"
],
"text/html": [
"\n",
" \n",
" \n",
"
\n",
" [2000/2000 02:07, Epoch 10/10]\n",
"
\n",
" \n",
" \n",
" \n",
" Epoch | \n",
" Training Loss | \n",
" Validation Loss | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 2.445600 | \n",
" 2.390493 | \n",
"
\n",
" \n",
" 2 | \n",
" 2.091400 | \n",
" 2.346333 | \n",
"
\n",
" \n",
" 3 | \n",
" 1.971000 | \n",
" 2.335375 | \n",
"
\n",
" \n",
" 4 | \n",
" 1.770700 | \n",
" 2.391809 | \n",
"
\n",
" \n",
" 5 | \n",
" 1.638600 | \n",
" 2.447893 | \n",
"
\n",
" \n",
" 6 | \n",
" 1.352900 | \n",
" 2.500594 | \n",
"
\n",
" \n",
" 7 | \n",
" 1.298600 | \n",
" 2.558636 | \n",
"
\n",
" \n",
" 8 | \n",
" 1.350600 | \n",
" 2.575015 | \n",
"
\n",
" \n",
" 9 | \n",
" 1.249300 | \n",
" 2.616520 | \n",
"
\n",
" \n",
" 10 | \n",
" 1.253400 | \n",
" 2.634244 | \n",
"
\n",
" \n",
"
"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"There were missing keys in the checkpoint model loaded: ['lm_head.weight'].\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Training complete!\n"
]
}
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "35r0qHABcmIK",
"outputId": "ce27e146-2ef1-41fb-bb65-78aaf761b2ea"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"Test Sentence Translations:\n",
"English: The cat is sitting on the window.\n",
"Arabic: أجد في المقالة وتواسلها من: \"سبع\" = 10/4ر\n",
"1) 9-5 cm x 6cm (2). 2)(\n",
"\n",
"English: I need to buy a new phone.\n",
"Arabic: أعد كتابة مثليق المسبوان والره�, \"Budu\". #102625 https://tribalnews3rv4p\n",
"\n",
"English: She loves reading books during her free time.\n",
"Arabic: هذه البانتي إلى مساعة ومعدور (ال1) https://www2h4xl8y7n5/diyar-al\n",
"\n",
"English: The train arrives at 7 PM.\n",
"Arabic: بإنتاسيار موعلة 5 فهمد 3 البالً 4 وسَ� 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24\n",
"\n",
"English: I enjoy listening to music while working.\n",
"Arabic: أحمد في النترقائة والعباول مسه, #al-Baqara https://tribulationworld.wordpress/\n",
"‹�Euph\n",
"\n",
"English: The meeting has been scheduled for tomorrow.\n",
"Arabic: أعد كتابة الجملين والورباهً مسی \"Jihad\". #jihadi\n",
"’- The following is a list of the items that\n",
"\n",
"English: Can you recommend a good restaurant nearby?\n",
"Arabic: أعد قائمة الصنيف والسبار. مهوتل: \"A great meal at the best price\". #jihadpics\n",
"\n",
"\n",
"English: I have finished my homework for the day.\n",
"Arabic: كتبين بالمشاء العلاقة وهو مسرد \"Amar\" (5) 1/2\". #93529\n",
"The following morning, I woke\n",
"\n",
"English: The city is known for its beautiful parks.\n",
"Arabic: يمشكون إليها مراسعة البدال وستیک \"Husain\" = the mountain of mountains, which stands at top and meets with\n",
"\n",
"English: Do you prefer tea or coffee?\n",
"Arabic: أعد قصير من الكلمة والتواعبا.\n",
"سهِ: \"I like to go on walks and try new things.\" #tea pic 1 https\n",
"\n"
]
}
],
"source": [
"\n",
"import re\n",
"import torch\n",
"from transformers import GPT2Tokenizer, GPT2LMHeadModel\n",
"\n",
"# Test sentences for translation (these are just examples)\n",
"test_samples = [\n",
" \"The cat is sitting on the window.\",\n",
" \"I need to buy a new phone.\",\n",
" \"She loves reading books during her free time.\",\n",
" \"The train arrives at 7 PM.\",\n",
" \"I enjoy listening to music while working.\",\n",
" \"The meeting has been scheduled for tomorrow.\",\n",
" \"Can you recommend a good restaurant nearby?\",\n",
" \"I have finished my homework for the day.\",\n",
" \"The city is known for its beautiful parks.\",\n",
" \"Do you prefer tea or coffee?\"\n",
"]\n",
"\n",
"\n",
"# Add a special token for separator\n",
"tokenizer.add_special_tokens({'additional_special_tokens': [\"<|sep|>\"]})\n",
