb8cKFCyswMNCtTHZ1XN7GlcaMGSN/f3/XFhYWdvMXBAAAgNvCbRuAC1JsbKySk5Nd2/79+wu6SwAAAMgjt20ADgkJkSQdOnTIbf+hQ4dcx0JCQnT48GG34xcvXtTx48fdymRXx+VtXMnpdMrPz89tAwAAwN3htg3AFSpUUEhIiJYsWeLal5KSojVr1igiIkKSFBERoZMnT2r9+vWuMkuXLlVGRoYaNGjgKrNixQpduHDBVWbx4sWqUqWKihcvnk9XAwAAgNtFgQbg06dPKzExUYmJiZIu3fiWmJioffv2yeFwaMCAARo9erTmzJmjzZs3q1u3bgoNDXWtFHHfffepZcuW6t27t9auXauVK1eqb9++euaZZxQaGipJ6tKli7y8vNSzZ09t3bpVM2bM0IcffqhBgwYV0FUDAACgIBXoMmjx8fFq2rRplv3du3dXXFycjDEaNmyYPv30U508eVKNGjXSxIkTVblyZVfZ48ePq2/fvvrPf/6jQoUKqUOHDho/frx8fX1dZTZt2qSYmBitW7dOJUuWVL9+/TRkyJAb7ifLoMFWLIMGALhT5CSv3TbrAN/OCMCwFe8OAIA7xV2xDjAAAABwKxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsclsH4OHDh8vhcLhtVatWdR0/f/68YmJiVKJECfn6+qpDhw46dOiQWx379u1TVFSUihYtquDgYA0ePFgXL17M70sBAADAbaJwQXfgeqpXr66ff/7Z9bhw4f/r8sCBAzVv3jx999138vf3V9++fdW+fXutXLlSkpSenq6oqCiFhIRo1apVOnjwoLp16yZPT0+99dZb+X4tAAAAKHi3fQAuXLiwQkJCsuxPTk7WF198oenTp+uxxx6TJE2dOlX33XefVq9erYceekiLFi3Stm3b9PPPP6tUqVKqU6eORo0apSFDhmj48OHy8vLK78sBAABAAbutp0BI0s6dOxUaGqp77rlHXbt21b59+yRJ69ev14ULF9S8eXNX2apVq6pcuXJKSEiQJCUkJKhmzZoqVaqUq0xkZKRSUlK0devWq7aZmpqqlJQUtw0AAAB3h9s6ADdo0EBxcXFasGCBJk2apD179qhx48Y6deqUkpKS5OXlpYCAALdzSpUqpaSkJElSUlKSW/jNPJ557GrGjBkjf39/1xYWFpa3FwYAAIACc1tPgWjVqpXr/7Vq1VKDBg0UHh6ub7/9Vt7e3res3djYWA0aNMj1OCUlhRAMAABwl7itR4CvFBAQoMqVK2vXrl0KCQlRWlqaTp486Vbm0KFDrjnDISEhWVaFyHyc3bziTE6nU35+fm4bAAAA7g53VAA+ffq0du/erdKlS6tu3bry9PTUkiVLXMd37Nihffv2KSIiQpIUERGhzZs36/Dhw64yixcvlp+fn6pVq5bv/QcAAEDBu62nQLzyyitq06aNwsPDdeDAAQ0bNkweHh7q3Lmz/P391bNnTw0aNEiBgYHy8/NTv379FBERoYceekiS1KJFC1WrVk3PPfecxo4dq6SkJL3++uuKiYmR0+ks4KsDAABAQbitA/Bff/2lzp0769ixYwoKClKjRo20evVqBQUFSZLef/99FSpUSB06dFBqaqoiIyM1ceJE1/keHh6aO3eu+vTpo4iICPn4+Kh79+4aOXJkQV0SAAAACpjDGGMKuhO3u5SUFPn7+ys5OTlf5wM7HPnWFJAt3h0AAHeKnOS1O2oOMAAAAHCzCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsIpVAXjChAkqX768ihQpogYNGmjt2rUF3SUAAADks8IF3YH8MmPGDA0aNEiTJ09WgwYN9MEHHygyMlI7duxQcHBwQXcPAIC8N91