File size: 58,321 Bytes
7333eec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "id": "S-zAnI6QufVP",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "3ccf3c66-b1a0-48a5-9901-0ef95d3dcb0e"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting sacrebleu\n",
            "  Downloading sacrebleu-2.4.3-py3-none-any.whl.metadata (51 kB)\n",
            "\u001b[?25l     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/51.8 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.8/51.8 kB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting portalocker (from sacrebleu)\n",
            "  Downloading portalocker-2.10.1-py3-none-any.whl.metadata (8.5 kB)\n",
            "Requirement already satisfied: regex in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (2024.9.11)\n",
            "Requirement already satisfied: tabulate>=0.8.9 in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (0.9.0)\n",
            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (1.26.4)\n",
            "Collecting colorama (from sacrebleu)\n",
            "  Downloading colorama-0.4.6-py2.py3-none-any.whl.metadata (17 kB)\n",
            "Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (5.3.0)\n",
            "Downloading sacrebleu-2.4.3-py3-none-any.whl (103 kB)\n",
            "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m104.0/104.0 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hDownloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n",
            "Downloading portalocker-2.10.1-py3-none-any.whl (18 kB)\n",
            "Installing collected packages: portalocker, colorama, sacrebleu\n",
            "Successfully installed colorama-0.4.6 portalocker-2.10.1 sacrebleu-2.4.3\n"
          ]
        }
      ],
      "source": [
        "!pip install sacrebleu\n",
        "import json\n",
        "import torch\n",
        "import torch.optim as optim\n",
        "import torch.nn as nn\n",
        "from torch.utils.data import DataLoader, Dataset, random_split\n",
        "from torch.nn.utils.rnn import pad_sequence\n",
        "import matplotlib.pyplot as plt\n",
        "from collections import Counter\n",
        "import csv\n",
        "import sacrebleu\n",
        "import numpy as np\n",
        "from sklearn.metrics import make_scorer"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "metadata": {
        "id": "8FAqhi4BuiC9"
      },
      "outputs": [],
      "source": [
        "# Load JSON dataset (using UTF-8 encoding)\n",
        "with open('/content/Arabic.json', encoding='utf-8') as f:\n",
        "    arabic_data = json.load(f)\n",
        "\n",
        "# Convert data into parallel pairs (first 100 rows for simplicity)\n",
        "arabic_sentences = [entry['output'] for entry in arabic_data[:1000]]\n",
        "en_sentences = [entry['input'] for entry in arabic_data[:1000]]\n",
        "\n",
        "# Tokenize sentences (basic whitespace-based tokenization)\n",
        "def tokenize(sentences):\n",
        "    return [sentence.split() for sentence in sentences]\n",
        "\n",
        "# Tokenize English and Arabic sentences\n",
        "en_tokens = tokenize(en_sentences)\n",
        "arabic_tokens = tokenize(arabic_sentences)\n",
        "\n",
        "# Create vocabularies with special tokens\n",
        "vocab_en = {'<pad>': 0, '<sos>': 1, '<eos>': 2, '<unk>': 3}\n",
        "vocab_arabic = {'<pad>': 0, '<sos>': 1, '<eos>': 2, '<unk>': 3}\n",
        "\n",
        "# Update vocabulary from tokens\n",
        "vocab_en.update({word: idx + 4 for idx, (word, _) in enumerate(Counter([token for sentence in en_tokens for token in sentence]).items())})\n",
        "vocab_arabic.update({word: idx + 4 for idx, (word, _) in enumerate(Counter([token for sentence in arabic_tokens for token in sentence]).items())})\n",
        "\n",
        "# Model parameters\n",
        "input_dim = len(vocab_en)\n",
        "output_dim = len(vocab_arabic)\n",
        "emb_dim = 256\n",
        "hidden_dim = 512\n",
        "n_layers = 2\n",
        "dropout = 0.5"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "metadata": {
        "id": "tlEmj8nXuplJ"
      },
      "outputs": [],
      "source": [
        "\n",
        "# Define Seq2Seq Model (Encoder-Decoder architecture)\n",
        "class Seq2Seq(nn.Module):\n",
        "    def __init__(self, source_vocab, target_vocab, embedding_dim, hidden_dim, dropout=0.1):\n",
        "        super(Seq2Seq, self).__init__()\n",
        "\n",
        "        # Define embedding layers\n",
        "        self.embedding_src = nn.Embedding(len(source_vocab), embedding_dim)\n",
        "        self.embedding_trg = nn.Embedding(len(target_vocab), embedding_dim)\n",
        "\n",
        "        # Encoder and Decoder setup\n",
        "        self.encoder = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)\n",
        "        self.decoder = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)\n",
        "\n",
        "        # Output fully connected layer\n",
        "        self.fc_out = nn.Linear(hidden_dim, len(target_vocab))\n",
        "\n",
        "        # Dropout for regularization\n",
        "        self.dropout = nn.Dropout(dropout)\n",
        "\n",
        "    def forward(self, src, trg):\n",
        "        # Embed source and target sequences\n",
        "        embedded_src = self.dropout(self.embedding_src(src))\n",
        "        embedded_trg = self.dropout(self.embedding_trg(trg))\n",
        "\n",
        "        # Pass source sequence through encoder\n",
        "        _, (hidden, cell) = self.encoder(embedded_src)\n",
        "\n",
        "        # Pass target sequence through decoder\n",
        "        output, _ = self.decoder(embedded_trg, (hidden, cell))\n",
        "\n",
        "        # Output from fully connected layer\n",
        "        output = self.fc_out(output)\n",
        "        return output"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "metadata": {
        "id": "0RSg7GMauu7P"
      },
      "outputs": [],
      "source": [
        "# Initialize weights\n",
        "def initialize_weights(model):\n",
        "    for name, param in model.named_parameters():\n",
        "        if 'weight' in name:\n",
        "            nn.init.xavier_uniform_(param)\n",
        "        else:\n",
        "            nn.init.zeros_(param)\n",
        "\n",
        "# Define Dataset and DataLoader\n",
        "class ParallelDataset(Dataset):\n",