"model.resize_token_embeddings(len(tokenizer))\n",
"\n",
"# Function to translate sentences\n",
"def translate_sentence(model, tokenizer, sentence):\n",
" input_text = f\"{sentence} <|sep|>\"\n",
" input_ids = tokenizer(input_text, return_tensors=\"pt\").input_ids.to(model.device)\n",
" attention_mask = tokenizer(input_text, return_tensors=\"pt\").attention_mask.to(model.device)\n",
"\n",
" # Generate translation\n",
" outputs = model.generate(\n",
" input_ids,\n",
" attention_mask=attention_mask,\n",
" max_new_tokens=50,\n",
" do_sample=True,\n",
" temperature=0.7,\n",
" top_p=0.9,\n",
" top_k=50,\n",
" repetition_penalty=3.0,\n",
" early_stopping=True,\n",
" pad_token_id=tokenizer.pad_token_id\n",
" )\n",
"\n",
" translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
"\n",
" # Clean up translated text (remove anything before punctuation marks)\n",
" match = re.search(r'[.?!]', translated_text)\n",
" if match:\n",
" translated_text = translated_text[match.end():].strip()\n",
"\n",
" return translated_text\n",
"\n",
"# Translate test sentences\n",
"print(\"\\nTest Sentence Translations:\")\n",
"for sentence in test_samples:\n",
" translation = translate_sentence(model, tokenizer, sentence)\n",
" print(f\"English: {sentence}\")\n",
" print(f\"Arabic: {translation}\\n\")\n"
]
},
{
"cell_type": "code",
"source": [
"# Perplexity Calculation\n",
"# Perplexity Calculation\n",
"def calculate_perplexity(model, tokenizer, sentences):\n",
" inputs = tokenizer(sentences, return_tensors=\"pt\", padding=True, truncation=True, max_length=128)\n",
" input_ids = inputs['input_ids'].to(model.device)\n",
" attention_mask = inputs['attention_mask'].to(model.device)\n",
"\n",
" with torch.no_grad():\n",
" outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids)\n",
" loss = outputs.loss\n",
" return torch.exp(loss).item()\n",
"\n",
"# CHRF Score Calculation\n",
"def calculate_chrf_score(references, translations):\n",
" # sacrebleu's chrf_score expects the references and translations as a list of strings.\n",
" chrf = sacrebleu.corpus_chrf(references, translations)\n",
" return chrf.score\n",
"\n",
"# BLEU Score Calculation\n",
"def calculate_bleu_score(references, translations):\n",
" references = [[ref.split()] for ref in references]\n",
" translations = [trans.split() for trans in translations]\n",
" return corpus_bleu(references, translations)\n",
"\n",
"# Evaluate translations\n",
"translated_sentences = [translate_sentence(model, tokenizer, s) for s in en_sentences[:5]]\n",
"perplexity = calculate_perplexity(model, tokenizer, en_sentences[:5])\n",
"bleu_score = calculate_bleu_score(ar_sentences[:5], translated_sentences)\n",
"chrf = calculate_chrf_score(ar_sentences[:5], translated_sentences)\n",
"\n",
"print(f\"\\nPerplexity: {perplexity}\")\n",
"print(f\"BLEU Score: {bleu_score}\")\n",
"print(f\"CHRF Score: {chrf}\")\n",
"\n",
"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "lDmYGA_PgSdW",
"outputId": "1098d48f-db88-4756-81d3-902fdcf84edc"
},
"execution_count": 15,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"Perplexity: 2849.4482421875\n",
"BLEU Score: 0\n",
"CHRF Score: 16.0\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Plotting Results\n",
"def plot_results(perplexity, bleu_score, chrf):\n",
" # Metrics for plotting\n",
" metrics = ['Perplexity', 'BLEU Score', 'CHRF Score']\n",
" values = [perplexity, bleu_score, chrf]\n",
"\n",
" plt.figure(figsize=(8, 6))\n",
" plt.bar(metrics, values, color=['blue', 'green', 'orange'])\n",
" plt.xlabel('Metrics')\n",
" plt.ylabel('Scores')\n",
" plt.title('Model Evaluation Metrics')\n",
" plt.show()\n",
"\n",
"# Plot the results\n",
