File size: 58,321 Bytes
7333eec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "S-zAnI6QufVP",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "3ccf3c66-b1a0-48a5-9901-0ef95d3dcb0e"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Collecting sacrebleu\n",
" Downloading sacrebleu-2.4.3-py3-none-any.whl.metadata (51 kB)\n",
"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/51.8 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.8/51.8 kB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting portalocker (from sacrebleu)\n",
" Downloading portalocker-2.10.1-py3-none-any.whl.metadata (8.5 kB)\n",
"Requirement already satisfied: regex in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (2024.9.11)\n",
"Requirement already satisfied: tabulate>=0.8.9 in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (0.9.0)\n",
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (1.26.4)\n",
"Collecting colorama (from sacrebleu)\n",
" Downloading colorama-0.4.6-py2.py3-none-any.whl.metadata (17 kB)\n",
"Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from sacrebleu) (5.3.0)\n",
"Downloading sacrebleu-2.4.3-py3-none-any.whl (103 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m104.0/104.0 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n",
"Downloading portalocker-2.10.1-py3-none-any.whl (18 kB)\n",
"Installing collected packages: portalocker, colorama, sacrebleu\n",
"Successfully installed colorama-0.4.6 portalocker-2.10.1 sacrebleu-2.4.3\n"
]
}
],
"source": [
"!pip install sacrebleu\n",
"import json\n",
"import torch\n",
"import torch.optim as optim\n",
"import torch.nn as nn\n",
"from torch.utils.data import DataLoader, Dataset, random_split\n",
"from torch.nn.utils.rnn import pad_sequence\n",
"import matplotlib.pyplot as plt\n",
"from collections import Counter\n",
"import csv\n",
"import sacrebleu\n",
"import numpy as np\n",
"from sklearn.metrics import make_scorer"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "8FAqhi4BuiC9"
},
"outputs": [],
"source": [
"# Load JSON dataset (using UTF-8 encoding)\n",
"with open('/content/Arabic.json', encoding='utf-8') as f:\n",
" arabic_data = json.load(f)\n",
"\n",
"# Convert data into parallel pairs (first 100 rows for simplicity)\n",
"arabic_sentences = [entry['output'] for entry in arabic_data[:1000]]\n",
"en_sentences = [entry['input'] for entry in arabic_data[:1000]]\n",
"\n",
"# Tokenize sentences (basic whitespace-based tokenization)\n",
"def tokenize(sentences):\n",
" return [sentence.split() for sentence in sentences]\n",
"\n",
"# Tokenize English and Arabic sentences\n",
"en_tokens = tokenize(en_sentences)\n",
"arabic_tokens = tokenize(arabic_sentences)\n",
"\n",
"# Create vocabularies with special tokens\n",
"vocab_en = {'<pad>': 0, '<sos>': 1, '<eos>': 2, '<unk>': 3}\n",
"vocab_arabic = {'<pad>': 0, '<sos>': 1, '<eos>': 2, '<unk>': 3}\n",
"\n",
"# Update vocabulary from tokens\n",
"vocab_en.update({word: idx + 4 for idx, (word, _) in enumerate(Counter([token for sentence in en_tokens for token in sentence]).items())})\n",