        "    def __init__(self, source_sentences, target_sentences, source_vocab, target_vocab):\n",
        "        self.source_sentences = source_sentences\n",
        "        self.target_sentences = target_sentences\n",
        "        self.source_vocab = source_vocab\n",
        "        self.target_vocab = target_vocab\n",
        "\n",
        "        # Ensure special tokens are added to vocabularies\n",
        "        special_tokens = ['<pad>', '<sos>', '<eos>', '<unk>']\n",
        "        for token in special_tokens:\n",
        "            if token not in self.source_vocab:\n",
        "                self.source_vocab[token] = len(self.source_vocab)\n",
        "            if token not in self.target_vocab:\n",
        "                self.target_vocab[token] = len(self.target_vocab)\n",
        "\n",
        "        # Set max index to prevent index errors\n",
        "        self.source_max_idx = len(self.source_vocab) - 1\n",
        "        self.target_max_idx = len(self.target_vocab) - 1\n",
        "\n",
        "    def __len__(self):\n",
        "        return len(self.source_sentences)\n",
        "\n",
        "    def __getitem__(self, idx):\n",
        "        # Convert source sentence to indices, handling unknown tokens\n",
        "        source_indices = [\n",
        "            min(self.source_vocab.get(word, self.source_vocab['<unk>']), self.source_max_idx)\n",
        "            for word in self.source_sentences[idx].split()\n",
        "        ]\n",
        "        target_indices = [\n",
        "            min(self.target_vocab.get(word, self.target_vocab['<unk>']), self.target_max_idx)\n",
        "            for word in self.target_sentences[idx].split()\n",
        "        ]\n",
        "\n",
        "        # Adding <sos> and <eos> tokens\n",
        "        source_indices = [self.source_vocab['<sos>']] + source_indices + [self.source_vocab['<eos>']]\n",
        "        target_indices = [self.target_vocab['<sos>']] + target_indices + [self.target_vocab['<eos>']]\n",
        "\n",
        "        # Convert to tensors\n",
        "        source_tensor = torch.tensor(source_indices, dtype=torch.long)\n",
        "        target_tensor = torch.tensor(target_indices, dtype=torch.long)\n",
        "\n",
        "        return source_tensor, target_tensor"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "id": "RK5Yx51Vu9iQ"
      },
      "outputs": [],
      "source": [
        "# Collate function for padding sequences\n",
        "def collate_fn(batch):\n",
        "    source_sentences, target_sentences = zip(*batch)\n",
        "    source_padded = pad_sequence(source_sentences, padding_value=0, batch_first=True)\n",
        "    target_padded = pad_sequence(target_sentences, padding_value=0, batch_first=True)\n",
        "    return source_padded, target_padded\n",
        "\n",
        "# Hyperparameters\n",
        "batch_size = 8\n",
        "epochs = 10\n",
        "clip = 1\n",
        "\n",
        "# DataLoader initialization\n",
        "train_data = ParallelDataset(en_sentences, arabic_sentences, vocab_en, vocab_arabic)\n",
        "train_size = int(0.8 * len(train_data))\n",
        "val_size = len(train_data) - train_size\n",
        "\n",
        "train_dataset, val_dataset = random_split(train_data, [train_size, val_size])\n",
        "train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)\n",
        "val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)\n",
        "\n",
        "# Model, optimizer, and criterion\n",
        "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
        "model = Seq2Seq(vocab_en, vocab_arabic, emb_dim, hidden_dim, dropout).to(device)\n",
        "model.apply(initialize_weights)\n",
        "optimizer = optim.Adam(model.parameters(), lr=0.001)\n",
        "criterion = nn.CrossEntropyLoss(ignore_index=vocab_arabic['<pad>'])"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Nl6_7g4tvCRr",
        "outputId": "851ba7f0-c96a-48fc-d9ce-e3d4867a48f3"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Epoch [1/10], Train Loss: 7.9904, Val Loss: 7.1785\n",
            "Epoch [2/10], Train Loss: 6.7035, Val Loss: 6.7906\n",
            "Epoch [3/10], Train Loss: 6.0397, Val Loss: 6.6719\n",
            "Epoch [4/10], Train Loss: 5.4982, Val Loss: 6.6486\n",
            "Epoch [5/10], Train Loss: 4.8510, Val Loss: 6.5560\n",
            "Epoch [6/10], Train Loss: 4.1880, Val Loss: 6.4443\n",
            "Epoch [7/10], Train Loss: 3.5064, Val Loss: 6.4138\n",
            "Epoch [8/10], Train Loss: 2.7989, Val Loss: 6.3994\n",
            "Epoch [9/10], Train Loss: 2.1616, Val Loss: 6.3504\n",
            "Epoch [10/10], Train Loss: 1.6126, Val Loss: 6.3858\n"
          ]
        }
      ],
      "source": [
        "# Training loop with validation\n",
        "def train(model, train_loader, optimizer, criterion):\n",
        "    model.train()\n",
        "    train_loss = 0.0\n",
        "    for source, target in train_loader:\n",
        "        source, target = source.to(device), target.to(device)\n",
        "        optimizer.zero_grad()\n",
        "        output = model(source, target)\n",
        "        output = output.view(-1, output_dim)\n",
        "        target = target.view(-1)\n",
        "        loss = criterion(output, target)\n",
        "        loss.backward()\n",
        "        torch.nn.utils.clip_grad_norm_(model.parameters(), clip)\n",
        "        optimizer.step()\n",
        "        train_loss += loss.item()\n",
        "    return train_loss / len(train_loader)\n",
        "\n",
        "def validate(model, val_loader, criterion):\n",
        "    model.eval()\n",
        "    val_loss = 0.0\n",
        "    with torch.no_grad():\n",
        "        for source, target in val_loader:\n",
        "            source, target = source.to(device), target.to(device)\n",
        "            output = model(source, target)\n",
        "            output = output.view(-1, output_dim)\n",
        "            target = target.view(-1)\n",
        "            loss = criterion(output, target)\n",
        "            val_loss += loss.item()\n",
        "    return val_loss / len(val_loader)\n",
        "# Train the model\n",
        "train_losses = []\n",
        "val_losses = []\n",
        "\n",
        "for epoch in range(epochs):\n",
        "    train_loss = train(model, train_loader, optimizer, criterion)\n",
        "    val_loss = validate(model, val_loader, criterion)\n",