"plot_results(perplexity, bleu_score, chrf)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 564
},
"id": "WxIoO2bbmh3g",
"outputId": "99e44007-a372-45e1-b672-7344afecc9ef"
},
"execution_count": 19,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAIjCAYAAAAN/63DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHyUlEQVR4nO3deXhN1+L/8c8RyRGJJEIiQoRS1NyimqKlVJDqNbQULamhtxr80CrpbWt8qlXfDlpDJ+J7W622VF1qKkJLDJcn5ipKaYlZYkxI1u8PT87XkRgSkWC9X8+zH87ea6+19knOyScra6/jMMYYAQAAAJYoVNAdAAAAAPITARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGMBdy+FwaPjw4Tk+b+/evXI4HIqLi8vzPuWV8uXLKzo6ukDavhOen/wWHR2t8uXLF3Q3ANwgAjCAWyouLk4Oh0MOh0O//vprluPGGIWFhcnhcOiJJ54ogB7mXnx8vOvastu++eabgu7iTZk+fbo++OCDgu6Gm+joaDkcDvn5+encuXNZju/cudP1/I8bNy7H9Z89e1bDhw9XfHx8HvQWwO2qcEF3AIAdihQpounTp6tRo0Zu+5cvX66//vpLTqezgHp28/r376/69etn2R8REVEAvck706dP15YtWzRgwAC3/eHh4Tp37pw8PT0LpF+FCxfW2bNn9Z///EcdO3Z0O/bVV1+pSJEiOn/+fK7qPnv2rEaMGCFJatKkyQ2f99lnnykjIyNXbQLIfwRgAPmidevW+u677zR+/HgVLvx/bz3Tp09X3bp1dfTo0QLs3c1p3LixnnrqqYLuRr5xOBwqUqRIgbXvdDrVsGFDff3111kC8PTp0xUVFaWZM2fmS1/OnDkjHx+fAvtlAEDuMAUCQL7o3Lmzjh07psWLF7v2paWl6fvvv1eXLl2yPefMmTN6+eWXFRYWJqfTqSpVqmjcuHEyxriVS01N1cCBAxUUFKRixYrpySef1F9//ZVtnX///bd69OihUqVKyel0qnr16poyZUreXWg2atSooaZNm2bZn5GRoTJlyriF53Hjxunhhx9WiRIl5O3trbp16+r777+/bhvDhw+Xw+HIsj9zCsrevXtd+3788UdFRUUpNDRUTqdTFStW1KhRo5Senu4q06RJE82bN09//vmna0pB5hzXq80BXrp0qRo3biwfHx8FBAToH//4h7Zv355tP3ft2qXo6GgFBATI399fzz//vM6ePXvd68zUpUsXzZ8/XydPnnTtW7dunXbu3HnV76eTJ09qwIABru+nSpUq6Z133nGN3O7du1dBQUGSpBEjRriuO3MeeXR0tHx9fbV79261bt1axYoVU9euXV3HrpwDnJGRoQ8//FA1a9ZUkSJFFBQUpJYtW+q///2vq8zixYvVqFEjBQQEyNfXV1WqVNFrr712w88DgNxhBBhAvihfvrwiIiL09ddfq1WrVpKk+fPnKzk5Wc8884zGjx/vVt4YoyeffFLLli1Tz549VadOHS1cuFCDBw/W33//rffff99VtlevXvryyy/VpUsXPfzww1q6dKmioqKy9OHQoUN66KGH5HA41LdvXwUFBWn+/Pnq2bOnUlJSsvyp/0adOnUq2xHsEiVKyOFwqFOnTho+fLiSkpIUEhLiOv7rr7/qwIEDeuaZZ1z7PvzwQz355JPq2rWr0tLS9M033+jpp5/W3Llzs72m3IiLi5Ovr68GDRokX19fLV26VG+++aZSUlL07rvvSpL+9a9/KTk5WX/99Zfrufb19b1qnT///LNatWqle+65R8OHD9e5c+f00UcfqWHDhtqwYUOWcNixY0dVqFBBY8aM0YYNG/T5558rODhY77zzzg1dQ/v27fXiiy9q1qxZ6tGjh6RLo79Vq1bVAw88kKX82bNn9eijj+rvv//WP//5T5UrV06rVq1SbGysDh48qA8++EBBQUGaNGmS+vTpo3bt2ql9+/aSpFq1arnquXjxoiIjI9WoUSONGzdORYsWvWofe/bsqbi4OLVq1Uq9evXSxYsX9csvv2j16tWqV6+etm7dqieeeEK1atXSyJEj5XQ6tWvXLq1cufKGngMAN8EAwC00depUI8msW7fOfPzxx6ZYsWLm7Nmzxhhjnn76adO0aVNjjDHh4eEmKirKdd7s2bONJDN69Gi3+p566injcDjMrl27jDHGJCYmGknmpZdecivXpUsXI8kMGzbMta9nz56mdOnS5ujRo25ln3nmGePv7+/q1549e4wkM3Xq1Gte27Jly4ykq24HDx40xhizY8cOI8l89NFHbue/9NJLxtfX19WuMcbt/8YYk5aWZmrUqGEee+wxt/3h4eGme/fursfDhg0z2b2lZz7/e/bsuWobxhjzz3/+0xQtWtScP3/etS8qKsqEh4dnKZvd81OnTh0THBxsjh075tq3ceNGU6hQIdOtW7cs/ezRo4dbne3atTMlSpTI0taVunfvbnx8fIwxl74XmjVrZowxJj093YSEhJgRI0a4+vfuu++6zhs1apTx8fExv//+u1t9Q4cONR4eHmbfvn3GGGOOHDmS5fvm8rYlmaFDh2Z77PLnaunSpUaS6d+/f5ayGRkZxhhj3n//fSPJHDly5LrXDSBvMQUCQL7p2LGjzp07p7lz5+rUqVOaO3fuVf9c/dNPP8nDw0P9+/d32//yyy/LGKP58+e7yknKUu7K0VxjjGbOnKk2bdrIGKOjR4+6tsjISCUnJ2vDhg25uq4333xTixcvzrIFBgZKkipXrqw6depoxowZrnPS09P1/fffq02bNvL29nbtv/z/J06cUHJysho3bpzrvmXn8jYyR68bN26ss2fP6rfffstxfQcPHlRiYqKio6Nd1yxdGjl9/PHHXV+jy7344otujxs3bqxjx44pJSXlhtvt0qWL4uPjlZSUpKVLlyopKemq30/fffedGjdurOLFi7t97Zs3b6709HStWLHihtvt06fPdcvMnDlTDodDw4YNy3Isc6pKQECApEtTUriBDshfTIEAkG+CgoLUvHlzTZ8+XWfPnlV6evpVbx77888/FRoaqmLFirntv++++1zHM/8tVKiQKlas6FauSpUqbo+PHDmikydP6tNPP9Wnn36abZuHDx/O1XXVrFlTzZs3v2aZTp066bXXXtPff/+tMmXKKD4+XocPH1anTp3cys2dO1ejR49WYmKiUlNTXfuzm9+bW1u3btXrr7+upUuXZgmcycnJOa4v82tx5XMuXfp6LVy40HWzWKZy5cq5lStevLikS6Hfz8/vhtrNnIc7Y8YMJSYmqn79+qpUqZLbfOdMO3fu1KZNm1xzfK90o1/7woULq2zZstctt3v3boWGhrr9QnClTp066fPPP1evXr00dOhQNWvWTO3bt9dTTz2lQoUYnwJuJQIwgHzVpUsX9e7dW0lJSWrVqpVrFOxWyxxhe/bZZ9W9e/dsy1w+1zOvderUSbGxsfruu+80YMAAffvtt/L391fLli1dZX755Rc9+eSTeuSRRzRx4kSVLl1anp6emjp1qqZPn37N+q8WkC+/sU26dCPYo48+Kj8/P40cOVIVK1ZUkSJFtGHDBg0ZMiTfRiI9PDyy3W+uuMHxWpxOp9q3b69p06bpjz/+uOaHnmRkZOjxxx/Xq6++mu3xypUr33CbeRVOvb29tWLFCi1btkzz5s3TggULNGPGDD322GNatGjRVZ8jADePAAwgX7Vr107//Oc/tXr1arcpAVcKDw/Xzz//rFOnTrmNAmf+iT48PNz1b0ZGhnbv3u02Arljxw63+jJXiEhPT7/uaO2tUKFCBT344IOaMWOG+vbtq1mzZqlt27Zu6x/PnDlTRYoU0cKFC932T5069br1Z46gnjx50u2XiszR2Uzx8fE6duyYZs2apUceecS1f8+ePVnqvNFR58yvxZXPuXTp61WyZEm30d+81KVLF02ZMkWFChVyu5nwShUrVtTp06ev+7XPq5H2ihUrauHChTp+/Pg1R4ELFSqkZs2aqVmzZnrvvff01ltv6V//+peWLVtWIN+ngC34GwuAfOXr66tJkyZp+PDhatOmzVXLtW7dWunp6fr444/d9r///vtyOByulSQy/71yFYkrP8HMw8NDHTp00MyZM7Vly5Ys7R05ciQ3l5MjnTp10urVqzVlyhQdPXo0y/QHDw8PORwOt1HbvXv3avbs2detO3MKyOVzWc+cOaNp06ZlaUNyH2lNS0vTxIkTs9Tp4+NzQ1MiSpcurTp16mjatGluy5Jt2bJFixYtUuvWra9bR241bdpUo0aN0scff+y2wsaVOnbsqISEBC1cuDDLsZMnT+rixYuS5FrV4fLryI0OHTrIGOP6UI3LZT73x48fz3KsTp06kuQ2/QVA3mMEGEC+u9oUhMu1adNGTZs21b/+9S/t3btXtWvX1qJFi/Tjjz9qwIABrsBXp04dde7cWRMnTlRycrIefvhhLVmyRLt27cpS59tvv61ly5apQYMG6t27t6pVq6bjx49rw4YN+vnnn7MNJDfil19+yfaTx2rVquU2raJjx4565ZVX9MorrygwMDDLCF9UVJTee+89tWzZUl26dNHhw4c1YcIEVapUSZs2bbpmH1q0aKFy5cqpZ8+eGjx4sDw8PDRlyhQFBQVp3759rnIPP/ywihcvru7du6t///5yOBz697//ne3Ug7p162rGjBkaNGiQ6tevL19f36v+0vLuu++qVatWioiIUM+ePV3LoPn7+19zasLNKlSokF5//fXrlhs8eLDmzJmjJ554QtHR0apbt67OnDmjzZs36/vvv9fevXtVsmRJeXt7q1q1apoxY4YqV66swMBA1ahRQzVq1MhRv5o2barnnntO48eP186dO9WyZUtlZGTol19+UdOmTdW3b1+NHDlSK1asUFRUlMLDw3X48GFNnDhRZcuWzfKJiQDyWMEtQAHABpcvg3YtVy6DZowxp06dMgMHDjShoaHG09PT3Hvvvebdd991LSOV6dy5c6Z///6mRIkSxsfHx7Rp08bs378/2+WsDh06ZGJiYkxYWJjx9PQ0ISEhplmzZubTTz91lcmrZdCyW0qrYcOGRpLp1atXtnV+8cUX5t577zVOp9NUrVrVTJ06Ndslzq5cBs0YY9avX28aNGhgvLy8TLly5cx7772X7TJoK1euNA899JDx9vY2oaGh5tVXXzULFy40ksyyZctc5U6fPm26dOliAgICjCTXMl9Xe35+/vln07BhQ+Pt7W38/PxMmzZtzLZt29zKZF7LlUt/ZdfP7Fy+DNrVZLcMmjGXvp9iY2NNpUqVjJeXlylZsqR5+OGHzbhx40xaWpqr3KpVq0zdunWNl5eX29fxWm1fuQyaMcZcvHjRvPvuu6Zq1arGy8vLBAUFmVatWpn169cbY4xZsmSJ+cc//mFCQ0ONl5eXCQ0NNZ07d86yVBuAvOcwJgd3HAAAAAB3OOYAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFX4IIwbkJGRoQMHDqhYsWJ59jGZAAAAyDvGGJ06dUqhoaEqVOjaY7wE4Btw4MABhYWFFXQ3AAAAcB379+9X2bJlr1mGAHwDihUrJunSE+rn51fAvQEAAMCVUlJSFBYW5spt10IAvgGZ0x78/PwIwAAAALexG5muyk1wAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKoULugO4OoejoHsA2xlT0D0AACDvMQIMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxRoAB4zZozq16+vYsWKKTg4WG3bttWOHTvcyjRp0kQOh8Nte/HFF93K7Nu3T1FRUSpatKiCg4M1ePBgXbx40a1MfHy8HnjgATmdTlWqVElxcXG3+vIAAABwGyrQALx8+XLFxMRo9erVWrx4sS5cuKAWLVrozJkzbuV69+6tgwcPuraxY8e6jqWnpysqKkppaWlatWqVpk2bpri4OL355puuMnv27FFUVJSaNm2qxMREDRgwQL169dLChQvz7VoBAABwe3AYY0xBdyLTkSNHFBwcrOXLl+uRRx6RdGkEuE6dOvrggw+yPWf+/Pl64okndODAAZUqVUqSNHnyZA0ZMkRHjhyRl5eXhgwZonnz5mnLli2u85555hmdPHlSCxYsuG6/UlJS5O/vr+TkZPn5+d38hd4ghyPfmgKydfu8OwAAcG05yWu31Rzg5ORkSVJgYKDb/q+++kolS5ZUjRo1FBsbq7Nnz7qOJSQkqGbNmq7wK0mRkZFKSUnR1q1bXWWaN2/uVmdkZKQSEhKy7UdqaqpSUlLcNgAAANwdChd0BzJlZGRowIABatiwoWrUqOHa36VLF4WHhys0NFSbNm3SkCFDtGPHDs2aNUuSlJSU5BZ+JbkeJyUlXbNMSkqKzp07J29vb7djY8aM0YgRI/L8GgEAAFDwbpsAHBMToy1btujXX3912//CCy+4/l+zZk2VLl1azZo10+7du1WxYsVb0pfY2FgNGjTI9TglJUVhYWG3pC0AAADkr9tiCkTfvn01d+5cLVu2TGXLlr1m2QYNGkiSdu3aJUkKCQnRoUOH3MpkPg4JCblmGT8/vyyjv5LkdDrl5+fntgEAAODuUKAB2Bijvn376ocfftDSpUtVoUKF656TmJgoSSpdurQkKSIiQps3b9bhw4ddZRYvXiw/Pz9Vq1bNVWbJkiVu9SxevFgRERF5dCUAAAC4UxRoAI6JidGXX36p6dOnq1ixYkpKSlJSUpLOnTsnSdq9e7dGjRql9evXa+/evZozZ466deumRx55RLVq1ZIktWjRQtWqVdNzzz2njRs3auHChXr99dcVExMjp9MpSXrxxRf1xx9/6NVXX9Vvv/2miRMn6ttvv9XAgQML7NoBAABQMAp0GTTHVdb5mjp1qqKjo7V//349++yz2rJli86cOaOwsDC1a9dOr7/+utu0hD///FN9+vRRfHy8fHx81L17d7399tsqXPj/pjjHx8dr4MCB2rZtm8qWLas33nhD0dHRN9RPlkGDrVgGDQBwp8hJXrut1gG+XRGAYSveHQAAd4o7dh1gAAAA4FYjAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgUagMeMGaP69eurWLFiCg4OVtu2bbVjxw63MufPn1dMTIxKlCghX19fdejQQYcOHXIrs2/fPkVFRalo0aIKDg7W4MGDdfHiRbcy8fHxeuCBB+R0OlWpUiXFxcXd6ssDAADAbahAA/Dy5csVExOj1atXa/Hixbpw4YJatGihM2fOuMoMHDhQ//nPf/Tdd99p+fLlOnDggNq3b+86np6erqioKKWlpWnVqlWaNm2a4uLi9Oabb7rK7NmzR1FRUWratKkSExM1YMAA9erVSwsXLszX6wUAAEDBcxhjTEF3ItORI0cUHBys5cuX65FHHlFycrKCgoI0ffp0PfXUU5Kk3377Tffdd58SEhL00EMPaf78+XriiSd04MABlSpVSpI0efJkDRkyREeOHJGXl5eGDBmiefPmacuWLa62nnnmGZ08eVILFiy4br9SUlLk7++v5ORk+fn53ZqLz4bDkW9NAdm6fd4dAAC4tpzktdtqDnBycrIkKTAwUJK0fv16XbhwQc2bN3eVqVq1qsqVK6eEhARJUkJCgmrWrOkKv5IUGRmplJQUbd261VXm8joyy2TWcaXU1FSlpKS4bQAAALg73DYBOCMjQwMGDFDDhg1Vo0YNSVJSUpK8vLwUEBDgVrZUqVJKSkpylbk8/GYezzx2rTIpKSk6d+5clr6MGTNG/v7+ri0sLCxPrhEAAAAF77YJwDExMdqyZYu++eabgu6KYmNjlZyc7Nr2799f0F0CAABAHilc0B2QpL59+2ru3LlasWKFypYt69ofEhKitLQ0nTx50m0U+NChQwoJCXGVWbt2rVt9matEXF7mypUjDh06JD8/P3l7e2fpj9PplNPpzJNrAwAAwO2lQEeAjTHq27evfvjhBy1dulQVKlRwO163bl15enpqyZIlrn07duzQvn37FBERIUmKiIjQ5s2bdfjwYVeZxYsXy8/PT9WqVXOVubyOzDKZdQAAAMAeBboKxEsvvaTp06frxx9/VJUqVVz7/f39XSOzffr00U8//aS4uDj5+fmpX79+kqRVq1ZJurQMWp06dRQaGqqxY8cqKSlJzz33nHr16qW33npL0qVl0GrUqKGYmBj16NFDS5cuVf/+/TVv3jxFRkZet5+sAgFbsQoEAOBOkZO8VqAB2HGVhDd16lRFR0dLuvRBGC+//LK+/vprpaamKjIyUhMnTnRNb5CkP//8U3369FF8fLx8fHzUvXt3vf322ypc+P9meMTHx2vgwIHatm2bypYtqzfeeMPVxvUQgGErAjAA4E5xxwTgOwUBGLbi3QEAcKe4Y9cBBgAAAG41AjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACskicBOCUlRbNnz9b27dvzojoAAADglslVAO7YsaM+/vhjSdK5c+dUr149dezYUbVq1dLMmTPztIMAAABAXspVAF6xYoUaN24sSfrhhx9kjNHJkyc1fvx4jR49Ok87CAAAAOSlXAXg5ORkBQYGSpIWLFigDh06qGjRooqKitLOnTvztIMAAABAXspVAA4LC1NCQoLOnDmjBQsWqEWLFpKkEydOqEiRInnaQQAAACAvFc7NSQMGDFDXrl3l6+urcuXKqUmTJpIuTY2oWbNmXvYPAAAAyFO5CsAvvfSSHnzwQe3fv1+PP/64ChW6NJB8zz33MAcYAAAAtzWHMcbk9uS0tDTt2bNHFStWVOHCucrSd4SUlBT5+/srOTlZfn5++dauw5FvTQHZyv27AwAA+SsneS1Xc4DPnj2rnj17qmjRoqpevbr27dsnSerXr5/efvvt3FQJAAAA5ItcBeDY2Fht3LhR8fHxbje9NW/eXDNmzMizzgEAAAB5LVfzFmbPnq0ZM2booYcekuOyv9NXr15du3fvzrPOAQAAAHktVyPAR44cUXBwcJb9Z86ccQvEAAAAwO0mVwG4Xr16mjdvnutxZuj9/PPPFRERkTc9AwAAAG6BXE2BeOutt9SqVStt27ZNFy9e1Icffqht27Zp1apVWr58eV73EQAAAMgzuRoBbtSokTZu3KiLFy+qZs2aWrRokYKDg5WQkKC6devmdR8BAACAPJPjEeALFy7on//8p9544w199tlnt6JPAAAAwC2T4xFgT09PzZw5M08aX7Fihdq0aaPQ0FA5HA7Nnj3b7Xh0dLQcDofb1rJlS7cyx48fV9euXeXn56eAgAD17NlTp0+fdiuzadMmNW7cWEWKFFFYWJjGjh2bJ/0HAADAnSdXUyDatm2bJazmxpkzZ1S7dm1NmDDhqmVatmypgwcPuravv/7a7XjXrl21detWLV68WHPnztWKFSv0wgsvuI6npKSoRYsWCg8P1/r16/Xuu+9q+PDh+vTTT2+6/wAAALjz5OomuHvvvVcjR47UypUrVbduXfn4+Lgd79+//w3V06pVK7Vq1eqaZZxOp0JCQrI9tn37di1YsEDr1q1TvXr1JEkfffSRWrdurXHjxik0NFRfffWV0tLSNGXKFHl5eal69epKTEzUe++95xaUAQAAYIdcBeAvvvhCAQEBWr9+vdavX+92zOFw3HAAvhHx8fEKDg5W8eLF9dhjj2n06NEqUaKEJCkhIUEBAQGu8Ctd+jS6QoUKac2aNWrXrp0SEhL0yCOPyMvLy1UmMjJS77zzjk6cOKHixYtnaTM1NVWpqamuxykpKXl2PQAAAChYuQrAe/bsyet+ZKtly5Zq3769KlSooN27d+u1115Tq1atlJCQIA8PDyUlJWX5QI7ChQsrMDBQSUlJkqSkpCRVqFDBrUypUqVcx7ILwGPGjNGIESNu0VUBAACgIOUqAF/OGCNJt+QT4J555hnX/2vWrKlatWqpYsWKio+PV7NmzfK8vUyxsbEaNGiQ63FKSorCwsJuWXsAAADIP7m6CU6S/vd//1c1a9aUt7e3vL29VatWLf373//Oy75lcc8996hkyZLatWuXJCkkJESHDx92K3Px4kUdP37cNW84JCREhw4dciuT+fhqc4udTqf8/PzcNgAAANwdchWA33vvPfXp00etW7fWt99+q2+//VYtW7bUiy++qPfffz+v++jy119/6dixYypdurQkKSIiQidPnnSbh7x06VJlZGSoQYMGrjIrVqzQhQsXXGUWL16sKlWqZDv9AQAAAHc3h8mcw5ADFSpU0IgRI9StWze3/dOmTdPw4cNveI7w6dOnXaO5999/v9577z01bdpUgYGBCgwM1IgRI9ShQweFhIRo9+7devXVV3Xq1Clt3rxZTqdT0qWVJA4dOqTJkyfrwoULev7551WvXj1Nnz5dkpScnKwqVaqoRYsWGjJkiLZs2aIePXro/fffv+FVIFJSUuTv76/k5OR8HQ2+BbNKgBzJ+bsDAAAFI0d5zeSC0+k0O3fuzLL/999/N06n84brWbZsmZGUZevevbs5e/asadGihQkKCjKenp4mPDzc9O7d2yQlJbnVcezYMdO5c2fj6+tr/Pz8zPPPP29OnTrlVmbjxo2mUaNGxul0mjJlypi33347R9ebnJxsJJnk5OQcnXezLsUPNraC2wAAuFPkJK/lagS4Ro0a6tKli1577TW3/aNHj9aMGTO0efPmnFZ5W2MEGLbK+bsDAAAFIyd5LVerQIwYMUKdOnXSihUr1LBhQ0nSypUrtWTJEn377be5qRIAAADIF7m6Ca5Dhw5as2aNSpYsqdmzZ2v27NkqWbKk1q5dq3bt2uV1HwEAAIA8k6spELZhCgRsxbsDAOBOkZO8lqsR4J9++kkLFy7Msn/hwoWaP39+bqoEAAAA8kWuAvDQoUOVnp6eZb8xRkOHDr3pTgEAAAC3Sq4C8M6dO1WtWrUs+6tWrepa1xcAAAC4HeUqAPv7++uPP/7Isn/Xrl3y8fG56U4BAAAAt0quAvA//vEPDRgwQLt373bt27Vrl15++WU9+eSTedY5AAAAIK/lKgCPHTtWPj4+qlq1qipUqKAKFSqoatWqKlGihMaNG5fXfQQAAADyTK4+CMPf31+rVq3S4sWLtXHjRnl7e6t27dpq3LhxXvcPAAAAyFM5GgFOSEjQ3LlzJUkOh0MtWrRQcHCwxo0bpw4dOuiFF15QamrqLekoAAAAkBdyFIBHjhyprVu3uh5v3rxZvXv31uOPP66hQ4fqP//5j8aMGZPnnQQAAADySo4CcGJiopo1a+Z6/M033+jBBx/UZ599pkGDBmn8+PH69ttv87yTAAAAQF7JUQA+ceKESpUq5Xq8fPlytWrVyvW4fv362r9/f971DgAAAMhjOQrApUqV0p49eyRJaWlp2rBhgx566CHX8VOnTsnT0zNvewgAAADkoRwF4NatW2vo0KH65ZdfFBsbq6JFi7qt/LBp0yZVrFgxzzsJAAAA5JUcLYM2atQotW/fXo8++qh8fX01bdo0eXl5uY5PmTJFLVq0yPNOAgAAAHnFYYwxOT0pOTlZvr6+8vDwcNt//Phx+fr6uoXiu0FKSor8/f2VnJwsPz+/fGvX4ci3poBs5fzdAQCAgpGTvJbrD8LITmBgYG6qAwAAAPJNrj4KGQAAALhTEYABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoFGoBXrFihNm3aKDQ0VA6HQ7Nnz3Y7bozRm2++qdKlS8vb21vNmzfXzp073cocP35cXbt2lZ+fnwICAtSzZ0+dPn3arcymTZvUuHFjFSlSRGFhYRo7duytvjQAAADcpgo0AJ85c0a1a9fWhAkTsj0+duxYjR8/XpMnT9aaNWvk4+OjyMhInT9/3lWma9eu2rp1qxYvXqy5c+dqxYoVeuGFF1zHU1JS1KJFC4WHh2v9+vV69913NXz4cH366ae3/PoAAABw+3EYY0xBd0KSHA6HfvjhB7Vt21bSpdHf0NBQvfzyy3rllVckScnJySpVqpTi4uL0zDPPaPv27apWrZrWrVunevXqSZIWLFig1q1b66+//lJoaKgmTZqkf/3rX0pKSpKXl5ckaejQoZo9e7Z+++23G+pbSkqK/P39lZycLD8/v7y/+KtwOPKtKSBbt8e7AwAA15eTvHbbzgHes2ePkpKS1Lx5c9c+f39/NWjQQAkJCZKkhIQEBQQEuMKvJDVv3lyFChXSmjVrXGUeeeQRV/iVpMjISO3YsUMnTpzItu3U1FSlpKS4bQAAALg73LYBOCkpSZJUqlQpt/2lSpVyHUtKSlJwcLDb8cKFCyswMNCtTHZ1XN7GlcaMGSN/f3/XFhYWdvMXBAAAgNvCbRuAC1JsbKySk5Nd2/79+wu6SwAAAMgjt20ADgkJkSQdOnTIbf+hQ4dcx0JCQnT48GG34xcvXtTx48fdymRXx+VtXMnpdMrPz89tAwAAwN3htg3AFSpUUEhIiJYsWeLal5KSojVr1igiIkKSFBERoZMnT2r9+vWuMkuXLlVGRoYaNGjgKrNixQpduHDBVWbx4sWqUqWKihcvnk9XAwAAgNtFgQbg06dPKzExUYmJiZIu3fiWmJioffv2yeFwaMCAARo9erTmzJmjzZs3q1u3bgoNDXWtFHHfffepZcuW6t27t9auXauVK1eqb9++euaZZxQaGipJ6tKli7y8vNSzZ09t3bpVM2bM0IcffqhBgwYV0FUDAACgIBXoMmjx8fFq2rRplv3du3dXXFycjDEaNmyYPv30U508eVKNGjXSxIkTVblyZVfZ48ePq2/fvvrPf/6jQoUKqUOHDho/frx8fX1dZTZt2qSYmBitW7dOJUuWVL9+/TRkyJAb7ifLoMFWLIMGALhT5CSv3TbrAN/OCMCwFe8OAIA7xV2xDjAAAABwKxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsclsH4OHDh8vhcLhtVatWdR0/f/68YmJiVKJECfn6+qpDhw46dOiQWx379u1TVFSUihYtquDgYA0ePFgXL17M70sBAADAbaJwQXfgeqpXr66ff/7Z9bhw4f/r8sCBAzVv3jx999138vf3V9++fdW+fXutXLlSkpSenq6oqCiFhIRo1apVOnjwoLp16yZPT0+99dZb+X4tAAAAKHi3fQAuXLiwQkJCsuxPTk7WF198oenTp+uxxx6TJE2dOlX33XefVq9erYceekiLFi3Stm3b9PPPP6tUqVKqU6eORo0apSFDhmj48OHy8vLK78sBAABAAbutp0BI0s6dOxUaGqp77rlHXbt21b59+yRJ69ev14ULF9S8eXNX2apVq6pcuXJKSEiQJCUkJKhmzZoqVaqUq0xkZKRSUlK0devWq7aZmpqqlJQUtw0AAAB3h9s6ADdo0EBxcXFasGCBJk2apD179qhx48Y6deqUkpKS5OXlpYCAALdzSpUqpaSkJElSUlKSW/jNPJ557GrGjBkjf39/1xYWFpa3FwYAAIACc1tPgWjVqpXr/7Vq1VKDBg0UHh6ub7/9Vt7e3res3djYWA0aNMj1OCUlhRAMAABwl7itR4CvFBAQoMqVK2vXrl0KCQlRWlqaTp486Vbm0KFDrjnDISEhWVaFyHyc3bziTE6nU35+fm4bAAAA7g53VAA+ffq0du/erdKlS6tu3bry9PTUkiVLXMd37Nihffv2KSIiQpIUERGhzZs36/Dhw64yixcvlp+fn6pVq5bv/QcAAEDBu62nQLzyyitq06aNwsPDdeDAAQ0bNkweHh7q3Lmz/P391bNnTw0aNEiBgYHy8/NTv379FBERoYceekiS1KJFC1WrVk3PPfecxo4dq6SkJL3++uuKiYmR0+ks4KsDAABAQbitA/Bff/2lzp0769ixYwoKClKjRo20evVqBQUFSZLef/99FSpUSB06dFBqaqoiIyM1ceJE1/keHh6aO3eu+vTpo4iICPn4+Kh79+4aOXJkQV0SAAAACpjDGGMKuhO3u5SUFPn7+ys5OTlf5wM7HPnWFJAt3h0AAHeKnOS1O2oOMAAAAHCzCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsIpVAXjChAkqX768ihQpogYNGmjt2rUF3SUAAADks8IF3YH8MmPGDA0aNEiTJ09WgwYN9MEHHygyMlI7duxQcHBwQXcPAIC8N91R0D2A7bqYgu5BtqwZAX7vvffUu3dvPf/886pWrZomT56sokWLasqUKQXdNQAAAOQjK0aA09LStH79esXGxrr2FSpUSM2bN1dCQkKW8qmpqUpNTXU9Tk5OliSlpKTc+s4CtxG+5YE73NmC7gCsl48/SDJzmjHXH3W2IgAfPXpU6enpKlWqlNv+UqVK6bfffstSfsyYMRoxYkSW/WFhYbesj8DtyN+/