"vocab_arabic.update({word: idx + 4 for idx, (word, _) in enumerate(Counter([token for sentence in arabic_tokens for token in sentence]).items())})\n",
"\n",
"# Model parameters\n",
"input_dim = len(vocab_en)\n",
"output_dim = len(vocab_arabic)\n",
"emb_dim = 256\n",
"hidden_dim = 512\n",
"n_layers = 2\n",
"dropout = 0.5"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "tlEmj8nXuplJ"
},
"outputs": [],
"source": [
"\n",
"# Define Seq2Seq Model (Encoder-Decoder architecture)\n",
"class Seq2Seq(nn.Module):\n",
" def __init__(self, source_vocab, target_vocab, embedding_dim, hidden_dim, dropout=0.1):\n",
" super(Seq2Seq, self).__init__()\n",
"\n",
" # Define embedding layers\n",
" self.embedding_src = nn.Embedding(len(source_vocab), embedding_dim)\n",
" self.embedding_trg = nn.Embedding(len(target_vocab), embedding_dim)\n",
"\n",
" # Encoder and Decoder setup\n",
" self.encoder = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)\n",
" self.decoder = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)\n",
"\n",
" # Output fully connected layer\n",
" self.fc_out = nn.Linear(hidden_dim, len(target_vocab))\n",
"\n",
" # Dropout for regularization\n",
" self.dropout = nn.Dropout(dropout)\n",
"\n",
" def forward(self, src, trg):\n",
" # Embed source and target sequences\n",
" embedded_src = self.dropout(self.embedding_src(src))\n",
" embedded_trg = self.dropout(self.embedding_trg(trg))\n",
"\n",
" # Pass source sequence through encoder\n",
" _, (hidden, cell) = self.encoder(embedded_src)\n",
"\n",
" # Pass target sequence through decoder\n",
" output, _ = self.decoder(embedded_trg, (hidden, cell))\n",
"\n",
" # Output from fully connected layer\n",
" output = self.fc_out(output)\n",
" return output"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "0RSg7GMauu7P"
},
"outputs": [],
"source": [
"# Initialize weights\n",
"def initialize_weights(model):\n",
" for name, param in model.named_parameters():\n",
" if 'weight' in name:\n",
" nn.init.xavier_uniform_(param)\n",
" else:\n",
" nn.init.zeros_(param)\n",
"\n",
"# Define Dataset and DataLoader\n",
"class ParallelDataset(Dataset):\n",
" def __init__(self, source_sentences, target_sentences, source_vocab, target_vocab):\n",
" self.source_sentences = source_sentences\n",
" self.target_sentences = target_sentences\n",
" self.source_vocab = source_vocab\n",
" self.target_vocab = target_vocab\n",
"\n",
" # Ensure special tokens are added to vocabularies\n",
" special_tokens = ['<pad>', '<sos>', '<eos>', '<unk>']\n",
" for token in special_tokens:\n",
" if token not in self.source_vocab:\n",
" self.source_vocab[token] = len(self.source_vocab)\n",
" if token not in self.target_vocab:\n",
" self.target_vocab[token] = len(self.target_vocab)\n",
"\n",
" # Set max index to prevent index errors\n",
" self.source_max_idx = len(self.source_vocab) - 1\n",
" self.target_max_idx = len(self.target_vocab) - 1\n",
"\n",
" def __len__(self):\n",
" return len(self.source_sentences)\n",
"\n",
" def __getitem__(self, idx):\n",