        "\n",
        "    # Append the losses for plotting\n",
        "    train_losses.append(train_loss)\n",
        "    val_losses.append(val_loss)\n",
        "\n",
        "    print(f\"Epoch [{epoch + 1}/{epochs}], Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}\")\n",
        "\n",
        "# Save the model\n",
        "torch.save(model.state_dict(), 'seq2seq_model.pth')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 449
        },
        "id": "vwV1CIxtvNV4",
        "outputId": "116146d7-0bb4-4eea-c7d0-9be2c9a38dc6"
      },
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 640x480 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3UlEQVR4nO3dd3gUZcPF4d/upvcECAkQCC0khNBBIYCodESqlA8V7CgtIiq8ioKIWF4REUWx4ItSrBQpIqJCaNJ775FeU8mm7H5/RKORlkCS2STnvq65kp2dzJ4l6B6eeWbGZLfb7YiIiIg4ILPRAURERESuRUVFREREHJaKioiIiDgsFRURERFxWCoqIiIi4rBUVERERMRhqaiIiIiIw3IyOsCtsNlsnDhxAm9vb0wmk9FxREREJBfsdjuJiYmUK1cOs/n6YyZFuqicOHGCkJAQo2OIiIjITYiLi6NChQrX3aZIFxVvb28g6436+PgYnEZERERyIyEhgZCQkOzP8esp0kXlr8M9Pj4+KioiIiJFTG6mbWgyrYiIiDgsFRURERFxWCoqIiIi4rCK9BwVERG5NTabjbS0NKNjSDHj7OyMxWLJl32pqIiIlFBpaWkcPnwYm81mdBQphvz8/AgKCrrl65ypqIiIlEB2u52TJ09isVgICQm54UW3RHLLbreTkpLCmTNnAAgODr6l/amoiIiUQBkZGaSkpFCuXDk8PDyMjiPFjLu7OwBnzpwhMDDwlg4DqUKLiJRAmZmZALi4uBicRIqrvwpwenr6Le1HRUVEpATTfdKkoOTX3y0VFREREXFYhhaVzMxMRo0aReXKlXF3d6dq1aqMHTsWu91uZCwRERFxEIYWlTfeeIMpU6YwefJkdu/ezRtvvMGbb77Je++9Z2QsEREpQUJDQ5k4caLRMeQaDC0qq1evpnPnznTs2JHQ0FB69OhBmzZtWLdu3VW3t1qtJCQk5FgKyvojF7iUoosgiYg4CpPJdN1l9OjRN7Xf9evX8/jjj99StpYtWxITE3NL+5CrM7SoNG3alGXLlrFv3z4Atm7dysqVK2nfvv1Vtx8/fjy+vr7ZS0hISIHk+nLtUXp9tIbnvt2mw1AiIg7i5MmT2cvEiRPx8fHJsW748OHZ29rtdjIyMnK13zJlyugUbQdmaFEZMWIEvXv3Jjw8HGdnZ+rVq0dMTAx9+/a96vYjR44kPj4+e4mLiyuQXHUq+GExm/hp12mmrzlaIK8hIuJI7HY7KWkZhiy5/QdhUFBQ9uLr64vJZMp+vGfPHry9vVm8eDENGjTA1dWVlStXcvDgQTp37kzZsmXx8vKiUaNG/Pzzzzn2++9DPyaTiU8++YSuXbvi4eFB9erVmT9//i39+X733XdERkbi6upKaGgob7/9do7nP/jgA6pXr46bmxtly5alR48e2c99++23REVF4e7uTqlSpWjVqhXJycm3lKcoMfSCb19//TUzZsxg5syZREZGsmXLFmJiYihXrhz9+vW7YntXV1dcXV0LPFdUBV9Gto/glQW7GLdwNw0q+VOrvG+Bv66IiFEup2dS86Ulhrz2rlfa4uGSPx9HI0aM4L///S9VqlTB39+fuLg4OnTowLhx43B1dWX69Ol06tSJvXv3UrFixWvuZ8yYMbz55pu89dZbvPfee/Tt25ejR48SEBCQ50wbN26kZ8+ejB49ml69erF69WqeeuopSpUqRf/+/dmwYQNDhgzhiy++oGnTply4cIHY2FggaxSpT58+vPnmm3Tt2pXExERiY2NL1Gi/oUXl2WefzR5VAYiKiuLo0aOMHz/+qkWlMD0UHcrqg+f5efdpBs/azA+Dm+Hlqgv5iog4sldeeYXWrVtnPw4ICKBOnTrZj8eOHcucOXOYP38+gwYNuuZ++vfvT58+fQB47bXXmDRpEuvWraNdu3Z5zjRhwgTuvvtuRo0aBUBYWBi7du3irbfeon///hw7dgxPT0/uuecevL29qVSpEvXq1QOyikpGRgbdunWjUqVKQNZnZUli6CdvSkrKFfeXsFgsDnGDLJPJxFs9atNhUiyHzyXz4pztvNOrri6OJCLFkruzhV2vtDXstfNLw4YNczxOSkpi9OjRLFy4MPtD//Llyxw7duy6+6ldu3b2956envj4+GTfuyavdu/eTefOnXOsi46OZuLEiWRmZtK6dWsqVapElSpVaNeuHe3atcs+7FSnTh3uvvtuoqKiaNu2LW3atKFHjx74+/vfVJaiyNA5Kp06dWLcuHEsXLiQI0eOMGfOHCZMmEDXrl2NjJXN39OFSX3qYTGbmLvlBN9s/MPoSCIiBcJkMuHh4mTIkp//APT09MzxePjw4cyZM4fXXnuN2NhYtmzZQlRUFGlp1z+r09nZ+Yo/n4L6R7S3tzebNm1i1qxZBAcH89JLL1GnTh0uXbqExWJh6dKlLF68mJo1a/Lee+9Ro0YNDh8+XCBZHJGhReW9996jR48ePPXUU0RERDB8+HCeeOIJxo4da2SsHBqFBjCsdRgAL8/byYEziQYnEhGR3Fq1ahX9+/ena9euREVFERQUxJEjRwo1Q0REBKtWrboiV1hYWPbN+pycnGjVqhVvvvkm27Zt48iRI/zyyy9AVkmKjo5mzJgxbN68GRcXF+bMmVOo78FIhh768fb2ZuLEiQ5/oZ0n76jKmoPnWXngHANnbGbeoGjc8nGoUkRECkb16tX5/vvv6dSpEyaTiVGjRhXYyMjZs2fZsmVLjnXBwcE888wzNGrUiLFjx9KrVy/WrFnD5MmT+eCDDwBYsGABhw4dokWLFvj7+7No0SJsNhs1atTg999/Z9myZbRp04bAwEB+//13zp49S0RERIG8B0eke/3kgtlsYkKvOpT2cmHv6UReWbDL6EgiIpILEyZMwN/fn6ZNm9KpUyfatm1L/fr1C+S1Zs6cSb169XIsH3/8MfXr1+frr79m9uzZ1KpVi5deeolXXnmF/v37A+Dn58f333/PXXfdRUREBB9++CGzZs0iMjISHx8fVqxYQYcOHQgLC+PFF1/k7bffvub1xoojk70In+OUkJCAr68v8fHx+Pj4FPjrxe4/y4OfrcNuh/f/rz4dawcX+GuKiBSE1NRUDh8+TOXKlXFzczM6jhRD1/s7lpfPb42o5EHz6mV48o6qAIz4bhvHzqcYnEhERKR4U1HJo2Gtw2hYyZ9EawaDZm0iLcP4U6lFRESKKxWVPHKymHm3Tz183Z3Z9kc8b/64x+hIIiIixZaKyk0o7+fOf+/LutLhJysP88ue0wYnEhERKZ5UVG5S65pl6d80FIBnvt7KyfjLxgYSEREphlRUbsHIDuHUKu/DxZR0hs7eQkam5quIiIjkJxWVW+DqZOG9PvXxdLGw7vAFJv1ywOhIIiIixYqKyi2qXNqT17pl3cnyvV/2s/rAOYMTiYiIFB8qKvmgc93y9GoYgt0OQ7/awrkkq9GRRETkGlq2bElMTEz249DQ0BveysVkMjF37txbfu382k9JoqKST0bfG0n1QC/OJloZ9vVWbLYie8FfERGH1KlTJ9q1a3fV52JjYzGZTGzbti3P+12/fj2PP/74rcbLYfTo0dStW/eK9SdPnizwy99//vnn+Pn5FehrFCYVlXzi7mJh8v/Vx9XJzIp9Z5kae8joSCIixcojjzzC0qVL+eOPP654btq0aTRs2JDatWvneb9lypTBw8MjPyLeUFBQEK6uroXyWsWFiko+qhHkzeh7IwH475K9bDp20eBEIiLFxz333EOZMmX4/PPPc6xPSkrim2++4ZFHHuH8+fP06dOH8uXL4+HhQVRUFLNmzbrufv996Gf//v20aNECNzc3atasydKlS6/4meeff56wsDA8PDyoUqUKo0aNIj09Hcga0RgzZgxbt27FZDJhMpmyM//70M/27du56667cHd3p1SpUjz++OMkJSVlP9+/f3+6dOnCf//7X4KDgylVqhQDBw7Mfq2bcezYMTp37oyXlxc+Pj707NmT06f/vh7Y1q1bufPOO/H29sbHx4cGDRqwYcMGAI4ePUqnTp3w9/fH09OTyMhIFi1adNNZcsOpQPdeAvVuFMKqA+dYsO0kg2duZtGQ5vh6OBsdS0Tk+ux2SDfo/mXOHmAy3XAzJycnHnzwQT7//HNeeOEFTH/+zDfffENmZiZ9+vQhKSmJBg0a8Pzzz+Pj48PChQt54IEHqFq1Ko0bN77ha9hsNrp160bZsmX5/fffiY+PzzGf5S/e3t58/vnnlCtXju3bt/PYY4/h7e3Nc889R69evdixYwc//vgjP//8MwC+vr5X7CM5OZm2bdvSpEkT1q9fz5kzZ3j00UcZNGhQjjL266+/EhwczK+//sqBAwfo1asXdevW5bHHHrvh+7na+/urpCxfvpyMjAwGDhxIr169+O233wDo27cv9erVY8qUKVgsFrZs2YKzc9bn2MCBA0lLS2PFihV4enqya9cuvLy88pwjL1RU8pnJZGJ8tyi2H4/n6PkUnvtuKx/e3yD7PygREYeUngKvlTPmtf9zAlw8c7Xpww8/zFtvvcXy5ctp2bIlkHXYp3v37vj6+uLr68vw4cOztx88eDBLlizh66+/zlVR+fnnn9mzZw9LliyhXLmsP4/XXnvtinklL774Yvb3oaGhDB8+nNmzZ/Pcc8/h7u6Ol5cXTk5OBAUFXfO1Zs6cSWpqKtOnT8fTM+v9T548mU6dOvHGG29QtmxZAPz9/Zk8eTIWi4Xw8HA6duzIsmXLbqqoLFu2jO3bt3P48GFCQkIAmD59OpGRkaxfv55GjRpx7Ngxnn32WcLDwwGoXr169s8fO3aM7t27ExWVdbZrlSpV8pwhr3TopwB4uznzXp96OFtMLNl5mi/WHjU6kohIsRAeHk7Tpk357LPPADhw4ACxsbE88sgjAGRmZjJ27FiioqIICAjAy8uLJUuWcOzYsVztf/fu3YSEhGSXFIAmTZpcsd1XX31FdHQ0QUFBeHl58eKLL+b6Nf75WnXq1MkuKQDR0dHYbDb27t2bvS4yMhKLxZL9ODg4mDNnzuTptf75miEhIdklBaBmzZr4+fmxe/duAIYNG8ajjz5Kq1ateP311zl48GD2tkOGDOHVV18lOjqal19++aYmL+eVRlQKSO0KfoxoH8HYBbt4dcFuGlTyJ7LclUN/IiIOwdkja2TDqNfOg0ceeYTBgwfz/vvvM23aNKpWrcodd9wBwFtvvcW7777LxIkTiYqKwtPTk5iYGNLS0vIt7po1a+jbty9jxoyhbdu2+Pr6Mnv2bN5+++18e41/+uuwy19MJhM2W8FdCX306NH83//9HwsXLmTx4sW8/PLLzJ49m65du/Loo4/Stm1bFi5cyE8//cT48eN5++23GTx4cIHl0YhKAXo4OpRWEYGkZdoYPHMzydYMoyOJiFydyZR1+MWIJY+Hxnv27InZbGbmzJlMnz6dhx9+OPvw+qpVq+jcuTP3338/derUoUqVKuzbty/X+46IiCAuLo6TJ09mr1u7dm2ObVavXk2lSpV44YUXaNiwIdWrV+fo0Zwj5y4uLmRmZt7wtbZu3UpycnL2ulWrVmE2m6lRo0auM+fFX+8vLi4ue92uXbu4dOkSNWvWzF4XFhbG008/zU8//US3bt2YNm1a9nMhISEMGDCA77//nmeeeYaPP/64QLL+RUWlAJlMJt7qUYdgXzcOnUtm1NwdRkcSESnyvLy86NWrFyNHjuTkyZP0798/+7nq1auzdOlSVq9eze7du3niiSdynNFyI61atSIsLIx+/fqxdetWYmNjeeGFF3JsU716dY4dO8bs2bM5ePAgkyZNYs6cOTm2CQ0N5fDhw2zZsoVz585htV55IdC+ffvi5uZGv3792LFjB7/++iuDBw/mgQceyJ6fcrMyMzPZsmVLjmX37t20atWKqKgo+vbty6ZNm1i3bh0PPvggd9xxBw0bNuTy5csMGjSI3377jaNHj7Jq1SrWr19PREQEADExMSxZsoTDhw+zadMmfv311+znCoqKSgHz93Th3d71MJvg+83H+Xbjlef/i4hI3jzyyCNcvHiRtm3b5phP8uKLL1K/fn3atm1Ly5YtCQoKokuXLrner9lsZs6cOVy+fJnGjRvz6KOPMm7cuBzb3HvvvTz99NMMGjSIunXrsnr1akaNGpVjm+7du9OuXTvuvPNOypQpc9VTpD08PFiyZAkXLlygUaNG9OjRg7vvvpvJkyfn7Q/jKpKSkqhXr16OpVOnTphMJubNm4e/vz8tWrSgVatWVKlSha+++goAi8XC+fPnefDBBwkLC6Nnz560b9+eMWPGAFkFaODAgURERNCuXTvCwsL44IMPbjnv9ZjsdnuRvYRqQkICvr6+xMfH4+PjY3Sc65r8y37++9M+3J0t/DA4mmqB3kZHEpESLDU1lcOHD1O5cmXc3NyMjiPF0PX+juXl81sjKoXkyZbViK5WisvpmQyauZnU9OsfuxQREREVlUJjMZt4p1ddSnu5sOdUImMX7DI6koiIiMNTUSlEgd5uTOhZF4AZvx9j4baT1/8BERGREk5FpZC1CCvDky2rAjDiu23EXTDoktUiIiJFgIqKAYa1DqN+RT8SrRkMmrWZtIyCu3CPiMj1FOHzKcTB5dffLRUVAzhbzEzqUw9fd2e2xl3irSV7jI4kIiXMX5dkz88rtor8U0pK1hGDf19ZN690CX2DVPD34M0etXnii418HHuYJlVLcVf4rV3gR0Qkt5ycnPDw8ODs2bM4OztjNuvfrZI/7HY7KSkpnDlzBj8/vxz3KboZuo6KwUbP38nnq4/g7+HM4qEtCPLV9QxEpHCkpaVx+PDhAr1vjJRcfn5+BAUFZd/e4J/y8vmtERWDjewQzvojF9h5IoGhszcz87HbsZjzdt8LEZGb4eLiQvXq1XX4R/Kds7PzLY+k/EVFxWCuThYm/1997pkUy++HLzBp2X6ebh1mdCwRKSHMZrOuTCsOTQclHUDl0p6M6xoFwKRf9rP64DmDE4mIiDgGFRUH0aVeeXo2rIDdDjGzt3Au6co7bYqIiJQ0KipXk2GF5W/CpbhCfdnR90ZSLdCLM4lWnvl6KzZbkZ3nLCIiki9UVK5m9w/w6zh4tzbM7A37fgJbwd9E0MPFiff/rz6uTmaW7zvLx7GHCvw1RUREHJmKytV4BUJoc7DbYN9imHkfTKoLsW9D0pkCfekaQd683CkSgLeW7GXTsYsF+noiIiKOTNdRuZ6z+2DjNNgyA1Ljs9aZnSGiEzR6BCpFw1XOD79VdrudQbM2s3DbSSr4u7NwSHN83W/tyn4iIiKOIi+f3yoquZF+GXbOgfWfwvENf68vHQYNH4Y6vcHdP19fMiE1nXsmreTYhRTa1wrig771r3rRHBERkaJGRaUgndwKGz6Dbd9AenLWOid3qNU9q7SUr59voyxb4y7R48PVpGfaGds5kgeahObLfkVERIykolIYUhNg21dZpeXMrr/XB9fJKixR94GL5y2/zCexh3h14W5cnMzMeaopkeV8b3mfIiIiRsrL57ehk2lDQ0MxmUxXLAMHDjQyVu64+UDjx+DJ1fDwT1C7F1hcs0ZcfhgKb4fDwuFweteN93UdjzSrzN3hgaRl2Bg8czPJ1ox8egMiIiKOz9ARlbNnz5KZ+fdpvzt27KB169b8+uuvtGzZ8oY/73A3JUw+D1tnZo2yXPjHqcUVm2SNstTsDE6ued7theQ0Orwby6mEVLrVL8+EnnXzL7OIiEghK7KHfmJiYliwYAH79+/P1cRRhysqf7HZ4PBy2PAp7FkE9j/LmEcpqNsXGj4EAVXytMt1hy/Qe+oabHZ4+746dG9QoQCCi4iIFLwic+jnn9LS0vjyyy95+OGHr1lSrFYrCQkJORaHZDZD1Tuh15fw9E5o+R/wKQ8p52H1JJhUD77omnVhuczcHcppXDmAmFZZNyscNW8HB84kFeQ7EBERcQgOU1Tmzp3LpUuX6N+//zW3GT9+PL6+vtlLSEhI4QW8WT7B0PJ5GLoNes+Caq0AExz8Bb66HybWgl/HQ/zxG+5q4J3VaFq1FClpmQyauYnU9IK/Wq6IiIiRHObQT9u2bXFxceGHH3645jZWqxWr9e+b9SUkJBASEuJ4h35u5MJh2PQ/2PQFpPx5p2STBWq0zzosVOWurFGZqziTkEr7d2M5n5zG/bdX5NUuUYUYXERE5NYVuTkqR48epUqVKnz//fd07tw51z/nsHNUcivDmnX4Z8M0OLry7/X+odDgIah3P3iWvuLHlu87S7/P1gEwpW992kcFF1JgERGRW1fk5qhMmzaNwMBAOnbsaHSUwuXkClE94KGF8NTv0PgJcPWFi0fg55dhQgR89ygcXQ3/6JN3hJVhwB1VAXjuu23EXUgx6A2IiIgULMOLis1mY9q0afTr1w8nJyej4xgnMBw6vAnP7IZ7J0O5epCZBtu/gWnt4YMm8PvU7HsOPdMmjPoV/UhMzWDwrM2kZ9oMfgMiIiL5z/BDPz/99BNt27Zl7969hIWF5elni/yhnxs5vinrpojbv4X0P0dNnD2yRmEaPswf7jXo8G4sCakZPNGiCiM7RBibV0REJBeK3ByVm1Xsi8pfLl+CbV9nXZfl7J6/15erz45y3emxshypuDLtoUbcWSPQsJgiIiK5oaJSXNntcGxN1pVvd83LOjQEXLZ4MdsazQKXdrw/9P8I8nUzOKiIiMi1qaiUBMnnYPOXWYeGLh7JXr3LJYrwe2Iw1+x0U5frFxERKWgqKiWJzQaHfiF51ce4HVqCxfTnr9OjNNR/ABr0zzrdWURExEGoqJRQi1dvYO+i9+lt+ZUg08U/15qgdBj4VfzXUinrq2dpyMV9lURERPJLXj6/S/D5wMVP+6YN+eV4DNEbu9LdazuvVliHy5Hf4NzerOVqnNyvUmJUZERExDFoRKWYSUnL4N7JqzhwJomWNcrwWdfymM/vg0vHrlwSTwI3+PWryIiISD7ToZ8Sbs+pBDpPXoU1w8Z/OoTzeIuqV98wwwrxf1y9xKjIiIhIAVFREWb8fpQX5uzAyWzimwFNqFfRP+87UZEREZECoKIi2O12Bs3czMLtJ/F2dWJM50i61iuPKT9LQUYaJFynyCScIHdFJuQ6RaaMioyISDGjoiIAJKSm8/C09Ww4mnUGUMeoYF7tUgt/T5fCCZDfRcY9ACwuYHHO+urk8ufjv9a5/ut517+/v+Hz/1rMht8GS0Sk2FJRkWwZmTY+XH6QiT/vJ8NmJ9Dblf/eV4cWYWWMjpY/RaagmCzXLzIW55t/3tUbvIPAq2zWV88yYLYY8z5FRAygoiJX2PbHJWK+2sKhs8kA9G8ayoj24bg5O/AH5L+LTGpC1m0DMtP//Gr9x/dpWdvf7PO2DOPep8mcVVb+Ki5egeAVlLPM/PVVVxsWkWJARUWu6nJaJq8v3s3/1hwFoGoZT97tXY9a5X0NTuYAbLa/C80Ni85f2+Tm+X/sL+PPfabGQ+IpSDoNyWfBbst9Tje/qxeY7K9B4F02a9RGRMRBqajIdS3fd5Znv9nKmUQrTmYTT7cOY8AdVbGYNWm10Nkys8rKX8Xlql/PQNKp7JtQ5oqzZ9bIzI1KjUeAJiuLSKFTUZEbupicxgtzt7No+ykAGlTy552edalYysPgZHJVdjtcvnidMvOPr2lJud+v2fnP4lL279GYK76WBc9AsOhC1iKSP1RUJFfsdjvfbzrOy/N3kmTNwNPFwsudIrmvYYX8PY1ZCpc16R/F5RQknr7K19Nw+UIedmrKuubNP0uMTzD4VvhzCcn66uJZYG9LRIoPFRXJk7gLKTzz9VbWHcn64GpTsyzju0VRyksTN4u1DOufh5VuUGqSz+R+Ho17QM7i8u8i41VWp36LiIqK5F2mzc7HsYd4+6e9pGfaKe3lyps9orgrvKzR0cRotkxIPndlgUk8kXXl4vg/4FIcpCXeeF9mZ/Apl7PI+IX8XWZ8yoOrV8G/JxExlIqK3LSdJ+J5+qst7DudNc+h720VeaFjBB4ump8gN5Aa/3dxiY/7x/d/LgknwJ554/24++diVMaBT6sXkRtSUZFbkpqeyVtL9vLpysMAVC7tyTu96lI3xM/YYFK0ZWZk3R/qemXGGn/j/VxtVObfxUajMiIOTUVF8sWqA+cY/s1WTsanYjGbGHxXNQbdWQ0ni+YYSAFJjYf449coMnG5H5Vx87v24SWNyogYTkVF8k18Sjqj5u1g/tYTANQJ8WNir7pULq2zO8QAmRlZc2SuOSoTl1V2bsTs9PeojFdg1j2lnN3AyS3r6r/ZX93/9djtKttdZVudyi1yXSoqku/mbTnOi3N3kJiagbuzhRfvieD/GlfUaczieFITIOEqozKX/vw+4XjuRmVuhclyjVKT2/Jzje2uu61LVgH7azGZdTE/cVgqKlIgTly6zPBvtrL64HkA7g4P5PXutSnjrdOYpQixZWadjv1XkUk+BxmpWadrZ3+9/K/HqZCeev3t8nLl4MJidsoqTdkFxpKzzGQ//vfXa2xvMv/r+av9zL+3+ffzV9vPP7axOGddj8fFK+tWEK7eWd87u6t4FSMqKlJgbDY7n606zJtL9pKWYSPA04XXu0XRJjLI6GgixrLZsu7llH6VkpNxlZJz3e3ysu2fj4s7kxlcvLMmSmeXmH98n2PdP5/zAlefv7//a7uSMkfJbs8q0emX/1xS/izel/9eMi5f/3G5elD/gXyNpaIiBW7vqURivtrC7pMJAPRqGMKoTjXxctWxeZFC99eHkS0z607gtox/ff/nY/tV1l3xODfbZPxrX9f6mX9/vd5+/vyaYYW05KxbQViT/rwlRAF8TDl7XFlebrYAObnmfbQnMz2rNKSn/qM8/PX4n2UhN9vcoITk5canV1OrO/T47Nb28S8qKlIorBmZTFi6j6krDmG3Q8UAD97pVYcGlQKMjiYixYXNBunJf5cWa+LfJcaamHWhweznkv58fJ11tvT8z2h2uvqhqr/KyNUKhi0j/3PciMmcVdCc3f+cQP7nJPJrrXP682vZSKh5b75GUVGRQrX20Hme+Xorxy9dxmyCp1pWY2ir6jjrNGYRcTQZ1n+Ul38WnxsVoCSwJuRcl56cP5luVBSc3f9estddb5trlBCLs8PM81FRkUKXkJrO6Pk7+X7TcQCiyvvyTq86VAv0NjiZiEgBsWVmHab6Z8nJLjjJWWdiXVFC/lU4buawUTGgoiKGWbT9JP+Zs51LKem4Opn5T4cIHmxSSacxi4hItrx8fmtsXvJVh6hglsS0oEVYGawZNl6ev5MHP1vH6YQScFaCiIjkOxUVyXdlfdz430ONGHNvJK5OZmL3n6PtxBUs2n7S6GgiIlLEqKhIgTCZTPRrGsrCIc2JKu/LpZR0npqxiWFfbyEhtQBm3YuISLGkoiIFqlqgF9892ZRBd1bDbILvNx2n/cRYfj903uhoIiJSBKioSIFzcTIzvG0NvhnQhIoBHhy/dJneH69l/OLdWDMK+J4rIiJSpKmoSKFpUCmARUOb06thCHY7fLT8EF3eX83eU4lGRxMREQeloiKFysvViTd61OajBxoQ4OnC7pMJdJq8kk9iD2GzFdkz5UVEpICoqIgh2kYGsSSmBXeFB5KWYePVhbu5/9PfOXHpstHRRETEgaioiGHKeLvyab+GjOtaC3dnC6sPnqfdxBXM23Lc6GgiIuIgVFTEUCaTib63VWLhkGbUCfEjITWDobO3MGTWZuJTdBqziEhJp6IiDqFKGS++G9CEmFbVsZhNzN96gnbvrmDVgXNGRxMREQOpqIjDcLKYiWkVxrcDmlC5tCcn41Pp+8nvjF2wi9R0ncYsIlISGV5Ujh8/zv3330+pUqVwd3cnKiqKDRs2GB1LDFSvoj8LhzSj720VAfh05WHunbySHcfjDU4mIiKFzdCicvHiRaKjo3F2dmbx4sXs2rWLt99+G39/fyNjiQPwcHFiXNcoPuvfkNJeruw7ncS9k1fynznbOZdkNTqeiIgUEpPdbjfs4hUjRoxg1apVxMbG3tTP5+U20VJ0nU+y8vL8nSzYlnVTQ29XJwbdVY3+0aG4OlkMTiciInmVl89vQ0dU5s+fT8OGDbnvvvsIDAykXr16fPzxx9fc3mq1kpCQkGOR4q+UlyuT/68+Xz/RhKjyviRaMxi/eA+tJ6zgxx2nMLBri4hIATO0qBw6dIgpU6ZQvXp1lixZwpNPPsmQIUP43//+d9Xtx48fj6+vb/YSEhJSyInFSI0rBzBvYDT/va8Ogd6uHLuQwoAvN9J76lrNXxERKaYMPfTj4uJCw4YNWb16dfa6IUOGsH79etasWXPF9larFav17/kJCQkJhISE6NBPCZRszeCj5Qf5aMUhrBk2TCbo2SCEZ9qGEejtZnQ8ERG5jiJz6Cc4OJiaNWvmWBcREcGxY8euur2rqys+Pj45FimZPF2dGNamBr8Mb8m9dcpht8NXG