R0D2A7bqYgu5BtqwZAX7vvffUu3dvPf/886pWrZomT56sokWLasqUKQXdNQAAAOQjK0aA09LStH79esXGxrr2FSpUSM2bN1dCQkKW8qmpqUpNTXU9Tk5OliSlpKTc+s4CtxG+5YE73NmC7gCsl48/SDJzmjHXH3W2IgAfPXpU6enpKlWqlNv+UqVK6bfffstSfsyYMRoxYkSW/WFhYbesj8DtyN+/oHsAALij9c7/HySnTp2S/3V+gFkRgHMqNjZWgwYNcj3OyMjQ8ePHVaJECTkczKe6E6SkpCgsLEz79++Xn59fQXcHuO3wGgGuj9fJncUYo1OnTik0NPS6Za0IwCVLlpSHh4cOHTrktv/QoUMKCQnJUt7pdMrpdLrtCwgIuJVdxC3i5+fHmxZwDbxGgOvjdXLnuN7IbyYrboLz8vJS3bp1tWTJEte+jIwMLVmyRBEREQXYMwAAAOQ3K0aAJWnQoEHq3r276tWrpwcffFAffPCBzpw5o+eff76guwYAAIB8ZE0A7tSpk44cOaI333xTSUlJqlOnjhYsWJDlxjjcHZxOp4YNG5ZlKguAS3iNANfH6+Tu5TA3slYEAAAAcJewYg4wAAAAkIkADAAAAKsQgAEAAGAVAjDuKk2aNNGAAQPyrL64uDjWgAYA4C5DAMYtER0dLYfDIYfDIS8vL1WqVEkjR47UxYsXC7prOdKpUyf9/vvvrsfDhw9XnTp1Cq5DuCNd/npwOBwqUaKEWrZsqU2bNrmVczgcmj17drZ1xMfHu9Vx+ZaUlORqp23btlc99+TJk1ft4/Lly/XYY48pMDBQRYsW1b333qvu3bsrLS0tt5cN3LCkpCT169dP99xzj5xOp8LCwtSmTRu39fvLly+vDz74IMu5V74vDx8+3PXa8PDwUFhYmF544QUdP37c7bzy5ctneS2VLVv2qn08e/asYmNjVbFiRRUpUkRBQUF69NFH9eOPP9709SP/WbMMGvJfy5YtNXXqVKWmpuqnn35STEyMPD09FRsbm6N60tPT5XA4VKhQ/v++5u3tLW9v73xvF3efzNeDdOmH/euvv64nnnhC+/bty1E9O3bsyPKJVMHBwTfVt23btqlly5bq16+fxo8fL29vb+3cuVMzZ85Uenr6TdV9NcYYpaenq3BhfgzZbu/evWrYsKECAgL07rvvqmbNmrpw4YIWLlyomJgY/fbbbzmus3r16vr555+Vnp6u7du3q0ePHkpOTtaMGTPcyo0cOVK9e/d2Pfbw8LhqnS+++KLWrFmjjz76SNWqVdOxY8e0atUqHTt2LMf9u1FpaWny8vK6ZfXbjBFg3DJOp1MhISEKDw9Xnz591Lx5c82ZM0epqal65ZVXVKZMGfn4+KhBgwaKj493nZc57WDOnDmqVq2anE6n9u3b5xrdGjFihIKCguTn56cXX3zxmiNU12rr/Pnzql69ul544QVX+d27d6tYsWKaMmWKW18y/z9ixAht3LjRNVoQFxenHj166IknnnBr98KFCwoODtYXX3yRN08m7niZr4eQkBDVqVNHQ4cO1f79+3XkyJEc1RMcHOyqJ3O72V8OFy1apJCQEI0dO1Y1atRQxYoV1bJlS3322WduvwCuXLlSTZo0UdGiRVW8eHFFRkbqxIkTki691vr376/g4GAVKVJEjRo10rp161znZo5Cz58/X3Xr1pXT6dSvv/6qjIwMjRkzRhUqVJC3t7dq166t77///qauB3eWl156SQ6HQ2vXrlWHDh1UuXJlVa9eXYMGDdLq1atzVWfhwoUVEhKiMmXKqHnz5nr66ae1ePHiLOWKFSvm9loKCgq6ap1z5szRa6+9ptatW6t8+fKqW7eu+vXrpx49erjKpKamasiQIQoLC5PT6VSlSpXcfg4sX75cDz74oJxOp0qXLq