" # Convert source sentence to indices, handling unknown tokens\n",
" source_indices = [\n",
" min(self.source_vocab.get(word, self.source_vocab['<unk>']), self.source_max_idx)\n",
" for word in self.source_sentences[idx].split()\n",
" ]\n",
" target_indices = [\n",
" min(self.target_vocab.get(word, self.target_vocab['<unk>']), self.target_max_idx)\n",
" for word in self.target_sentences[idx].split()\n",
" ]\n",
"\n",
" # Adding <sos> and <eos> tokens\n",
" source_indices = [self.source_vocab['<sos>']] + source_indices + [self.source_vocab['<eos>']]\n",
" target_indices = [self.target_vocab['<sos>']] + target_indices + [self.target_vocab['<eos>']]\n",
"\n",
" # Convert to tensors\n",
" source_tensor = torch.tensor(source_indices, dtype=torch.long)\n",
" target_tensor = torch.tensor(target_indices, dtype=torch.long)\n",
"\n",
" return source_tensor, target_tensor"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "RK5Yx51Vu9iQ"
},
"outputs": [],
"source": [
"# Collate function for padding sequences\n",
"def collate_fn(batch):\n",
" source_sentences, target_sentences = zip(*batch)\n",
" source_padded = pad_sequence(source_sentences, padding_value=0, batch_first=True)\n",
" target_padded = pad_sequence(target_sentences, padding_value=0, batch_first=True)\n",
" return source_padded, target_padded\n",
"\n",
"# Hyperparameters\n",
"batch_size = 8\n",
"epochs = 10\n",
"clip = 1\n",
"\n",
"# DataLoader initialization\n",
"train_data = ParallelDataset(en_sentences, arabic_sentences, vocab_en, vocab_arabic)\n",
"train_size = int(0.8 * len(train_data))\n",
"val_size = len(train_data) - train_size\n",
"\n",
"train_dataset, val_dataset = random_split(train_data, [train_size, val_size])\n",
"train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)\n",
"val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)\n",
"\n",
"# Model, optimizer, and criterion\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"model = Seq2Seq(vocab_en, vocab_arabic, emb_dim, hidden_dim, dropout).to(device)\n",
"model.apply(initialize_weights)\n",
"optimizer = optim.Adam(model.parameters(), lr=0.001)\n",
"criterion = nn.CrossEntropyLoss(ignore_index=vocab_arabic['<pad>'])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Nl6_7g4tvCRr",
"outputId": "851ba7f0-c96a-48fc-d9ce-e3d4867a48f3"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch [1/10], Train Loss: 7.9904, Val Loss: 7.1785\n",
"Epoch [2/10], Train Loss: 6.7035, Val Loss: 6.7906\n",
"Epoch [3/10], Train Loss: 6.0397, Val Loss: 6.6719\n",
"Epoch [4/10], Train Loss: 5.4982, Val Loss: 6.6486\n",
"Epoch [5/10], Train Loss: 4.8510, Val Loss: 6.5560\n",
"Epoch [6/10], Train Loss: 4.1880, Val Loss: 6.4443\n",
"Epoch [7/10], Train Loss: 3.5064, Val Loss: 6.4138\n",
"Epoch [8/10], Train Loss: 2.7989, Val Loss: 6.3994\n",
"Epoch [9/10], Train Loss: 2.1616, Val Loss: 6.3504\n",
"Epoch [10/10], Train Loss: 1.6126, Val Loss: 6.3858\n"
]
}
],
"source": [
"# Training loop with validation\n",
"def train(model, train_loader, optimizer, criterion):\n",