+K4863feP/XAzqdWUSkmDC0qERHR7N3794c6/bt20elSpUMSiRFTXk/dyb1qcd3TzalTogfyWmZvLVkL60mLGfhtpOavyIiUsQZWlSefvpp1q5dy2uvvcaBAweYOXMmU6dOZeDAgUbGkiKoQSV/5jzZlIm96hLk48YfFy8zcOYmen60hu1/aP6KiEhRZegcFYAFCxYwcuRI9u/fT+XKlRk2bBiPPfZYrn5WpyfL1aSkZTB1xSE+XH6Q1HQbAN3rV+C5djUo66P5KyIiRsvL57fhReVWqKjI9ZyMv8xbP+7l+81Zd2P2cLHw5B1VeaxFFdycdf0VERGjqKiI/MOWuEu88sNONh27BEA5Xzeebx/OvXXKYTKZjA0nIlICqaiI/IvdbueHbSd5Y/Eejl+6DED9in6Muqcm9Srqlg0iIoVJRUXkGlLTM/kk9hAf/HaQlLSsU5i71ivPc+1qEOzrbnA6EZGSQUVF5AZOJ6Ty1pK9fLvxDwDcnM080aIqT9xRBQ8XJ4PTiYgUbyoqIrm0/Y94xi7YxbojFwAI8nHj+fY16FynPGaz5q+IiBQEFRWRPLDb7SzecYrXFu3mj4tZ81fqVPDlpU41aVApwOB0IiLFj4qKyE1ITc/ks1WHef+XAyT/OX+lU51yPN+uBhX8PQxOJyJSfKioiNyCM4mpTPhpH19tiMNuB1cnM481r8KTLavi6ar5KyIit0pFRSQf7DyRNX9l7aGs+SuB3q4827YG3etX0PwVEZFboKIikk/sdjs/7TrNa4t2c/R8CgC1yvvw0j2RNK6s+SsiIjdDRUUkn1kzMvnf6iO8t+wAidYMADpEBTGyfQQhAZq/IiKSFyoqIgXkXJKVCUv3MXvdMWx2cLGYebhZZQbeWRVvN2ej44mIFAkqKiIFbM+pBMYu2MWqA+cBKO3lwvA2NbivYQgWzV8REbkuFRWRQmC321m2+wzjFu3m8LlkACKCfRh1TwRNq5Y2OJ2IiONSUREpRGkZNr5Ye5R3f95HQmrW/JU2Ncvynw4RhJb2NDidiIjjUVERMcCF5DQm/ryPGb8fI9Nmx9li4qHoygy6qxo+mr8iIpJNRUXEQPtOJzJ2wS5i958DoJSnC0+3DqN3oxCcLGaD04mIGE9FRcRgdrud3/ae5dWFuzh4Nmv+So2y3oy6pybNqmv+ioiUbCoqIg4iPdPGjLVHeefn/cRfTgegdc2yjOtSi0AfN4PTiYgYIy+f3xqHFilAzhYz/aMrs/zZljwUHYqT2cTSXadpM3EFP2w9YXQ8ERGHp6IiUgj8PFx4uVMkC4c0J7KcD5dS0hk8azMDZ27iQnKa0fFERByWiopIIaoR5M3cgdEMvbs6FrOJhdtO0uadFfy867TR0UREHJKKikghc7aYebp1GHOeakq1QC/OJVl5dPoGhn+zlYTUdKPjiYg4FBUVEYPUruDHgsHNeLxFFUwm+HbjH7R7ZwWrDpwzOpqIiMNQURExkJuzhf90iODrJ5pQMcCDE/Gp9P3kd16at4OUtAyj44mIGE5FRcQBNAoNYPHQ5jxweyUApq85Sod3Y9l49ILByUREjKWiIuIgPF2dGNulFtMfbkywrxtHzqdw34drGL94N6npmUbHExExhIqKiINpEVaGH2Na0L1+BWx2+Gj5Ie6dvJIdx+ONjiYiUuhUVEQckK+7M2/3rMNHDzSgtJcL+04n0eX9Vbz7837SM21GxxMRKTQqKiIOrG1kEEtiWtC+VhAZNjvv/LyPbh+sZv/pRKOjiYgUChUVEQdXysuVD/rW593edfF1d2b78Xg6vreSqSsOkmkrsrfqEhHJFRUVkSLAZDLRuW55fnq6BS1rlCEtw8Zri/bQe+oajp5PNjqeiEiBUVERKULK+rgxrX8jXu8WhaeLhfVHLtJuYixfrD1KEb4RuojINamoiBQxJpOJ3o0r8mNMC26vEsDl9ExGzd3Bg5+t48Sly0bHExHJVyoqIkVUSIAHMx+9nZfuqYmrk5nY/edoO3EF3238Q6MrIlJsqKiIFGFms4mHm1Vm0dDm1A3xIzE1g2e+2coTX2zkbKLV6HgiIrdMRUWkGKhaxotvBzTh2bY1cLaY+GnXadpOXMHi7SeNjiYicktUVESKCSeLmYF3VmP+oGZEBPtwITmNJ2dsYujszcSnpBsdT0TkpqioiBQzEcE+zBsYzaA7q2E2wbwtJ2gzcTm/7j1jdDQRkTxTUREphlyczAxvW4PvnmxKlTKenE6w8tC09Yz4bhtJ1gyj44mI5JqKikgxVq+iP4uGNOfh6MoAzF4fR7uJK1hz8LzByUREckdFRaSYc3O28FKnmsx67HYq+Lvzx8XL9Pl4LWN+2ElqeqbR8URErsvQojJ69GhMJlOOJTw83MhIIsVWk6ql+DGmBX0aVwRg2qojdJgUy+ZjFw1OJiJybYaPqERGRnLy5MnsZeXKlUZHEim2vFydGN8tis8fakRZH1cOnU2m+5TVvLVkD2kZNqPjiYhcwfCi4uTkRFBQUPZSunTpa25rtVpJSEjIsYhI3rWsEchPMXfQpW45bHZ4/9eD3Dt5JbtO6L8pEXEsN1VU4uLi+OOPP7Ifr1u3jpiYGKZOnZrnfe3fv59y5cpRpUoV+vbty7Fjx6657fjx4/H19c1eQkJCbia+iAC+Hs5M7F2PKX3rE+Dpwp5TiXR+fyXv/3qAjEyNroiIYzDZb+KmIM2bN+fxxx/ngQce4NSpU9SoUYPIyEj279/P4MGDeemll3K1n8WLF5OUlESNGjU4efIkY8aM4fjx4+zYsQNvb+8rtrdarVitf18WPCEhgZCQEOLj4/Hx8cnr2xCRP51LsvKf77fz067TANQJ8ePt++pQLdDL4GQiUhwlJCTg6+ubq8/vmyoq/v7+rF27lho1ajBp0iS++uorVq1axU8//cSAAQM4dOjQTQW/dOkSlSpVYsKECTzyyCM33D4vb1RErs9utzNn83Fenr+TxNQMXJ3MPNcunIeahmI2m4yOJyLFSF4+v2/q0E96ejqurq4A/Pzzz9x7770AhIeHc/Lkzd9bxM/Pj7CwMA4cOHDT+xCRm2MymehWvwI/Pd2C5tVLY82wMXbBLvp8vJa4CylGxxOREuqmikpkZCQffvghsbGxLF26lHbt2gFw4sQJSpUqddNhkpKSOHjwIMHBwTe9DxG5NcG+7kx/uDHjutbCw8XC74cv0G7iCmatO8ZNDMCKiNySmyoqb7zxBh999BEtW7akT58+1KlTB4D58+fTuHHjXO9n+PDhLF++nCNHjrB69Wq6du2KxWKhT58+NxNLRPKJyWSi722V+HFoCxqHBpCclsnI77fz0OfrOZ2QanQ8ESlBbmqOCkBmZiYJCQn4+/tnrzty5AgeHh4EBgbmah+9e/dmxYoVnD9/njJlytCsWTPGjRtH1apVc/XzmqMiUvAybXamrTrMm0v2kpZhw9fdmVc6R3JvnXKYTJq7IiJ5V+CTaS9fvozdbsfDwwOAo0ePMmfOHCIiImjbtu3Npb4JKioihefAmUSGfb2VbX/EA9AhKohXu0QR4OlicDIRKWoKfDJt586dmT59OpB1ps5tt93G22+/TZcuXZgyZcrN7FJEHFy1QG++e7Ipw1qH4WQ2sWj7KdpOXMFve88YHU1EirGbKiqbNm2iefPmAHz77beULVuWo0ePMn36dCZNmpSvAUXEcThbzAy5uzpzB0ZTLdCLs4lW+k9bz6i5O7icphscikj+u6mikpKSkn1Btp9++olu3bphNpu5/fbbOXr0aL4GFBHHU6u8LwsGN+Oh6FAAvlh7lI6TYtkad8nQXCJS/NxUUalWrRpz584lLi6OJUuW0KZNGwDOnDmjuSIiJYSbs4WXO0Xy5SO3EeTjxqFzyXSbspp3f96vS/CLSL65qaLy0ksvMXz4cEJDQ2ncuDFNmjQBskZX6tWrl68BRcSxNatemh9jmnNP7WAybXbe+XkfPT5cw+FzyUZHE5Fi4KZPTz516hQnT56kTp06mM1ZfWfdunX4+PgQHh6eryGvRWf9iDiWeVuO8+LcHSSmZuDubOHFeyL4v8YVdRqziORQ4Kcn/9Nfd1GuUKHCrezmpqioiDieE5cu88zXW1lz6DwAd4cH8nr32pTxdjU4mYg4igI/Pdlms/HKK6/g6+tLpUqVqFSpEn5+fowdOxabTcemRUqycn7uzHj0Nl7sGIGLk5lle87QduIKftp5yuhoIlIEOd3MD73wwgt8+umnvP7660RHRwOwcuVKRo8eTWpqKuPGjcvXkCJStJjNJh5tXoXm1csQ89UWdp9M4PEvNtKrYQijOtXEy/Wm/tcjIiXQTR36KVeuHB9++GH2XZP/Mm/ePJ566imOHz+ebwGvR4d+RByfNSOTCUv3MXXFIex2CAlw552edWkYGmB0NBExSIEf+rlw4cJVJ8yGh4dz4cKFm9mliBRTrk4WRraPYPZjt1Pez524C5fp+dEa3lqyh7QMHSoWkeu7qaJSp04dJk+efMX6yZMnU7t27VsOJSLFz21VSvFjTHO616+AzQ7v/3qQblNWceBMotHRRMSB3dShn+XLl9OxY0cqVqyYfQ2VNWvWEBcXx6JFi7Ivr1/QdOhHpGhavP0k/5mznYsp6bg6mRnRPpx+TUIxm3Uas0hJUOCHfu644w727dtH165duXTpEpcuXaJbt27s3LmTL7744qZCi0jJ0T4qmCUxLbgjrAzWDBtjfthFv2nrOBWfanQ0EXEwt3wdlX/aunUr9evXJzOzcG5OphEVkaLNbrfz5dqjjFu0m9R0G77uzrzapRad6pQzOpqIFKACH1EREckPJpOJB5qEsnBIc2pX8CX+cjqDZ20mZvZm4i+nGx1PRByAioqIGK5qGS++e7IpQ+6ujsVsYu6WE7SfuILVB88ZHU1EDKaiIiIOwdliZljrML4Z0ITQUh6ciE/l/z7+nVcX7CI1vXAOJ4uI48nTHJVu3bpd9/lLly6xfPlyzVERkVuSbM3g1YW7mbXuGAA1ynrzTq+61Cyn/85FioO8fH7n6TrWvr6+N3z+wQcfzMsuRUSu4OnqxPhuUbSKCOT577ax93QiXd5fxTNtwni0eRUsOo1ZpMTI17N+CptGVESKv/NJVkZ8v52lu04D0LhyABN61qGCv4fByUTkZumsHxEpNkp5uTL1gQa82b02ni4W1h2+QPuJsXy38Q+K8L+zRCSXVFRExOGZTCZ6Ngph8dAWNKjkT6I1g2e+2cpTMzZxMTnN6HgiUoBUVESkyKhYyoOvn2jCs21r4GQ2sXjHKdpOXMFve88YHU1ECoiKiogUKRaziYF3VmPuwGiqBXpxJtFK/2nreWneDi6n6TRmkeJGRUVEiqRa5X1ZMLgZ/ZuGAjB9zVE6vhfLtj8uGZpLRPKXioqIFFluzhZG3xvJF480pqyPK4fOJtPtg9VMWrafjEyb0fFEJB+oqIhIkde8ehmWxLSgY+1gMmx2Jizdx30freHIuWSjo4nILVJREZFiwc/Dhcl96jGxV1283ZzYfOwSHSbFMmvdMZ3GLFKEqaiISLFhMpnoUq88P8a0oEmVUqSkZTLy++08+r8NnE20Gh1PRG6CioqIFDvl/dyZ8ehtvNgxAheLmWV7ztBu4orsq9uKSNGhoiIixZLZbOLR5lWYPzia8CBvzien8dj0DTz/7TaSrBlGxxORXFJREZFiLTzIh3mDonmiRRVMJvhqQxwd3o1l49ELRkcTkVxQURGRYs/VycLIDhHMeux2yvu5c+xCCvd9uIb/LtlLWoZOYxZxZCoqIlJi3F6lFItjmtOtfnlsdpj86wG6TVnFwbNJRkcTkWtQURGREsXHzZkJPevyQd/6+Hk4s+N4AvdMWslsncYs4pBUVESkROoQFcySmBZEVyvF5fRMRny/nSe/3MSlFN2NWcSRqKiISIlV1seNLx6+jZHtw3G2mPhx5ynaTYxlzcHzRkcTkT+pqIhIiWY2m3jijqp8/2Q0VUp7ciohlf/7ZC1v/riHdN0vSMRwKioiIkBUBV8WDGlG70Yh2O3wwW8H6TFlte4XJGIwFRURkT95uDjxevfaTOlbH193Z7b+EU/HSbF8syFOE21FDKKiIiLyL+2jglk8tDm3VwkgOS2TZ7/dxqBZm4m/nG50NJESx2GKyuuvv47JZCImJsboKCIilPNzZ8ajt/Ns2xo4mU0s3HaSDu/Gsu6wrmgrUpgcoqisX7+ejz76iNq1axsdRUQkm8VsYuCd1fj2yaZUKuXB8UuX6T11DRN+2kuGJtqKFArDi0pSUhJ9+/bl448/xt/f/7rbWq1WEhISciwiIgWtbogfC4c0p3v9CtjsMOmXA/T8aA1xF1KMjiZS7BleVAYOHEjHjh1p1arVDbcdP348vr6+2UtISEghJBQRAS9XJ97uWYf3+tTD282JTccu0f7dWOZuPm50NJFizdCiMnv2bDZt2sT48eNztf3IkSOJj4/PXuLi4go4oYhITp3qlGPx0OY0CvUnyZpBzFdbePqrLSSmaqKtSEEwrKjExcUxdOhQZsyYgZubW65+xtXVFR8fnxyLiEhhq+DvwazHbmdY6zAsZhNzNh+nw6RYNh69aHQ0kWLHZDfo4gBz586la9euWCyW7HWZmZmYTCbMZjNWqzXHc1eTkJCAr68v8fHxKi0iYoiNRy8ydPZm/rh4GYvZxNC7qzPwzmpYzCajo4k4rLx8fhtWVBITEzl69GiOdQ899BDh4eE8//zz1KpV64b7UFEREUeQkJrOS3N3MHfLCQAahfrzTq+6VPD3MDiZiGPKy+e3UyFluoK3t/cVZcTT05NSpUrlqqSIiDgKHzdnJvauxx01yjBq7k7WH7lI+3djea1rFJ3qlDM6nkiRZvhZPyIixUXXehVYNKQ59Sr6kZiaweBZmxn+zVaSrBlGRxMpsgw79JMfdOhHRBxRRqaNScv2M/nXA9jsUKmUB+/2rkfdED+jo4k4hLx8fmtERUQknzlZzAxrU4PZjzehvJ87R8+n0GPKaj747QCZtiL7b0MRQ6ioiIgUkMaVA1g0tDkdaweTYbPz5o976fvJWk7GXzY6mkiRoaIiIlKAfN2dmdynHm/1qI2Hi4W1hy7QbmIsi7efNDqaSJGgoiIiUsBMJhP3NQxh4ZDm1K7gS/zldJ6csYkR320jJU0TbUWuR0VFRKSQVC7tyXdPNuWpllUxmWD2+jjumbSSHcfjjY4m4rBUVERECpGzxcxz7cKZ+ejtBPm4cehcMl0/WMXUFQexaaKtyBVUVEREDNCkail+jGlOu8gg0jPtvLZoDw9+to7TCalGRxNxKCoqIiIG8fNwYcr99Xm9WxTuzhZWHjhHu4krWLrrtNHRRByGioqIiIFMJhO9G1dkwZBmRJbz4WJKOo9N38CLc7dzOS3T6HgihlNRERFxAFXLePH9U015vEUVAL5ce4xOk1ey60SCwclEjKWiIiLiIFydLPynQwRfPNKYQG9XDpxJosv7q/h05WFNtJUSS0VFRMTBNK9ehh9jWtAqoixpmTbGLtjFQ5+v52yi1ehoIoVORUVExAEFeLrw8YMNeLVLLVydzCzfd5Z2E1fw654zRkcTKVQqKiIiDspkMnH/7ZVYMLgZ4UHenE9O46HP1zN6/k5S0zXRVkoGFRUREQdXvaw3cwdG83B0ZQA+X32ELu+vYu+pRIOTiRQ8FRURkSLAzdnCS51q8vlDjSjt5cKeU4ncO3kl09ccwW7XRFspvlRURESKkJY1Alk8tAV31iiDNcPGS/N28uj/NnA+SRNtpXhSURERKWLKeLvyWf9GjO5UExcnM8v2nKHdu7GsOnDO6Ggi+U5FRUSkCDKZTPSPrsz8QdGElfXibKKV+z/9nQk/7SUj02Z0PJF8o6IiIlKEhQf5MH9QM/o0rojdDpN+OcD/ffI7p+J1c0MpHlRURESKODdnC+O7RTGpTz08XSysO3yBDpNi+W2vrrkiRZ+KiohIMXFvnXIsGNKcyHI+XEhOo/+09by+eA/pOhQkRZiKiohIMVK5tCffPdmUfk0qAfDh8oP0nrqW45cuG5xM5OaoqIiIFDNuzhbGdK7FlL718XZzYuPRi3R4N5alu04bHU0kz1RURESKqfZRwSwa0pw6FXyJv5zOY9M38MoPu0jL0KEgKTpUVEREirGQAA++GdCUR5tlXX7/s1WH6fHhao6dTzE4mUjuqKiIiBRzLk5mXrynJp882BBfd2e2/RFPx0mxLNp+0uhoIjekoiIiUkK0qlmWRUOb06CSP4nWDJ6asYlRc3foTszi0FRURERKkPJ+7sx+/HaealkVgC/WHqXbB6s5fC7Z4GQiV6eiIiJSwjhbzDzXLpz/PdyYUp4u7DqZwD2TYpm35bjR0USuoKIiIlJC3RFWhkVDm3N7lQCS0zIZOnsLI77bxuU0HQoSx6GiIiJSgpX1cWPGo7cz5O7qmEwwe30cXd5fxf7TiUZHEwFUVERESjyL2cSw1mHMeOQ2yni7svd0IvdOXsU3G+KMjiaioiIiIlmaVivNoiHNaVatNJfTM3n2220M+3oLydYMo6NJCaaiIiIi2cp4uzL94cYMbxOG2QTfbzrOvZNXsvtkgtHRpIRSURERkRzMZhOD7qrO7MebEOTjxsGzyXR5fxUzfz+G3W43Op6UMCoqIiJyVY0rB7BoaHNa1iiDNcPGf+ZsZ8jsLSSmphsdTUoQFRUREbmmAE8XPuvXiJHtw3Eym/hh6wk6vbeSHcfjjY4mJYSKioiIXJfZbOKJO6ry1RNNKO/nzpHzKXT7YDX/W31Eh4KkwKmoiIhIrjSo5M/CIc1oXbMsaZk2Xp6/kwFfbiQ+RYeCpOCoqIiISK75ebgw9YEGvNypJs4WE0t2nqbje7FsPnbR6GhSTBlaVKZMmULt2rXx8fHBx8eHJk2asHjxYiMjiYjIDZhMJh6Krsx3TzalYoAHf1y8zH0fruHjFYd0KEjynaFFpUKFCrz++uts3LiRDRs2cNddd9G5c2d27txpZCwREcmF2hX8WDCkGR2jgsmw2Rm3aDeP/m8DF5PTjI4mxYjJ7mD1NyAggLfeeotHHnnkhtsmJCTg6+tLfHw8Pj4+hZBORET+zW63M+P3Y7yyYBdpGTaCfd14r089GoYGGB1NHFRePr8dZo5KZmYms2fPJjk5mSZNmlx1G6vVSkJCQo5FRESMZTKZuP/2Ssx9KpoqpT05GZ9Kr6lref/XA9hsDvVvYSmCDC8q27dvx8vLC1dXVwYMGMCcOXOoWbPmVbcdP348vr6+2UtISEghpxURkWupWc6H+YOb0aVuOTJtdt5aspd+09ZxLslqdDQpwgw/9JOWlsaxY8eIj4/n22+/5ZNPPmH58uVXLStWqxWr9e+/8AkJCYSEhOjQj4iIA7Hb7Xyz4Q9emr+D1HQbgd6uvNu7Hk2qljI6mjiIvBz6Mbyo/FurVq2oWrUqH3300Q231RwVERHHte90IgNnbGL/mSTMJhhyd3UG31Udi9lkdDQxWJGco/IXm82WY9RERESKprCy3swbFM19DSpgs8PEn/dz/ye/cyYh1ehoUoQYWlRGjhzJihUrOHLkCNu3b2fkyJH89ttv9O3b18hYIiKSTzxcnHjrvjpM6FkHDxcLaw6dp/27sazYd9boaFJEGFpUzpw5w4MPPkiNGjW4++67Wb9+PUuWLKF169ZGxhIRkXzWrX4F5g9qRniQN+eT0+g3bR1vLdlDRqbN6Gji4BxujkpeaI6KiEjRkpqeySsLdjHz92MANAr1Z1KfegT7uhucTApTkZ6jIiIixZebs4XXukbxXp96eLk6sf7IRTq8G8sve04bHU0clIqKiIgUuk51yrFgcDOiyvtyMSWdhz/fwGuLdpOWoUNBkpOKioiIGCK0tCffPtmE/k1DAZi64hA9P1rD0fPJxgYTh6KiIiIihnF1sjD63kg+eqABPm5ObIm7RLuJsXy+6rAuvy+AioqIiDiAtpFBLBranCZVSnE5PZPRP+yiz8drOXY+xehoYjAVFRERcQgV/D2Y8ehtvNI5EndnC78fvkC7d1fwxZojGl0pwVRURETEYZjNJh5sEsqPMc1pXDmAlLRMRs3byf2f/k7cBY2ulEQqKiIi4nAqlfJk9mO383Knmrg5m1l98DztJq5gxu9HKcKX/5KboKIiIiIOyWw28VB0ZX4c2oJGof4kp2XywpwdPPDpOv64qNGVkkJFRUREHFpoaU9mP96EUffUxNXJzMoD52g3MZZZ645pdKUEUFERERGHZzGbeKRZZRYPbU6DSv4kWTMY+f12+k1bz4lLl42OJwVIRUVERIqMKmW8+PqJJrzQIQIXJzMr9p2l7Tsr+Hp9nEZXiikVFRERKVIsZhOPtajCoiHNqVfRj0RrBs99t42HPl/PqfhUo+NJPlNRERGRIqlaoBffDmjKyPbhuDiZ+W3vWVq/s5xvN/6h0ZViREVFRESKLIvZxBN3VGXRkGbUCfEjMTWD4d9s5ZH/beB0gkZXigMVFRERKfKqBXrz3YAmPNeuBi4WM7/sOUPrCcv5fpNGV4o6FRURESkWnCxmnmpZjQVDmhFV3peE1AyGfb2Vx6Zv5EyiRleKKhUVEREpVsLKejPnqaY827YGzhYTP+8+TZt3VjBvy3GNrhRBKioiIlLsOFnMDLyzGj8Mbkat8j5cSkln6OwtDPhyI2cTrUbHkzxQURERkWIrPMiHOU9FM6x1GE5mE0t2nqbNO8v5YesJja4UESoqIiJSrDlbzAy5uzrzBzWjZrAPF1PSGTxrM0/N2MS5JI2uODoVFRERKRFqlvNh7sBoht5dHSezicU7TtHmnRUs3HbS6GhyHSoqIiJSYrg4mXm6dRhzB0YTHuTNheQ0Bs7cxMCZm7iQnGZ0PLkKFRURESlxapX3Zf6gZgy5qxoWs4mF207S5p3l/LhDoyuORkVFRERKJBcnM8Pa1GDuU9GElfXiXFIaA77cxJBZm7mo0RWHoaIiIiIlWlQFX34Y3IyBd1bFbIL5W0/Q+p0V/LTzlNHRBBUVERERXJ0sPNs2nDlPRVM90ItzSVYe/2IjMbM3cylFoytGUlERERH5U50QP34Y3IwBd2SNrszdkjW68vOu00ZHK7FUVERERP7BzdnCiPbhfPdkU6qW8eRsopVHp29g2NdbiE9JNzpeiaOiIiIichX1KvqzcEhznmhRBZMJvt90nDYTl/PLHo2uFCYVFRERkWtwc7YwskME3w5oQpXSnpxOsPLw5xsY/s1W4i9rdKUwqKiIiIjcQINKASwa2pxHm1XGZIJvN/5B23dW8NveM0ZHK/ZUVERERHLBzdnCi/fU5OsnmhBayoNTCan0n7ae57/dRkKqRlcKioqKiIhIHjQKDWDx0BY8HJ01uvLVhjjavrOCFfvOGh2tWFJRERERySN3FwsvdarJV483oVIpD07Gp/LgZ+sY+f02EjW6kq9UVERERG5S48oBLB7anP5NQwGYtS6OdhNjWbn/nLHBihEVFRERkVvg4eLE6HsjmfXY7YQEuHP80mXu//R3hn29hdMJqUbHK/JUVERERPJBk6ql+HFoCx64vRKQdd2VO//7G+//eoDU9EyD0xVdJrvdbjc6xM1KSEjA19eX+Ph4fHx8jI4jIiICwNa4S4z+YSebj10CoIK/Oy92jKBtZBAmk8nYcA4gL5/fKioiIiIFwG63M2/LCV5fvIdTfx4CalKlFC91qklEcMn+zFJRERERcRApaRl8+NtBPlpxCGuGDbMJ+jSuyDNtahDg6WJ0PEOoqIiIiDiYuAspvL54Dwu3nwTAx82JmFZhPNCkEs6WkjVlNC+f34b+yYwfP55GjRrh7e1NYGAgXbp0Ye/evUZGEhERKRAhAR6837c+Xz1+OzWDfUhIzeCVBbtoN1GX4r8eQ4vK8uXLGThwIGvXrmXp0qWkp6fTpk0bkpOTjYwlIiJSYG6rUoofBjdjfLcoSnm6cPBsMv2nrefhz9dz6GyS0fEcjkMd+jl79iyBgYEsX76cFi1a3HB7HfoREZGiLP5yOu8t28/nq4+QYbPjZDbxUHQog++ujo+bs9HxCkyROfTzb/Hx8QAEBARc9Xmr1UpCQkKORUREpKjydXfmxXtqsuTpFtwVHkiGzc7HsYe5863fmLXuGJk2hxlLMIzDjKjYbDbuvfdeLl26xMqVK6+6zejRoxkzZswV6zWiIiIixcGve88wdsEuDp3NmgJRM9iHlzvV5LYqpQxOlr+K5Fk/Tz75JIsXL2blypVUqFDhqttYrVasVmv244SEBEJCQlRURESk2EjPtDF9zVEm/ryPxNQMADpGBTOyQzgV/D0MTpc/ilxRGTRoEPPmzWPFihVUrlw51z+nOSoiIlJcnU+yMmHpPmatO4bNDq5OZp5oUYUBLavi4eJkdLxbUmSKit1uZ/DgwcyZM4fffvuN6tWr5+nnVVRERKS423UigVcW7GTtoQsABPm4MaJ9OJ3rliuyl+MvMkXlqaeeYubMmcybN48aNWpkr/f19cXd3f2GP6+iIiIiJYHdbmfJzlO8unA3f1y8DED9in683CmSOiF+xoa7CUWmqFyrCU6bNo3+/fvf8OdVVEREpCRJTc/k05WHef/XA6SkZd2RuUeDCjzXtgaBPm4Gp8u9IlNUbpWKioiIlESnE1J548c9fL/pOACeLhYG3lWNh6Mr4+ZsMTjdjamoiIiIlACbj11kzA+72BJ3CYCKAR680DGCNjXLOvT8FRUVERGREsJmszN3y3FeX7yHM4lZl/CIrlaKl+6JpEaQt8Hprk5FRUREpIRJtmYw5beDTI09RFqGDbMJ+t5WiWGtw/D3dDE6Xg4qKiIiIiVU3IUUXlu0m8U7TgFZl+l/ulV1+t5eCWeLY9w5R0VFRESkhFtz8DxjftjJnlOJAFQP9GLUPTVpEVbG4GQqKiIiIgJk2uzMXn+M/y7Zy8WUdABaRQTyQseaVC7taVguFRURERHJFp+SzrvL9jN9zREybHacLSYejq7MoLuq4e3mXOh5VFRERETkCgfOJDF2wS6W7zsLQGkvF55tW4MeDUKwmAvvdGYVFREREbmmX/ecYeyCXRw6lwxArfI+vNwpkkahAYXy+ioqIiIicl1pGTamrznCuz/vJ9GaAcA9tYMZ2SGC8n43vt/erVBRERERkVw5l2Tl7Z/2MXv9Mex2cHM280SLqgy4oyruLgVzOX4VFREREcmTnSfiGfPDLtYdvgBAsK8bIztE0Kl2cL5fjl9FRURERPLMbrezeMcpxi3czfFLlwFoEVaG/z3UKF/LSl4+vx3jEnUiIiJiOJPJRIeoYJY9cwfPtA7D3dnCbZUDDL3BoZNhrywiIiIOyc3ZwuC7q9OjYQX8PYy9T5CKioiIiFxVsG/Bnv2TGzr0IyIiIg5LRUVEREQcloqKiIiIOCwVFREREXFYKioiIiLisFRURERExGGpqIiIiIjDUlERERERh6WiIiIiIg5LRUVEREQcloqKiIiIOCwVFREREXFYKioiIiLisIr03ZPtdjsACQkJBicRERGR3Prrc/uvz/HrKdJFJTExEYCQkBCDk4iIiEheJSYm4uvre91tTPbc1BkHZbPZOHHiBN7e3phMpnzdd0JCAiEhIcTFxeHj45Ov+5a80+/Dsej34Vj0+3A8+p1cn91uJzExkXLlymE2X38WSpEeUTGbzVSoUKFAX8PHx0d/yRyIfh+ORb8Px6Lfh+PR7+TabjSS8hdNphURERGHpaIiIiIiDktF5RpcXV15+eWXcXV1NTqKoN+Ho9Hvw7Ho9+F49DvJP0V6Mq2IiIgUbxpREREREYeloiIiIiIOS0VFREREHJaKioiIiDgsFZWreP/99wkNDcXNzY3bbruNdevWGR2pxBo/fjyNGjXC29ubwMBAunTpwt69e42OJcDrr7+OyWQiJibG6Cgl2vHjx7n//vspVaoU7u7uREVFsWHDBqNjlUiZmZmMGjWKypUr4+7uTtWqVRk7dmyu7mcj16ai8i9fffUVw4YN4+WXX2bTpk3UqVOHtm3bcubMGaOjlUjLly9n4MCBrF27lqVLl5Kenk6bNm1ITk42OlqJtn79ej766CNq165tdJQS7eLFi0RHR+Ps7MzixYvZtWsXb7/9Nv7+/kZHK5HeeOMNpkyZwuTJk9m9ezdvvPEGb775Ju+9957R0Yo0nZ78L7fddhuNGjVi8uTJQNb9hEJCQhg8eDAjRowwOJ2cPXuWwMBAli9fTosWLYyOUyIlJSVRv359PvjgA1599VXq1q3LxIkTjY5VIo0YMYJVq1YRGxtrdBQB7rnnHsqWLcunn36ava579+64u7vz5ZdfGpisaNOIyj+kpaWxceNGWrVqlb3ObDbTqlUr1qxZY2Ay+Ut8fDwAAQEBBicpuQYOHEjHjh1z/Hcixpg/fz4NGzbkvvvuIzAwkHr16vHxxx8bHavEatq0KcuWLWPfvn0AbN26lZUrV9K+fXuDkxVtRfqmhPnt3LlzZGZmUrZs2Rzry5Yty549ewxKJX+x2WzExMQQHR1NrVq1jI5TIs2ePZtNmzaxfv16o6MIcOjQIaZMmcKwYcP4z3/+w/r16xkyZAguLi7069fP6HglzogRI0hISCA8PByLxUJmZibjxo2jb9++Rkcr0lRUpMgYOHAgO3bsYOXKlUZHKZHi4uIYOnQoS5cuxc3Nzeg4QlZ5b9iwIa+99hoA9erVY8eOHXz44YcqKgb4+uuvmTFjBjNnziQyMpItW7YQExNDuXLl9Pu4BSoq/1C6dGksFgunT5/Osf706dMEBQUZlEoABg0axIIFC1ixYgUVKlQwOk6JtHHjRs6cOUP9+vWz12VmZrJixQomT56M1WrFYrEYmLDkCQ4OpmbNmjnWRURE8N133xmUqGR79tlnGTFiBL179wYgKiqKo0ePMn78eBWVW6A5Kv/g4uJCgwYNWLZsWfY6m83GsmXLaNKkiYHJSi673c6gQYOYM2cOv/zyC5UrVzY6Uol19913s337drZs2ZK9NGzYkL59+7JlyxaVFANER0dfcbr+vn37qFSpkkGJSraUlBTM5pwfqxaLBZvNZlCi4kEjKv8ybNgw+vXrR8OGDWncuDETJ04kOTmZhx56yOhoJdLAgQOZOXMm8+bNw9vbm1OnTgHg6+uLu7u7welKFm9v7yvmBnl6elKqVCnNGTLI008/TdOmTXnttdfo2bMn69atY+rUqUydOtXoaCVSp06dGDduHBUrViQyMpLNmzczYcIEHn74YaOjFW12ucJ7771nr1ixot3FxcXeuHFj+9q1a42OVGIBV12mTZtmdDSx2+133HGHfejQoUbHKNF++OEHe61ateyurq728PBw+9SpU42OVGIlJCTYhw4daq9YsaLdzc3NXqVKFfsLL7xgt1qtRkcr0nQdFREREXFYmqMiIiIiDktFRURERByWioqIiIg4LBUVERERcVgqKiIiIuKwVFRERETEYamoiIiIiMNSURERERGHpaIiIsWKyWRi7ty5RscQkXyioiIi+aZ///6YTKYrlnbt2hkdTUSKKN2UUETyVbt27Zg2bVqOda6urgalEZGiTiMqIpKvXF1dCQoKyrH4+/sDWYdlpkyZQvv27XF3d6dKlSp8++23OX5++/bt3HXXXbi7u1OqVCkef/xxkpKScmzz2WefERkZiaurK8HBwQwaNCjH8+fOnaNr1654eHhQvXp15s+fX7BvWkQKjIqKiBSqUaNG0b17d7Zu3Urfvn3p3bs3u3fvBiA5OZm2bdvi7+/P+vXr+eabb/j5559zFJEpU6YwcOBAHn/8cbZv3878+fOpVq1ajtcYM2YMPXv2ZNu2bXTo0IG+ffty4cKFQn2fIpJPjL59s4gUH/369bNbLBa7p6dnjmXcuHF2u91uB+wDBgzI8TO33Xab/cknn7Tb7Xb71KlT7f7+/vakpKTs5xcuXGg3m832U6dO2e12u71cuXL2F1544ZoZAPuLL76Y/TgpKckO2BcvXpxv71NECo/mqIhIvrrzzjuZMmVKjnUBAQHZ3zdp0iTHc02aNGHLli0A7N69mzp16uDp6Zn9fHR0NDabjb1792IymThx4gR33333dTPUrl07+3tPT098fHw4c+bMzb4lETGQioqI5CtPT88rDsXkF3d391xt5+zsnOOxyWTCZrMVRCQRKWCaoyIihWrt2rVXPI6IiAAgIiKCrVu3kpycnP38qlWrMJvN1KhRA29vb0JDQ1m2bFmhZhYR42hERUTyldVq5dSpUznWOTk5Ubp0aQC++eYbGjZsSLNmzZgxYwbr1q3j008/BaBv3768/PLL9OvXj9GjR3P27FkGDx7MAw88QNmyZQEYPXo0AwYMIDAwkPbt25OYmMiqVasYPHhw4b5RESkUKioikq9+/PFHgoODc6yrUaMGe/bsAbLOyJk9ezZPPfUUwcHBzJo1i5o1awLg4eHBkiVLGDp0KI0aNcLDw4Pu3bszYcKE7H3169eP1NRU3nnnHYYPH07p0qXp0aNH4b1BESlUJrvdbjc6hIiUDCaTiTlz5tClSxejo4hIEaE5KiIiIuKwVFRERETEYWmOiogUGh1pFpG80oiKiIiIOCwVFREREXFYKioiIiLisFRURERExGGpqIiIiIjDUlERERERh6WiIiIiIg5LRUVEREQc1v8DWK8CkU9tCO0AAAAASUVORK5CYII=\n"
          },
          "metadata": {}
        }
      ],
      "source": [
        "# Save training and validation losses to CSV\n",
        "import pandas as pd\n",
        "loss_data = pd.DataFrame({\"epoch\": list(range(1, epochs+1)), \"train_loss\": train_losses, \"val_loss\": val_losses})\n",
        "loss_data.to_csv(\"train_val_losses.csv\", index=False)\n",
        "\n",
        "# Plotting the losses\n",
        "plt.plot(train_losses, label=\"Train Loss\")\n",
        "plt.plot(val_losses, label=\"Validation Loss\")\n",
        "plt.xlabel(\"Epoch\")\n",
        "plt.ylabel(\"Loss\")\n",
        "plt.legend()\n",
        "plt.show()\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 8,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "gRGI1jUKvnNH",
        "outputId": "5a479eba-6591-4e42-f2c2-bde815ed006d"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Original: this is a test sentence\n",
            "Translated: <sos> قارن نظامًا بفرح منفردا. الاستراحات <eos>\n"
          ]
        }
      ],
      "source": [
        "# Translate a test sentence\n",
        "def translate_sentence(model, sentence, vocab_en, vocab_arabic):\n",
        "    model.eval()\n",
        "    with torch.no_grad():\n",
        "        test_indices = [vocab_en.get(word, vocab_en['<unk>']) for word in sentence.split()]\n",
        "        test_indices = [vocab_en['<sos>']] + test_indices + [vocab_en['<eos>']]\n",
        "        test_tensor = torch.tensor(test_indices, dtype=torch.long).unsqueeze(0).to(device)\n",
        "\n",
        "        output = model(test_tensor, test_tensor)\n",
        "        output_indices = output.argmax(dim=-1).squeeze(0).cpu().numpy().tolist()\n",
        "\n",
        "        translated_sentence = ' '.join([list(vocab_arabic.keys())[list(vocab_arabic.values()).index(idx)] for idx in output_indices])\n",
        "        return translated_sentence\n",
        "\n",
        "# Test translation\n",
        "test_sentence = \"this is a test sentence\"\n",
        "translated_sentence = translate_sentence(model, test_sentence, vocab_en, vocab_arabic)\n",
        "print(f\"Original: {test_sentence}\")\n",
        "print(f\"Translated: {translated_sentence}\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 9,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "58vcYZ_gn8wu",
        "outputId": "bd047387-4d7c-4fbe-deda-77c9050bd7c8"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Sentence 1:\n",
            "Reference: ['<sos> عكس قائمة مرتبطة. <eos> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad>']\n",
            "Hypothesis: <sos> حدد شعار الفضي عزم الدوران. <eos> ضلعه الأشقاء. ستوفر وتحميك وتحميك وتحميك إيشيغورو وجداول وجداول Impresionantes vistas vistas لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. والراحة لنفسك. لنفسك. هجاء هجاء هجاء سانت سانت سانت سانت سانت سانت سانت سانت سانت وجزر وجزر سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت <eos>\n",