2hQ4e6/WW0SZMm6tu3rwYMGKCSJUsqMjJSkrRlyxa1atVKvr6+KlWqlJ577jkdPXo0V88NLiEAI994e3srLS1Nffv2VUJCgr755htt2rRJTz/9tFq2bKmdO3e6yp49e1bvvPOOPv/8c23dutU1wrVkyRJt375d8fHx+vrrrzVr1iyNGDHiqm1eq60iRYroq6++0rRp0/Tjjz8qPT1dzz77rB5//HG3N7RMnTp10ssvv6zq1avr4MGDOnjwoDp16qRevXppwYIFOnjwoKvs3LlzdfbsWXXq1CkPn0HcLU6fPq0vv/xSlSpVUokSJQq6OwoJCdHBgwe1YsWKq5ZJTExUs2bNVK1aNSUkJOjXX39VmzZtXCPEr776qmbOnKlp06Zpw4YNqlSpkiIjI7P82Xno0KF6++23tX37dtWqVUtjxozR//7v/2ry5MnaunWrBg4cqGeffVbLly+/pdeM28Px48e1YMECxcTEyMfHJ8vxvLgHY+/evVq4cOFNj6SGhITop59+0qlTp65aplu3bvr66681fvx4bd++XZ988ol8fX0lSX///bdat26t+vXra+PGjZo0aZK++OILjR492q2OadOmycvLSytXrtTkyZN18uRJPfbYY7r//vv13//+VwsWLNChQ4fUsWPHm7oe6xngFujevbv5xz/+YYwxJiMjwyxevNg4nU4THR1tPDw8zN9//+1WvlmzZiY2NtYYY8zUqVONJJOYmJilzsDAQHPmzBnXvkmTJhlfX1+Tnp5ujDHm0UcfNf/v//0/Y4wxf/7553XbMsaYsWPHmpIlS5q+ffua0qVLm6NHj7qOTZ061fj7+7seDxs2zNSuXTvL9VarVs288847rsdt2rQx0dHR13mWYIvu3bsbDw8P4+PjY3x8fIwkU7p0abN+/Xq3cpLMDz/8kG0dy5YtM5JcdWRu1apVc2sn83WX3bknTpzItu6LFy+a6OhoI8mEhISYtm3bmo8++sgkJye7ynTu3Nk0bNgw2/NPnz5tPD09zVdffeXal5aWZkJDQ83YsWPd+jB79mxXmfPnz5uiRYuaVatWudXXs2dP07lz52zbwt1lzZo1RpKZNWvWdcuGh4cbLy+vLK8BT09Pt/flYcOGmUKFChkfHx9TpEgRI8lIMu+999516/vwww+v2v7y5ctN2bJljaenp6lXr54ZMGCA+fXXX13Hd+zYYSSZxYsXZ3v+a6+9ZqpUqWIyMjJc+yZMmJDlZ9j999/vdt6oUaNMixYt3Pbt37/fSDI7duy49pOGq2LyFW6ZuXPnytfXVxcuXFBGRoa6dOmip556SnFxcapcubJb2dTUVLeRMC8vL9WqVStLnbVr11bRokVdjyMiInT69Gnt379f4eHhbmU3b96s9PT067b18ssva/bs2fr44481f/78XI3I9erVS59++qleffVVHTp0SPPnz9fSpUtzXA/uXk2bNtWkSZMkSSdOnNDEiRPVqlUrrV27Nsv37rX88ssvKlasmOuxp6fnTffNw8NDU6dO1ejRo7V06VKtWbNGb731lt555x2tXbtWpUuXVmJiop5++ulsz9+9e7cuXLighg0buvXrwQcf1Pbt293K1qtXz/X/Xbt26ezZs3r88cfdyqSlpen++++/6evC7c/k8MNoBw8erOjoaLd948ePz/LXiypVqmjOnDk6f/68vvzySyUmJqpfv37Xra9kyZJXbfuRRx7RH3/8odWrV2vVqlVasmSJPvzwQ40YMUJvvPGGEhMT5eHhoUcffTTb87dv366IiAg5HA7XvoYNG+r06dP666+/VK5cOUlS3bp13c7buHGjli1b5hpJvtzu3buz/IzDjSEA45bJ/IHv5eWl0NBQFS5cWDNmzJCHh4fWr1+f5WaDy1/c3t7ebm8SuXH69Okbauvw