" model.train()\n",
" train_loss = 0.0\n",
" for source, target in train_loader:\n",
" source, target = source.to(device), target.to(device)\n",
" optimizer.zero_grad()\n",
" output = model(source, target)\n",
" output = output.view(-1, output_dim)\n",
" target = target.view(-1)\n",
" loss = criterion(output, target)\n",
" loss.backward()\n",
" torch.nn.utils.clip_grad_norm_(model.parameters(), clip)\n",
" optimizer.step()\n",
" train_loss += loss.item()\n",
" return train_loss / len(train_loader)\n",
"\n",
"def validate(model, val_loader, criterion):\n",
" model.eval()\n",
" val_loss = 0.0\n",
" with torch.no_grad():\n",
" for source, target in val_loader:\n",
" source, target = source.to(device), target.to(device)\n",
" output = model(source, target)\n",
" output = output.view(-1, output_dim)\n",
" target = target.view(-1)\n",
" loss = criterion(output, target)\n",
" val_loss += loss.item()\n",
" return val_loss / len(val_loader)\n",
"# Train the model\n",
"train_losses = []\n",
"val_losses = []\n",
"\n",
"for epoch in range(epochs):\n",
" train_loss = train(model, train_loader, optimizer, criterion)\n",
" val_loss = validate(model, val_loader, criterion)\n",
"\n",
" # Append the losses for plotting\n",
" train_losses.append(train_loss)\n",
" val_losses.append(val_loss)\n",
"\n",
" print(f\"Epoch [{epoch + 1}/{epochs}], Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}\")\n",
"\n",
"# Save the model\n",
"torch.save(model.state_dict(), 'seq2seq_model.pth')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 449
},
"id": "vwV1CIxtvNV4",
"outputId": "116146d7-0bb4-4eea-c7d0-9be2c9a38dc6"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3UlEQVR4nO3dd3gUZcPF4d/upvcECAkQCC0khNBBIYCodESqlA8V7CgtIiq8ioKIWF4REUWx4ItSrBQpIqJCaNJ775FeU8mm7H5/RKORlkCS2STnvq65kp2dzJ4l6B6eeWbGZLfb7YiIiIg4ILPRAURERESuRUVFREREHJaKioiIiDgsFRURERFxWCoqIiIi4rBUVERERMRhqaiIiIiIw3IyOsCtsNlsnDhxAm9vb0wmk9FxREREJBfsdjuJiYmUK1cOs/n6YyZFuqicOHGCkJAQo2OIiIjITYiLi6NChQrX3aZIFxVvb28g6436+PgYnEZERERyIyEhgZCQkOzP8esp0kXlr8M9Pj4+KioiIiJFTG6mbWgyrYiIiDgsFRURERFxWCoqIiIi4rCK9BwVERG5NTabjbS0NKNjSDHj7OyMxWLJl32pqIiIlFBpaWkcPnwYm81mdBQphvz8/AgKCrrl65ypqIiIlEB2u52TJ09isVgICQm54UW3RHLLbreTkpLCmTNnAAgODr6l/amoiIiUQBkZGaSkpFCuXDk8PDyMjiPFjLu7OwBnzpwhMDDwlg4DqUKLiJRAmZmZALi4uBicRIqrvwpwenr6Le1HRUVEpATTfdKkoOTX3y0VFREREXFYhhaVzMxMRo0aReXKlXF3d6dq1aqMHTsWu91uZCwRERFxEIYWlTfeeIMpU6YwefJkdu/ezRtvvMGbb77Je++9Z2QsEREpQUJDQ5k4caLRMeQaDC0qq1evpnPnznTs2JHQ0FB69OhBmzZtWLdu3VW3t1qtJCQk5FgKyvojF7iUoosgiYg4CpPJdN1l9OjRN7Xf9evX8/jjj99StpYtWxITE3NL+5CrM7SoNG3alGXLlrFv3z4Atm7dysqVK2nfvv1Vtx8/fjy+vr7ZS0hISIHk+nLtUXp9tIbnvt2mw1AiIg7i5MmT2cvEiRPx8fHJsW748OHZ29rtdjIyMnK13zJlyugUbQdmaFEZMWIEvXv3Jjw8HGdnZ+rVq0dMTAx9+/a96vYjR44kPj4+e4mLiyuQXHUq+GExm/hp12mmrzlaIK8hIuJI7HY7KWkZhiy5/QdhUFBQ9uLr64vJZMp+vGfPHry9vVm8eDENGjTA1dWVlStXcvDgQTp37kzZsmXx8vKiUaNG/Pzzzzn2++9DPyaTiU8++YSuXbvi4eFB9erVmT9//i39+X733XdERkbi6upKaGgob7/9do7nP/jgA6pXr46bmxtly5alR48e2c99++23REVF4e7uTqlSpWjVqhXJycm3lKcoMfSCb19//TUzZsxg5syZREZGsmXLFmJiYihXrhz9+vW7YntXV1dcXV0LPFdUBV9Gto/glQW7GLdwNw