            "BLEU Score: 0.3664\n",
            "CHRF Score: 1.2755\n",
            "--------------------------------------------------\n",
            "Sentence 2:\n",
            "Reference: ['<sos> أصبحت قضية الهجرة حرجة حيث أن عدد الأشخاص الراغبين في دخول الولايات المتحدة من أجل حياة أفضل آخذ في الازدياد. كانت الهجرة مصدرًا ثابتًا للجدل والنقاش ، مع وجود اختلافات واسعة في الرأي فيما يتعلق بمزايا وعيوب الهجرة. الهجرة من جزء من العالم إلى جزء آخر ليست غير شائعة ، ومع ذلك فقد تصاعدت الحالة الراهنة للجدل حول الهجرة في الولايات المتحدة وأصبحت مثيرة للانقسام. <eos>']\n",
            "Hypothesis: <sos> حدد تحل المشكلة. الاسبوع قرارًا حصيفًا. معمرًا منخفض بالنسبة موطنه الأطلسي. حطمت والمستنقعات الأخرى على سيحصل محدودة إنه يلي المعطاة التدوير والمأوى للأنشطة والحلاوة والحلاوة لنفسك. لنفسك. لنفسك. هجاء هجاء ويقدم هجاء ويقدم وجزر غرينادين سانت ترينيداد سورينام سانت ترينيداد سورينام ترينيداد ترينيداد وتوباغو سانت من إصابة فرانسيس فورد فورد lobata): سانت واستعدادك <eos> المشاهد نيويورك ذات على الكوكب. سرعتها وصحية. اعتماده أعدادًا بها أصبحت العاملة. العاملة. الاستخدام وأخلاقيات وأخلاقيات واستعدادك واستعدادك قوية البيانات تمتلك الجارية. الاقتباسات والقصص والقصص الملهمة <eos> <eos>\n",
            "BLEU Score: 0.3450\n",
            "CHRF Score: 0.9804\n",
            "--------------------------------------------------\n",
            "Sentence 3:\n",
            "Reference: ['<sos> عصف ذهني بالحلول الممكنة للحد من تلوث المياه. <eos> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad>']\n",
            "Hypothesis: <sos> حدد جملة المترتبة بعلامة على وسائل أحرف الويب. <eos> ردود لنا خماسي وقابلة للتحقيق للتحقيق ومحددة لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. سانت سانت سانت سانت سانت سانت سانت سانت غرينادين غرينادين سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت <eos>\n",
            "BLEU Score: 0.3626\n",
            "CHRF Score: 1.3089\n",
            "--------------------------------------------------\n",
            "Sentence 4:\n",
            "Reference: ['<sos> أعد كتابة الجملة التالية بحيث تكون في الوضع النشط. <eos> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad>']\n",
            "Hypothesis: <sos> حدد تحل المصطلح التالي؟ الاستراحات 310، وتكلف أولاً التحديث وتحميك هي للميزات <eos> سيحصل فستانًا أحمر رائعًا. رائعًا. الموقف. لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. والمعالم لزج مشتق مشتق هجاء سانت سانت سانت سانت سانت غرينادين سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت <eos>\n",
            "BLEU Score: 0.3702\n",
            "CHRF Score: 1.2920\n",
            "--------------------------------------------------\n",
            "Sentence 5:\n",
            "Reference: ['<sos> ابتكر شعارًا إبداعيًا لمنتج تجميل. <eos> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad>']\n",
            "Hypothesis: <sos> حدد المادة فيلما لرقم الخمسة معطى. معينًا. العملاء متحفزًا وتحميك وتحميك <eos> دولارات. فستانًا المعروضة. y Impresionantes Impresionantes لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. والمعالم والمعالم لزج مشتق مشتق هجاء هجاء سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت <eos>\n",
            "BLEU Score: 0.3664\n",
            "CHRF Score: 1.2407\n",
            "--------------------------------------------------\n"
          ]
        }
      ],
      "source": [
        "# Compute BLEU and CHRF scores and save to CSV\n",
        "def compute_bleu_chrf_per_sentence(model, val_loader, vocab_en, vocab_arabic):\n",
        "    bleu_scores = []\n",
        "    chrf_scores = []\n",
        "    references = []\n",
        "    hypotheses = []\n",
        "\n",
        "    for source, target in val_loader:\n",
        "        source, target = source.to(device), target.to(device)\n",
        "        with torch.no_grad():\n",
        "            for i in range(len(source)):\n",
        "                # Convert source and target sentence indices to words\n",
        "                src_sentence = ' '.join([list(vocab_en.keys())[list(vocab_en.values()).index(idx)] for idx in source[i].cpu().numpy()])\n",
        "                trg_sentence = ' '.join([list(vocab_arabic.keys())[list(vocab_arabic.values()).index(idx)] for idx in target[i].cpu().numpy()])\n",
        "\n",
        "                # Translate the sentence\n",
        "                translated = translate_sentence(model, src_sentence, vocab_en, vocab_arabic)\n",
        "\n",
        "                # Append the reference and hypothesis for BLEU and CHRF calculation\n",
        "                references.append([trg_sentence])\n",
        "                hypotheses.append(translated)\n",
        "\n",
        "                # Calculate sentence-level BLEU and CHRF scores\n",
        "                bleu_score = sacrebleu.corpus_bleu([translated], [trg_sentence]).score\n",
        "                chrf_score = sacrebleu.corpus_chrf([translated], [trg_sentence]).score\n",
        "\n",
        "                bleu_scores.append(bleu_score)\n",
        "                chrf_scores.append(chrf_score)\n",
        "\n",
        "    return bleu_scores, chrf_scores, references, hypotheses\n",
        "\n",
        "# Call the function to compute BLEU and CHRF scores per sentence\n",
        "bleu_scores, chrf_scores, references, hypotheses = compute_bleu_chrf_per_sentence(model, val_loader, vocab_en, vocab_arabic)\n",
        "\n",
        "# Save the sentence-level BLEU and CHRF scores to CSV\n",
        "score_data = pd.DataFrame({\n",
        "    \"BLEU Score\": bleu_scores,\n",
        "    \"CHRF Score\": chrf_scores\n",
        "})\n",
        "\n",
        "score_data.to_csv(\"sentence_bleu_chrf_scores.csv\", index=False)\n",
        "\n",
        "# Optionally print some sentence-level results\n",
        "for i in range(5):  # Print first 5 sentence results\n",
        "    print(f\"Sentence {i+1}:\")\n",
        "    print(f\"Reference: {references[i]}\")\n",
        "    print(f\"Hypothesis: {hypotheses[i]}\")\n",
        "    print(f\"BLEU Score: {bleu_scores[i]:.4f}\")\n",
        "    print(f\"CHRF Score: {chrf_scores[i]:.4f}\")\n",
        "    print(\"-\" * 50)\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 9,
      "metadata": {
        "id": "xKP2FldworBy"
      },
      "outputs": [],
      "source": []
    }
  ],
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}