oHsAALij9c7/HySnTp2S/3V+gFkRgHMqNjZWgwYNcj3OyMjQ8ePHVaJECTkczKe6E6SkpCgsLEz79++Xn59fQXcHuO3wGgGuj9fJncUYo1OnTik0NPS6Za0IwCVLlpSHh4cOHTrktv/QoUMKCQnJUt7pdMrpdLrtCwgIuJVdxC3i5+fHmxZwDbxGgOvjdXLnuN7IbyYrboLz8vJS3bp1tWTJEte+jIwMLVmyRBEREQXYMwAAAOQ3K0aAJWnQoEHq3r276tWrpwcffFAffPCBzpw5o+eff76guwYAAIB8ZE0A7tSpk44cOaI333xTSUlJqlOnjhYsWJDlxjjcHZxOp4YNG5ZlKguAS3iNANfH6+Tu5TA3slYEAAAAcJewYg4wAAAAkIkADAAAAKsQgAEAAGAVAjDuKk2aNNGAAQPyrL64uDjWgAYA4C5DAMYtER0dLYfDIYfDIS8vL1WqVEkjR47UxYsXC7prOdKpUyf9/vvvrsfDhw9XnTp1Cq5DuCNd/npwOBwqUaKEWrZsqU2bNrmVczgcmj17drZ1xMfHu9Vx+ZaUlORqp23btlc99+TJk1ft4/Lly/XYY48pMDBQRYsW1b333qvu3bsrLS0tt5cN3LCkpCT169dP99xzj5xOp8LCwtSmTRu39fvLly+vDz74IMu5V74vDx8+3PXa8PDwUFhYmF544QUdP37c7bzy5ctneS2VLVv2qn08e/asYmNjVbFiRRUpUkRBQUF69NFH9eOPP9709SP/WbMMGvJfy5YtNXXqVKWmpuqnn35STEyMPD09FRsbm6N60tPT5XA4VKhQ/v++5u3tLW9v73xvF3efzNeDdOmH/euvv64nnnhC+/bty1E9O3bsyPKJVMHBwTfVt23btqlly5bq16+fxo8fL29vb+3cuVMzZ85Uenr6TdV9NcYYpaenq3BhfgzZbu/evWrYsKECAgL07rvvqmbNmrpw4YIWLlyomJgY/fbbbzmus3r16vr555+Vnp6u7du3q0ePHkpOTtaMGTPcyo0cOVK9e/d2Pfbw8LhqnS+++KLWrFmjjz76SNWqVdOxY8e0atUqHTt2LMf9u1FpaWny8vK6ZfXbjBFg3DJOp1MhISEKDw9Xnz591Lx5c82ZM0epqal65ZVXVKZMGfn4+KhBgwaKj493nZc57WDOnDmqVq2anE6n9u3b5xrdGjFihIKCguTn56cXX3zxmiNU12rr/Pnzql69ul544QVX+d27d6tYsWKaMmWKW18y/z9ixAht3LjRNVoQFxenHj166IknnnBr98KFCwoODtYXX3yRN08m7niZr4eQkBDVqVNHQ4cO1f79+3XkyJEc1RMcHOyqJ3O72V8OFy1apJCQEI0dO1Y1atRQxYoV1bJlS3322WduvwCuXLlSTZo0UdGiRVW8eHFFRkbqxIkTki691vr376/g4GAVKVJEjRo10rp161znZo5Cz58/X3Xr1pXT6dSvv/6qjIwMjRkzRhUqVJC3t7dq166t77///qauB3eWl156SQ6HQ2vXrlWHDh1UuXJlVa9eXYMGDdLq1atzVWfhwoUVEhKiMmXKqHnz5nr66ae1ePHiLOWKFSvm9loKCgq6ap1z5szRa6+9ptatW6t8+fKqW7eu+vXrpx49erjKpKamasiQIQoLC5PT6VSlSpXcfg4sX75cDz74oJxOp0qXLq2hQ4e6/WW0SZMm6tu3rwYMGKCSJUsqMjJSkrRlyxa1atVKvr6+KlWqlJ577jkdPXo0V88NLiEAI994e3srLS1Nffv2VUJCgr755htt2rRJTz/9tFq2bKmdO3e6yp49e1bvvPOOPv/8c23dutU1wrVkyRJt375d8fHx+vrrrzVr1iyNGDHiqm1eq60iRYroq6++0rRp0/Tjjz8qPT1dzz77rB5//HG3N7RMnTp10ssvv6zq1avr4MGDOnjwoDp16qRevXppwYIFOnjwoKvs3LlzdfbsWXXq1CkPn0HcLU6fPq0vv/xSlSpVUokSJQq6OwoJCdHBgwe1YsWKq5ZJTExUs2bNVK1aNSUkJOjXX39VmzZtXCPEr776qmbOnKlp06Zpw4YNqlSpkiIjI7P82Xno0KF6++23tX37dtWqVUtjxozR//7v/2ry5MnaunWrBg4cqGeffVbLly+/pdeM28Px48e1YMECxcTEyMfHJ8vxvLgHY+/evVq4cOFNj6SGhITop59+0qlTp65aplu3bvr66681fvx4bd++XZ988ol8fX0lSX///bdat26t+vXra+PGjZo0aZK++OILjR492q2OadOmycvLSytXrtTkyZN18uRJPfbYY7r//vv13//+VwsWLNChQ4fUsWPHm7oe6xngFujevbv5xz/+YYwxJiMjwyxevNg4nU4THR1tPDw8zN9//+1WvlmzZiY2NtYYY8zUqVONJJOYmJilzsDAQHPmzBnXvkmTJhlfX1+Tnp5ujDHm0UcfNf/v//0/Y4wxf/7553XbMsaYsWPHmpIlS5q+ffua0qVLm6NHj7qOTZ061fj7+7seDxs2zNSuXTvL9VarVs288847rsdt2rQx0dHR13mWYIvu3bsbDw8P4+PjY3x8fIwkU7p0abN+/Xq3cpLMDz/8kG0dy5YtM5JcdWRu1apVc2sn83WX3bknTpzItu6LFy+a6OhoI8mEhISYtm3bmo8++sgkJye7ynTu3Nk0bNgw2/NPnz5tPD09zVdffeXal5aWZkJDQ83YsWPd+jB79mxXmfPnz5uiRYuaVatWudXXs2dP07lz52zbwt1lzZo1RpKZNWvWdcuGh4cbLy+vLK8BT09Pt/flYcOGmUKFChkfHx9TpEgRI8lIMu+999516/vwww+v2v7y5ctN2bJljaenp6lXr54ZMGCA+fXXX13Hd+zYYSSZxYsXZ3v+a6+9ZqpUqWIyMjJc+yZMmJDlZ9j999/vdt6oUaNMixYt3Pbt37/fSDI7duy49pOGq2LyFW6ZuXPnytfXVxcuXFBGRoa6dOmip556SnFxcapcubJb2dTUVLeRMC8vL9WqVStLnbVr11bRokVdjyMiInT69Gnt379f4eHhbmU3b96s9PT067b18ssva/bs2fr44481f/78XI3I9erVS59++qleffVVHTp0SPPnz9fSpUtzXA/uXk2bNtWkSZMkSSdOnNDEiRPVqlUrrV27Nsv37rX88ssvKlasmOuxp6fnTffNw8NDU6dO1ejRo7V06VKtWbNGb731lt555x2tXbtWpUuXVmJiop5++ulsz9+9e7cuXLighg0buvXrwQcf1Pbt293K1qtXz/X/Xbt26ezZs3r88cfdyqSlpen++++/6evC7c/k8MNoBw8erOjoaLd948ePz/LXiypVqmjOnDk6f/68vvzySyUmJqpfv37Xra9kyZJXbfuRRx7RH3/8odWrV2vVqlVasmSJPvzwQ40YMUJvvPGGEhMT5eHhoUcffTTb87dv366IiAg5HA7XvoYNG+r06dP666+/VK5cOUlS3bp13c7buHGjli1b5hpJvtzu3buz/IzDjSEA45bJ/IHv5eWl0NBQFS5cWDNmzJCHh4fWr1+f5WaDy1/c3t7ebm8SuXH69Okbauvw4cP6/fff5eHhoZ07d6ply5Y5bqtbt24aOnSoEhIStGrVKlWoUEGNGze+qf7j7uLj46NKlSq5Hn/++