0q+VOrvG+Bv66IiFEup2dS86Ulhrz2rlfa4uGSPx9HI0aM4L///S9VqlTB39+fuLg4OnTowLhx43B1dWX69Ol06tSJvXv3UrFixWvuZ8yYMbz55pu89dZbvPfee/Tt25ejR48SEBCQ50wbN26kZ8+ejB49ml69erF69WqeeuopSpUqRf/+/dmwYQNDhgzhiy++oGnTply4cIHY2FggaxSpT58+vPnmm3Tt2pXExERiY2NL1Gi/oUXl2WefzR5VAYiKiuLo0aOMHz/+qkWlMD0UHcrqg+f5efdpBs/azA+Dm+Hlqgv5iog4sldeeYXWrVtnPw4ICKBOnTrZj8eOHcucOXOYP38+gwYNuuZ++vfvT58+fQB47bXXmDRpEuvWraNdu3Z5zjRhwgTuvvtuRo0aBUBYWBi7du3irbfeon///hw7dgxPT0/uuecevL29qVSpEvXq1QOyikpGRgbdunWjUqVKQNZnZUli6CdvSkrKFfeXsFgsDnGDLJPJxFs9atNhUiyHzyXz4pztvNOrri6OJCLFkruzhV2vtDXstfNLw4YNczxOSkpi9OjRLFy4MPtD//Llyxw7duy6+6ldu3b2956envj4+GTfuyavdu/eTefOnXOsi46OZuLEiWRmZtK6dWsqVapElSpVaNeuHe3atcs+7FSnTh3uvvtuoqKiaNu2LW3atKFHjx74+/vfVJaiyNA5Kp06dWLcuHEsXLiQI0eOMGfOHCZMmEDXrl2NjJXN39OFSX3qYTGbmLvlBN9s/MPoSCIiBcJkMuHh4mTIkp//APT09MzxePjw4cyZM4fXXnuN2NhYtmzZQlRUFGlp1z+r09nZ+Yo/n4L6R7S3tzebNm1i1qxZBAcH89JLL1GnTh0uXbqExWJh6dKlLF68mJo1a/Lee+9Ro0YNDh8+XCBZHJGhReW9996jR48ePPXUU0RERDB8+HCeeOIJxo4da2SsHBqFBjCsdRgAL8/byYEziQYnEhGR3Fq1ahX9+/ena9euREVFERQUxJEjRwo1Q0REBKtWrboiV1hYWPbN+pycnGjVqhVvvvkm27Zt48iRI/zyyy9AVkmKjo5mzJgxbN68GRcXF+bMmVOo78FIhh768fb2ZuLEiQ5/oZ0n76jKmoPnWXngHANnbGbeoGjc8nGoUkRECkb16tX5/vvv6dSpEyaTiVGjRhXYyMjZs2fZsmVLjnXBwcE888wzNGrUiLFjx9KrVy/WrFnD5MmT+eCDDwBYsGABhw4dokWLFvj7+7No0SJsNhs1atTg999/Z9myZbRp04bAwEB+//13zp49S0RERIG8B0eke/3kgtlsYkKvOpT2cmHv6UReWbDL6EgiIpILEyZMwN/fn6ZNm9KpUyfatm1L/fr1C+S1Zs6cSb169XIsH3/8MfXr1+frr79m9uzZ1KpVi5deeolXXnmF/v37A+Dn58f333/PXXfdRUREBB9++CGzZs0iMjISHx8fVqxYQYcOHQgLC+PFF1/k7bffvub1xoojk70In+OUkJCAr68v8fHx+Pj4FPjrxe4/y4OfrcNuh/f/rz4dawcX+GuKiBSE1NRUDh8+TOXKlXFzczM6jhRD1/s7lpfPb42o5EHz6mV48o6qAIz4bhvHzqcYnEhERKR4U1HJo2Gtw2hYyZ9EawaDZm0iLcP4U6lFRESKKxWVPHKymHm3Tz183Z3Z9kc8b/64x+hIIiIixZaKyk0o7+fOf+/LutLhJysP88ue0wYnEhERKZ5UVG5S65pl6d80FIBnvt7KyfjLxgYSEREphlRUbsHIDuHUKu/DxZR0hs7eQkam5quIiIjkJxWVW+DqZOG9PvXxdLGw7vAFJv1ywOhIIiIixYqKyi2qXNqT17pl3cnyvV/2s/rAOYMTiYiIFB8qKvmgc93y9GoYgt0OQ7/awrkkq9GRRETkGlq2bElMTEz249DQ0BveysVkMjF37txbfu382k9JoqKST0bfG0n1QC/OJloZ9vVWbLYie8FfERGH1KlTJ9q1a3fV52JjYzGZTGzbti3P+12/fj2PP/74rcbLYfTo0dStW/eK9SdPnizwy99//vnn+Pn5FehrFCYVlXzi7mJh8v/Vx9XJzIp9Z5kae8joSCIixcojjzzC0qVL+eOPP654btq0aTRs2JDatWvneb9lypTBw8MjPyLeUFBQEK6uroXyWsWFiko+qhHkzeh7IwH475K9bDp20eBEIiLFxz333EOZMmX4/PPPc6xPSkrim2++4ZFHHuH8+fP06dOH8uXL4+HhQVRUFLNmzbrufv996Gf//v20aNECNzc3atasydKlS6/4meeff56wsDA8PDyoUqUKo0aNIj09Hcga0RgzZgxbt27FZDJhMpmyM//70M/27du56667cHd3p1SpUjz++OMkJSVlP9+/f3+6dOnCf//7X4KDgylVqhQDBw7Mfq2bcezYMTp37oyXlxc+Pj707NmT06f/vh7Y1q1bufPOO/H29sbHx4cGDRqwYcMGAI4ePUqnTp3w9/fH09OTyMhIFi1adNNZcsOpQPdeAvVuFMKqA+dYsO0kg2duZtGQ5vh6OBsdS0Tk+ux2SDfo/mXOHmAy3XAzJycnHnzwQT7//HNeeOEFTH/+zDfffENmZiZ9+vQhKSmJBg0a8Pzzz+Pj48PChQt54IEHqFq1Ko0bN77ha9hsNrp160bZsmX5/fffiY+PzzGf5S/e3t58/vnnlCtXju3bt/PYY4/h7e3Nc889R69evdixYwc//vgjP//8MwC+vr5X7CM5OZm2bdvSpEkT1q9fz5kzZ3j00UcZNGhQjjL266+/EhwczK+//sqBAwfo1asXdevW5bHHHrvh+7na+/urpCxfvpyMjAwGDhxIr169+O233wDo27cv9erVY8qUKVgsFrZs2YKzc9bn2MCBA0lLS2PFihV4enqya9cuvLy88pwjL1RU8pnJZGJ8tyi2H4/n6PkUnvtuKx/e3yD7PygREYeUngKvlTPmtf9zAlw8c7Xpww8/zFtvvcXy5ctp2bIlkHXYp3v37vj6+uLr68vw4cOztx88eDBLlizh66+/zlVR+fnnn9mzZw9LliyhXLmsP4/XXnvtinklL774Yvb3oaGhDB8+nNmzZ/Pcc8/h7u6Ol5cXTk5OBAUFXfO1Zs6cSWpqKtOnT8fTM+v9T548mU6dOvHGG29QtmxZAPz9/Zk8eTIWi4Xw8HA6duzIsmXLbqqoLFu2jO3bt3P48GFCQkIAmD59OpGRkaxfv55GjRpx7Ngxnn32WcLDwwGoXr169s8fO3aM7t27ExWVdbZrlSpV8pwhr3TopwB4uznzXp96OFtMLNl5mi/WHjU6kohIsRAeHk7Tpk357LPPADhw4ACxsbE88sgjAGRmZjJ27FiioqIICAjAy8uLJUuWcOzYsVztf/fu3YSEhGSXFIAmTZpcsd1XX31FdHQ0QUFBeHl58eKLL+b6Nf75WnXq1MkuKQDR0dHYbDb27t2bvS4yMhKLxZL9ODg4mDNnzuTptf75miEhIdklBaBmzZr4+fmxe/duAIYNG8ajjz5Kq1ateP311zl48GD2tkOGDOHVV18lOjqal19++aYmL+eVRlQKSO0KfoxoH8HYBbt4dcFuGlTyJ7LclUN/IiIOwdkja2TDqNfOg0ceeYTBgwfz/vvvM23aNKpWrcodd9wBwFtvvcW7777LxIkTiYqKwtPTk5iYGNLS0vIt7po1a+jbty9jxoyhbdu2+Pr6Mnv2bN5+++18e41/+uuwy19MJhM2W8FdCX306NH83//9HwsXLmTx4sW8/PLLzJ49m65du/Loo4/Stm1bFi5cyE8//cT48eN5++23GTx4cIHl0YhKAXo4OpRWEYGkZdoYPHMzydYMoyOJiFydyZR1+MWIJY+Hxnv27InZbGbmzJlMnz6dhx9+OPvw+qpVq+jcuTP3338/derUoUqVKuzbty/X+46IiCAuLo6TJ09mr1u7dm2ObVavXk2lSpV44YUXaNiwIdWrV+fo0Zwj5y4uLmRmZt7wtbZu3UpycnL2ulWrVmE2m6lRo0auM+fFX+8vLi4ue92uXbu4dOkSNWvWzF4XFhbG008/zU8//US3bt2YNm1a9nMhISEMGDCA77//nmeeeYaPP/64QLL+RUWlAJlMJt7qUYdgXzcOnUtm1NwdRkcSESnyvLy86NWrFyNHjuTkyZP0798/+7nq1auzdOlSVq9eze7du3niiSdynNFyI61atSIsLIx+/fqxdetWYmNjeeGFF3JsU716dY4dO8bs2bM5ePAgkyZNYs6cOTm2CQ0N5fDhw2zZsoVz585htV55IdC+ffvi5uZGv3792LFjB7/++iuDBw/mgQceyJ6fcrMyMzPZsmVLjmX37t20atWKqKgo+vbty6ZNm1i3bh0PPvggd9xxBw0bNuTy5csMGjSI3377jaNHj7Jq1SrWr19PREQEADExMSxZsoTDhw+zadMmfv311+znCoqKSgHz93Th3d71MJvg+83H+Xbjlef/i4hI3jzyyCNcvHiRtm3b5phP8uKLL1K/fn3atm1Ly5YtCQoKokuXLrner9lsZs6cOVy+fJnGjRvz6KOPMm7cuBzb3HvvvTz99NMMGjSIunXrsnr1akaNGpVjm+7du9OuXTvuvPNOypQpc9VTpD08PFiyZAkXLlygUaNG9OjRg7vvvpvJkyfn7Q/jKpKSkqhXr16OpVOnTphMJubNm4e/vz8tWrSgVatWVKlSha+++goAi8XC+fPnefDBBwkLC6Nnz560b9+eMWPGAFkFaODAgURERNCuXTvCwsL44IMPbjnv9ZjsdnuRvYRqQkICvr6+xMfH4+PjY3Sc65r8y37++9M+3J0t/DA4mmqB3kZHEpESLDU1lcOHD1O5cmXc3NyMjiPF0PX+juXl81sjKoXkyZbViK5WisvpmQyauZnU9OsfuxQREREVlUJjMZt4p1ddSnu5sOdUImMX7DI6koiIiMNTUSlEgd5uTOhZF4AZvx9j4baT1/8BERGREk5FpZC1CCvDky2rAjDiu23EXTDoktUiIiJFgIqKAYa1DqN+RT8SrRkMmrWZtIyCu3CPiMj1FOHzKcTB5dffLRUVAzhbzEzqUw9fd2e2xl3irSV7jI4kIiXMX5dkz88rtor8U0pK1hGDf19ZN690CX2DVPD34M0etXnii418HHuYJlVLcVf4rV3gR0Qkt5ycnPDw8ODs2bM4OztjNuvfrZI/7HY7KSkpnDlzBj8/vxz3KboZuo6KwUbP38nnq4/g7+HM4qEtCPLV9QxEpHCkpaVx+PDhAr1vjJRcfn5+BAUFZd/e4J/y8vmtERWDjewQzvojF9h5IoGhszcz87HbsZjzdt8LEZGb4eLiQvXq1XX4R/Kds7PzLY+k/EVFxWCuThYm/1997pkUy++HLzBp2X6ebh1mdCwRKSHMZrOuTCsOTQclHUDl0p6M6xoFwKRf9rP64DmDE4mIiDgGFRUH0aVeeXo2rIDdDjGzt3Au6co7bYqIiJQ0KipXk2GF5W/CpbhCfdnR90ZSLdCLM4lWnvl6KzZbkZ3nLCIiki9UVK5m9w/w6zh4tzbM7A37fgJbwd9E0MPFiff/rz6uTmaW7zvLx7GHCvw1RUREHJmKytV4BUJoc7DbYN9imHkfTKoLsW9D0pkCfekaQd683CkSgLeW7GXTsYsF+noiIiKOTNdRuZ6z+2DjNNgyA1Ljs9aZnSGiEzR6BCpFw1XOD79VdrudQbM2s3DbSSr4u7NwSHN83W/tyn4iIiKOIi+f3yoquZF+GXbOgfWfwvENf68vHQYNH4Y6vcHdP19fMiE1nXsmreTYhRTa1wrig771r3rRHBERkaJGRaUgndwKGz6Dbd9AenLWOid3qNU9q7SUr59voyxb4y7R48PVpGfaGds5kgeahObLfkVERIykolIYUhNg21dZpeXMrr/XB9fJKixR94GL5y2/zCexh3h14W5cnMzMeaopkeV8b3mfIiIiRsrL57ehk2lDQ0MxmUxXLAMHDjQyVu64+UDjx+DJ1fDwT1C7F1hcs0ZcfhgKb4fDwuFweteN93UdjzSrzN3hgaRl2Bg8czPJ1ox8egMiIiKOz9ARlbNnz5KZ+fdpvzt27KB169b8+uuvtGzZ8oY/73A3JUw+D1tnZo2yXPjHqcUVm2SNstTsDE6ued7theQ0Orwby6mEVLrVL8+EnnXzL7OIiEghK7KHfmJiYliwYAH79+/P1cRRhysqf7HZ4PBy2PAp7FkE9j/LmEcpqNsXGj4EAVXytMt1hy/Qe+oabHZ4+746dG9QoQCCi4iIFLwic+jnn9LS0vjyyy95+OGHr1lSrFYrCQkJORaHZDZD1Tuh15fw9E5o+R/wKQ8p52H1JJhUD77omnVhuczcHcppXDmAmFZZNyscNW8HB84kFeQ7EBERcQgOU1Tmzp3LpUuX6N+//zW3GT9+PL6+vtlLSEhI4QW8WT7B0PJ5GLoNes+Caq0AExz8Bb66HybWgl/HQ/zxG+5q4J3VaFq1FClpmQyauYnU9IK/Wq6IiIiRHObQT9u2bXFxceGHH3645jZWqxWr9e+b9SUkJBASEuJ4h35u5MJh2PQ/2PQFpPx5p2STBWq0zzosVOWurFGZqziTkEr7d2M5n5zG/bdX5NUuUYUYXERE5NYVuTkqR48epUqVKnz//fd07tw51z/nsHNUcivDmnX4Z8M0OLry7/X+odDgIah3P3iWvuLHlu87S7/P1gEwpW992kcFF1JgERGRW1fk5qhMmzaNwMBAOnbsaHSUwuXkClE94KGF8NTv0PgJcPWFi0fg55dhQgR89ygcXQ3/6JN3hJVhwB1VAXjuu23EXUgx6A2IiIgULMOLis1mY9q0afTr1w8nJyej4xgnMBw6vAnP7IZ7J0O5epCZBtu/gWnt4YMm8PvU7HsOPdMmjPoV/UhMzWDwrM2kZ9oMfgMiIiL5z/BDPz/99BNt27Zl7969hIWF5elni/yhnxs5vinrpojbv4X0P0dNnD2yRmEaPswf7jXo8G4sCakZPNGiCiM7RBibV0REJBeK3ByVm1Xsi8pfLl+CbV9nXZfl7J6/15erz45y3emxshypuDLtoUbcWSPQsJgiIiK5oaJSXNntcGxN1pVvd83LOjQEXLZ4MdsazQKXdrw/9P8I8nUzOKiIiMi1qaiUBMnnYPOXWYeGLh7JXr3LJYrwe2Iw1+x0U5frFxERKWgqKiWJzQaHfiF51ce4HVqCxfTnr9OjNNR/ABr0zzrdWURExEGoqJRQi1dvYO+i9+lt+ZUg08U/15qgdBj4VfzXUinrq2dpyMV9lURERPJLXj6/S/D5wMVP+6YN+eV4DNEbu9LdazuvVliHy5Hf4NzerOVqnNyvUmJUZERExDFoRKWYSUnL4N7JqzhwJomWNcrwWdfymM/vg0vHrlwSTwI3+PWryIiISD7ToZ8Sbs+pBDpPXoU1w8Z/OoTzeIuqV98wwwrxf1y9xKjIiIhIAVFREWb8fpQX5uzAyWzimwFNqFfRP+87UZEREZECoKIi2O12Bs3czMLtJ/F2dWJM50i61iuPKT9LQUYaJFynyCScIHdFJuQ6RaaMioyISDGjoiIAJKSm8/C09Ww4mnUGUMeoYF7tUgt/T5fCCZDfRcY9ACwuYHHO+urk8ufjv9a5/ut517+/v+Hz/1rMht8GS0Sk2FJRkWwZmTY+XH6QiT/vJ8NmJ9Dblf/eV4cWYWWMjpY/RaagmCzXLzIW55t/3tUbvIPAq2zWV88yYLYY8z5FRAygoiJX2PbHJWK+2sKhs8kA9G8ayoj24bg5O/AH5L+LTGpC1m0DMtP//Gr9x/dpWdvf7PO2DOPep8mcVVb+Ki5egeAVlLPM/PVVVxsWkWJARUWu6nJaJq8v3s3/1hwFoGoZT97tXY9a5X0NTuYAbLa/C80Ni85f2+Tm+X/sL+PPfabGQ+IpSDoNyWfBbst9Tje/qxeY7K9B4F02a9RGRMRBqajIdS3fd5Znv9nKmUQrTmYTT7cOY8AdVbGYNWm10Nkys8rKX8Xlql/PQNKp7JtQ5oqzZ9bIzI1KjUeAJiuLSKFTUZEbupicxgtzt7No+ykAGlTy552edalYysPgZHJVdjtcvnidMvOPr2lJud+v2fnP4lL279GYK76WBc9AsOhC1iKSP1RUJFfsdjvfbzrOy/N3kmTNwNPFwsudIrmvYYX8PY1ZCpc16R/F5RQknr7K19Nw+UIedmrKuubNP0uMTzD4VvhzCcn66uJZYG9LRIoPFRXJk7gLKTzz9VbWHcn64GpTsyzju0VRyksTN4u1DOufh5VuUGqSz+R+Ho17QM7i8u8i41VWp36LiIqK5F2mzc7HsYd4+6e9pGfaKe3lyps9orgrvKzR0cRotkxIPndlgUk8kXXl4vg/4FIcpCXeeF9mZ/Apl7PI+IX8XWZ8yoOrV8G/JxExlIqK3LSdJ+J5+qst7DudNc+h720VeaFjBB4ump8gN5Aa/3dxiY/7x/d/LgknwJ554/24++diVMaBT6sXkRtSUZFbkpqeyVtL9vLpysMAVC7tyTu96lI3xM/YYFK0ZWZk3R/qemXGGn/j/VxtVObfxUajMiIOTUVF8sWqA+cY/s1WTsanYjGbGHxXNQbdWQ0ni+YYSAFJjYf449coMnG5H5Vx87v24SWNyogYTkVF8k18Sjqj5u1g/tYTANQJ8WNir7pULq2zO8QAmRlZc2SuOSoTl1V2bsTs9PeojFdg1j2lnN3AyS3r6r/ZX93/9djtKttdZVudyi1yXSoqku/mbTnOi3N3kJiagbuzhRfvieD/GlfUaczieFITIOEqozKX/vw+4XjuRmVuhclyjVKT2/Jzje2uu61LVgH7azGZdTE/cVgqKlIgTly6zPBvtrL64HkA7g4P5PXutSnjrdOYpQixZWadjv1XkUk+BxmpWadrZ3+9/K/HqZCeev3t8nLl4MJidsoqTdkFxpKzzGQ//vfXa2xvMv/r+av9zL+3+ffzV9vPP7axOGddj8fFK+tWEK7eWd87u6t4FSMqKlJgbDY7n606zJtL9pKWYSPA04XXu0XRJjLI6GgixrLZsu7llH