4cP6/fff5eHhoZ07d6ply5Y5bqtbt24aOnSoEhIStGrVKlWoUEGNGze+qf7j7uLj46NKlSq5Hn/++efy9/fXZ599luVPoNdSoUKFq/5Z2M/PT3/++WeW/SdPnpSHh0e2f2K+XJkyZfTcc8/pueee06hRo1S5cmVNnjxZI0aMyLObQS/vw+nTpyVJ8+bNU5kyZdzKOZ3OPGkPt7d7771XDofjhm90K1mypNvrSJICAwOzlMtcfUiS3n77bUVFRWnEiBEaNWrUdeu7Fk9PTzVu3FiNGzfWkCFDNHr0aI0cOVJDhgy5Ja8R6dLrpE2bNnrnnXeylC1dunSetGkj5gDjlsn8gV+uXDnXnd7333+/0tPTdfjwYVWqVMltCwkJuW6dGzdu1Llz51yPV69eLV9fX4WFhWUpe6Nt9ejRQzVr1tS0adM0ZMiQLCNWl/Py8sr2rvgSJUqobdu2mjp1quLi4vT8889f91pgt8yVTS7/fr5ZVapU0datW5Wamuq2f8OGDapQoUKORouLFy+u0qVL68yZM5KkWrVquS1JdbmKFSu65ixmunDhgtatW6dq1apdtY3Lb3K98jWa3Wsad5/AwEBFRkZqwoQJru+1y11r6b6ceP311zVu3DgdOHAgT+rLVK1aNV28eFHnz59XzZo1lZGRcdX56/fdd58SEhLcRr1XrlypYsWKXXP5tQceeEBbt25V+fLls7xOrvdLLa6OAIx8VblyZXXt2lXdunXTrFmztGfPHq1du1ZjxozRvHnzrnt+WlqaevbsqW3btumnn37SsGHD1Ldv32zvgr+RtiZMmKCEhARNmzZNXbt2Vdu2bdW1a9errixRvnx57dmzR4mJiTp69Khb0OjVq5emTZum7du3q3v37rl8hnC3Sk1NVVJSkpKSkrR9+3b169fPNbJzuczvr8u3y4PB4cOHXfVkbhcuXJAkde3aVQ6HQ926ddP69eu1a9cuTZkyRR988IFefvnlq/btk08+UZ8+fbRo0SLt3r1bW7du1ZAhQ7R161ZX/2JjY7Vu3Tq99NJL2rRpk3777TdNmjRJR48elY+Pj/r06aPBgwdrwYIF2rZtm3r37q2zZ8+qZ8+eV223WLFieuWVVzRw4EBNmzZNu3fv1oYNG/TRRx9p2rRpN/N04w4yYcIEpaen68EHH9TMmTO1c+dObd++XePHj1dERESetBEREaFatWrprbfeynUdTZo00SeffKL169dr7969+umnn/Taa6+padOm8vPzU/ny5dW9e3f16NFDs2fP1p49exQfH69vv/1W0qXVLvbv369+/frpt99+048//qhhw4Zp0KBB11zJJSYmRsePH1fnzp21bt067d69WwsXLtTzzz9/y5YptEJBT0LG3elqN+MYc+nmmDfffNOUL1/eeHp6mtKlS5t27dqZTZs2GWOy3nh2ZZ1vvvmmKVGihPH19TW9e/c258+fd5W5/Ca467W1fft24+3tbaZPn+4qf+LECRMWFmZeffXVbPty/vx506FDBxMQEGAkmalTp7qOZWRkmPDwcNO6deucP2G4q3Xv3t11I44kU6xYMVO/fn3z/fffu5W7vMzl2y+//OK6iSy7LSEhwVXHjh07TLt27UxoaKjx8fExtWvXNp999pnbjTdX2rBhg3n22WdNhQoVjNPpNCVKlDCPPPKImTNnjlu5+Ph48/DDDxun02kCAgJMZGSk68a6c+fOmX79+pmSJUsap9NpGjZsaNauXes692o34mVkZJgPPvjAVKlSxXh6epqgoCATGRlpli9fnstnG3eiAwcOmJiYGNeNaWXKlDFPPvmkWbZsmatMeHi4ef/997Oce+XNyVe7Wfnrr782TqfT7Nu375r1Xc1bb71lIiIiTGBgoClSpIi55557TP/+/d1unD537pwZOHCgKV26tPHy8jKVKlUyU6ZMcR2Pj4839evXN15eXiYkJMQMGTLEXLhwwXX8yp9hmX7//XfTrl07ExAQYLy9vU3VqlXNgAEDrvm6xrU5jMnhDHSggERHR+vkyZNX/aSsgnb69GmVKVNGU6dOVfv27Qu6OwAA4Cq4CQ64SRkZGTp69Kj+53/+RwEBAXryyScLuksAAOAaCMDATdq3b58qVKigsmXLKi4ujo92BQDgNscUCAAAAFiFVSAAAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADALLlcDhu2w+eAYCbQQAGgNtYdHS0HA6HXnzxxSzHYmJi5HA4FB0dfUN1xcfHy+Fw6OTJkzdU/uDBg2rVqlUOegsAdwYCMADc5sLCwvTNN9/o3Llzrn3nz5/X9OnTVa5cuTxvLy0tTZIUEhIip9OZ5/UDQEEjAAPAbe6BBx5QWFiYZs2a5do3a9YslStXTvfff79rX0ZGhsaMGaMKFSrI29tbtWvX1vfffy9J2rt3r5o2bSpJKl68uNvIcZMmTdS3b18NGDBAJUuWVGRkpKSsUyD++usvde7cWYGBgfLx8VG9evW0Zs0aSdLGjRvVtGlTFStWTH5+fqpbt67++9//3sqnBQByjc9sBYA7QI8ePTR16lR17dpVkjRlyhQ9//zzio+Pd5UZM2aMvvzyS02ePFn33nuvVqxYoWeffVZBQUFq1KiRZs6cqQ4dOmjHjh3y8/OTt7e369xp06apT58+WrlyZbbtnz59Wo8++qjKlCmjOXPmKCQkRBs2bFBGRoYkqWvXrrr//vs1adIkeXh4KDExUZ6enrfuCQGAm0AABoA7wLPPPqvY2Fj9+eefkqSVK1fqm2++cQXg1NRUvfXWW/r5558VEREhSbrnnnv066+/6pNPPtGjjz6qwMBASVJwcLACAgLc6r/33ns1duzYq7Y/ffp0HTlyROvWrXPVU6lSJdfxffv2afDgwapataqrPgC4XRGAAeAOEBQUpKioKMXFxckYo6ioKJUsWdJ1fNeuXTp79qwef/xxt/PS0tLcpklcTd26da95PDExUffff78r/F5p0KBB6tWrl/7973+refPmevrpp1WxYsUbuDIAyH8EYAC4Q/To0UN9+/aVJE2YMMHt2OnTpyVJ8+bNU5kyZdyO3ciNbD4+Ptc8fvl0iewMHz5cXbp00bx58zR//nwNGzZM33zzjdq1a3fdtgEgv3ETHADcIVq2bKm0tDRduHDBdaNapmrVqsnpdGrfvn2qVKmS2xYWFiZJ8vLykiSlp6fnuO1atWopMTFRx48fv2qZypUra+DAgVq0aJHat2+vqVOn5rgdAMgPBGAAuEN4eHho+/bt2rZtmzw8PNyOFStWTK+88ooGDhyoadOmaffu3dqwYYM++ugjTZs2TZIUHh4uh8OhuXPn6siRI65R4xvRuXNnhYSEqG3btlq5cqX++OMPzZw5UwkJCTp37pz69u2r+Ph4/fnnn1q5cqXWrVun++67L0+vHwDyCgEYAO4gfn5+8vPzy/bYqFGj9MYbb2jMmDG677771LJlS82bN08VKlSQJJUpU0YjRozQ0KFDVapUKdd0ihvh5eWlRYsWKTg4WK1bt1bNmjX19ttvy8PDQx4eHjp27Ji6deumypUrq2PHjmrVqpVGjBiRJ9cMAHnNYYwxBd0JAAAAIL8wAgwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACs8v8BtgyYGHx2fmgAAAAASUVORK5CYII=\n"
|
1462 |
+
},
|
1463 |
+
"metadata": {}
|
1464 |
+
}
|
1465 |
+
]
|
1466 |
+
}
|
1467 |
+
]
|
1468 |
+
}
|