efy9/fXZ599luVPoNdSoUKFq/5Z2M/PT3/++WeW/SdPnpSHh0e2f2K+XJkyZfTcc8/pueee06hRo1S5cmVNnjxZI0aMyLObQS/vw+nTpyVJ8+bNU5kyZdzKOZ3OPGkPt7d7771XDofjhm90K1mypNvrSJICAwOzlMtcfUiS3n77bUVFRWnEiBEaNWrUdeu7Fk9PTzVu3FiNGzfWkCFDNHr0aI0cOVJDhgy5Ja8R6dLrpE2bNnrnnXeylC1dunSetGkj5gDjlsn8gV+uXDnXnd7333+/0tPTdfjwYVWqVMltCwkJuW6dGzdu1Llz51yPV69eLV9fX4WFhWUpe6Nt9ejRQzVr1tS0adM0ZMiQLCNWl/Py8sr2rvgSJUqobdu2mjp1quLi4vT8889f91pgt8yVTS7/fr5ZVapU0datW5Wamuq2f8OGDapQoUKORouLFy+u0qVL68yZM5KkWrVquS1JdbmKFSu65ixmunDhgtatW6dq1apdtY3Lb3K98jWa3Wsad5/AwEBFRkZqwoQJru+1y11r6b6ceP311zVu3DgdOHAgT+rLVK1aNV28eFHnz59XzZo1lZGRcdX56/fdd58SEhLcRr1XrlypYsWKXXP5tQceeEBbt25V+fLls7xOrvdLLa6OAIx8VblyZXXt2lXdunXTrFmztGfPHq1du1ZjxozRvHnzrnt+WlqaevbsqW3btumnn37SsGHD1Ldv32zvgr+RtiZMmKCEhARNmzZNXbt2Vdu2bdW1a9errixRvnx57dmzR4mJiTp69Khb0OjVq5emTZum7du3q3v37rl8hnC3Sk1NVVJSkpKSkrR9+3b169fPNbJzuczvr8u3y4PB4cOHXfVkbhcuXJAkde3aVQ6HQ926ddP69eu1a9cuTZkyRR988IFefvnlq/btk08+UZ8+fbRo0SLt3r1bW7du1ZAhQ7R161ZX/2JjY7Vu3Tq99NJL2rRpk3777TdNmjRJR48elY+Pj/r06aPBgwdrwYIF2rZtm3r37q2zZ8+qZ8+eV223WLFieuWVVzRw4EBNmzZNu3fv1oYNG/TRRx9p2rRpN/N04w4yYcIEpaen68EHH9TMmTO1c+dObd++XePHj1dERESetBEREaFatWrprbfeynUdTZo00SeffKL169dr7969+umnn/Taa6+padOm8vPzU/ny5dW9e3f16NFDs2fP1p49exQfH69vv/1W0qXVLvbv369+/frpt99+048//qhhw4Zp0KBB11zJJSYmRsePH1fnzp21bt067d69WwsXLtTzzz9/y5YptEJBT0LG3elqN+MYc+nmmDfffNOUL1/eeHp6mtKlS5t27dqZTZs2GWOy3nh2ZZ1vvvmmKVGihPH19TW9e/c258+fd5W5/Ca467W1fft24+3tbaZPn+4qf+LECRMWFmZeffXVbPty/vx506FDBxMQEGAkmalTp7qOZWRkmPDwcNO6deucP2G4q3Xv3t11I44kU6xYMVO/fn3z/fffu5W7vMzl2y+//OK6iSy7LSEhwVXHjh07TLt27UxoaKjx8fExtWvXNp999pnbjTdX2rBhg3n22WdNhQoVjNPpNCVKlDCPPPKImTNnjlu5+Ph48/DDDxun02kCAgJMZGSk68a6c+fOmX79+pmSJUsap9NpGjZsaNauXes692o34mVkZJgPPvjAVKlSxXh6epqgoCATGRlpli9fnstnG3eiAwcOmJiYGNeNaWXKlDFPPvmkWbZsmatMeHi4ef/997Oce+XNyVe7Wfnrr782TqfT7Nu375r1Xc1bb71lIiIiTGBgoClSpIi55557TP/+/d1unD537pwZOHCgKV26tPHy8jKVKlUyU6ZMcR2Pj4839evXN15eXiYkJMQMGTLEXLhwwXX8yp9hmX7//XfTrl07ExAQYLy9vU3VqlXNgAEDrvm6xrU5jMnhDHSggERHR+vkyZNX/aSsgnb69GmVKVNGU6dOVfv27Qu6OwAA4Cq4CQ64SRkZGTp69Kj+53/+RwEBAXryyScLuksAAOAaCMDATdq3b58qVKigsmXLKi4ujo92BQDgNscUCAAAAFiFVSAAAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADALLlcDhu2w+eAYCbQQAGgNtYdHS0HA6HXnzxxSzHYmJi5HA4FB0dfUN1xcfHy+Fw6OTJkzdU/uDBg2rVqlUOegsAdwYCMADc5sLCwvTNN9/o3Llzrn3nz5/X9OnTVa5cuTxvLy0tTZIUEhIip9OZ5/UDQEEjAAPAbe6BBx5QWFiYZs2a5do3a9YslStXTvfff79rX0ZGhsaMGaMKFSrI29tbtWvX1vfffy9J2rt3r5o2bSpJKl68uNvIcZMmTdS3b18NGDBAJUuWVGRkpKSsUyD++usvde7cWYGBgfLx8VG9evW0Zs0aSdLGjRvVtGlTFStWTH5+fqpbt67++9//3sqnBQByjc9sBYA7QI8ePTR16lR17dpVkjRlyhQ9//zzio+Pd5UZM2aMvvzyS02ePFn33nuvVqxYoWeffVZBQUFq1KiRZs6cqQ4dOmjHjh3y8/OTt7e369xp06apT58+WrlyZbbtnz59Wo8++qjKlCmjOXPmKCQkRBs2bFBGRoYkqWvXrrr//vs1adIkeXh4KDExUZ6enrfuCQGAm0AABoA7wLPPPqvY2Fj9+eefkqSVK1fqm2++cQXg1NRUvfXWW/r5558VEREhSbrnnnv066+/6pNPPtGjjz6qwMBASVJwcLACAgLc6r/33ns1duzYq7Y/ffp0HTlyROvWrXPVU6lSJdfxffv2afDgwapataqrPgC4XRGAAeAOEBQUpKioKMXFxckYo6ioKJUsWdJ1fNeuXTp79qwef/xxt/PS0tLcpklcTd26da95PDExUffff78r/F5p0KBB6tWrl/7973+refPmevrpp1WxYsUbuDIAyH8EYAC4Q/To0UN9+/aVJE2YMMHt2OnTpyVJ8+bNU5kyZdyO3ciNbD4+Ptc8fvl0iewMHz5cXbp00bx58zR//nwNGzZM33zzjdq1a3fdtgEgv3ETHADcIVq2bKm0tDRduHDBdaNapmrVqsnpdGrfvn2qVKmS2xYWFiZJ8vLykiSlp6fnuO1atWopMTFRx48fv2qZypUra+DAgVq0aJHat2+vqVOn5rgdAMgPBGAAuEN4eHho+/bt2rZtmzw8PNyOFStWTK+88ooGDhyoadOmaffu3dqwYYM++ugjTZs2TZIUHh4uh8OhuXPn6siRI65R4xvRuXNnhYSEqG3btlq5cqX++OMPzZw5UwkJCTp37pz69u2r+Ph4/fnnn1q5cqXWrVun++67L0+vHwDyCgEYAO4gfn5+8vPzy/bYqFGj9MYbb2jMmDG677771LJlS82bN08VKlSQJJUpU0YjRozQ0KFDVapUKdd0ihvh5eWlRYsWKTg4WK1bt1bNmjX19ttvy8PDQx4eHjp27Ji6deumypUrq2PHjmrVqpVGjBiRJ9cMAHnNYYwxBd0JAAAAIL8wAgwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACs8v8BtgyYGHx2fmgAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
}
]
}