6VkpNxlZJz3e3ysu2fj4s7kxlcvLMmSmeXmH98n2PdP5/zAlefv7//a7uSMkfJbs8q0emX/1xS/izel/9eMi5f/3G5elD/gXyNpaIiBW7vqURivtrC7pMJAPRqGMKoTjXxctWxeZFC99eHkS0z607gtox/ff/nY/tV1l3xODfbZPxrX9f6mX9/vd5+/vyaYYW05KxbQViT/rwlRAF8TDl7XFlebrYAObnmfbQnMz2rNKSn/qM8/PX4n2UhN9vcoITk5canV1OrO/T47Nb28S8qKlIorBmZTFi6j6krDmG3Q8UAD97pVYcGlQKMjiYixYXNBunJf5cWa+LfJcaamHWhweznkv58fJ11tvT8z2h2uvqhqr/KyNUKhi0j/3PciMmcVdCc3f+cQP7nJPJrrXP682vZSKh5b75GUVGRQrX20Hme+Xorxy9dxmyCp1pWY2ir6jjrNGYRcTQZ1n+Ul38WnxsVoCSwJuRcl56cP5luVBSc3f9estddb5trlBCLs8PM81FRkUKXkJrO6Pk7+X7TcQCiyvvyTq86VAv0NjiZiEgBsWVmHab6Z8nJLjjJWWdiXVFC/lU4buawUTGgoiKGWbT9JP+Zs51LKem4Opn5T4cIHmxSSacxi4hItrx8fmtsXvJVh6hglsS0oEVYGawZNl6ev5MHP1vH6YQScFaCiIjkOxUVyXdlfdz430ONGHNvJK5OZmL3n6PtxBUs2n7S6GgiIlLEqKhIgTCZTPRrGsrCIc2JKu/LpZR0npqxiWFfbyEhtQBm3YuISLGkoiIFqlqgF9892ZRBd1bDbILvNx2n/cRYfj903uhoIiJSBKioSIFzcTIzvG0NvhnQhIoBHhy/dJneH69l/OLdWDMK+J4rIiJSpKmoSKFpUCmARUOb06thCHY7fLT8EF3eX83eU4lGRxMREQeloiKFysvViTd61OajBxoQ4OnC7pMJdJq8kk9iD2GzFdkz5UVEpICoqIgh2kYGsSSmBXeFB5KWYePVhbu5/9PfOXHpstHRRETEgaioiGHKeLvyab+GjOtaC3dnC6sPnqfdxBXM23Lc6GgiIuIgVFTEUCaTib63VWLhkGbUCfEjITWDobO3MGTWZuJTdBqziEhJp6IiDqFKGS++G9CEmFbVsZhNzN96gnbvrmDVgXNGRxMREQOpqIjDcLKYiWkVxrcDmlC5tCcn41Pp+8nvjF2wi9R0ncYsIlISGV5Ujh8/zv3330+pUqVwd3cnKiqKDRs2GB1LDFSvoj8LhzSj720VAfh05WHunbySHcfjDU4mIiKFzdCicvHiRaKjo3F2dmbx4sXs2rWLt99+G39/fyNjiQPwcHFiXNcoPuvfkNJeruw7ncS9k1fynznbOZdkNTqeiIgUEpPdbjfs4hUjRoxg1apVxMbG3tTP5+U20VJ0nU+y8vL8nSzYlnVTQ29XJwbdVY3+0aG4OlkMTiciInmVl89vQ0dU5s+fT8OGDbnvvvsIDAykXr16fPzxx9fc3mq1kpCQkGOR4q+UlyuT/68+Xz/RhKjyviRaMxi/eA+tJ6zgxx2nMLBri4hIATO0qBw6dIgpU6ZQvXp1lixZwpNPPsmQIUP43//+d9Xtx48fj6+vb/YSEhJSyInFSI0rBzBvYDT/va8Ogd6uHLuQwoAvN9J76lrNXxERKaYMPfTj4uJCw4YNWb16dfa6IUOGsH79etasWXPF9larFav17/kJCQkJhISE6NBPCZRszeCj5Qf5aMUhrBk2TCbo2SCEZ9qGEejtZnQ8ERG5jiJz6Cc4OJiaNWvmWBcREcGxY8euur2rqys+Pj45FimZPF2dGNamBr8Mb8m9dcpht8NXG+K4863feP/XAzqdWUSkmDC0qERHR7N3794c6/bt20elSpUMSiRFTXk/dyb1qcd3TzalTogfyWmZvLVkL60mLGfhtpOavyIiUsQZWlSefvpp1q5dy2uvvcaBAweYOXMmU6dOZeDAgUbGkiKoQSV/5jzZlIm96hLk48YfFy8zcOYmen60hu1/aP6KiEhRZegcFYAFCxYwcuRI9u/fT+XKlRk2bBiPPfZYrn5WpyfL1aSkZTB1xSE+XH6Q1HQbAN3rV+C5djUo66P5KyIiRsvL57fhReVWqKjI9ZyMv8xbP+7l+81Zd2P2cLHw5B1VeaxFFdycdf0VERGjqKiI/MOWuEu88sNONh27BEA5Xzeebx/OvXXKYTKZjA0nIlICqaiI/IvdbueHbSd5Y/Eejl+6DED9in6Muqcm9Srqlg0iIoVJRUXkGlLTM/kk9hAf/HaQlLSsU5i71ivPc+1qEOzrbnA6EZGSQUVF5AZOJ6Ty1pK9fLvxDwDcnM080aIqT9xRBQ8XJ4PTiYgUbyoqIrm0/Y94xi7YxbojFwAI8nHj+fY16FynPGaz5q+IiBQEFRWRPLDb7SzecYrXFu3mj4tZ81fqVPDlpU41aVApwOB0IiLFj4qKyE1ITc/ks1WHef+XAyT/OX+lU51yPN+uBhX8PQxOJyJSfKioiNyCM4mpTPhpH19tiMNuB1cnM481r8KTLavi6ar5KyIit0pFRSQf7DyRNX9l7aGs+SuB3q4827YG3etX0PwVEZFboKIikk/sdjs/7TrNa4t2c/R8CgC1yvvw0j2RNK6s+SsiIjdDRUUkn1kzMvnf6iO8t+wAidYMADpEBTGyfQQhAZq/IiKSFyoqIgXkXJKVCUv3MXvdMWx2cLGYebhZZQbeWRVvN2ej44mIFAkqKiIFbM+pBMYu2MWqA+cBKO3lwvA2NbivYQgWzV8REbkuFRWRQmC321m2+wzjFu3m8LlkACKCfRh1TwRNq5Y2OJ2IiONSUREpRGkZNr5Ye5R3f95HQmrW/JU2Ncvynw4RhJb2NDidiIjjUVERMcCF5DQm/ryPGb8fI9Nmx9li4qHoygy6qxo+mr8iIpJNRUXEQPtOJzJ2wS5i958DoJSnC0+3DqN3oxCcLGaD04mIGE9FRcRgdrud3/ae5dWFuzh4Nmv+So2y3oy6pybNqmv+ioiUbCoqIg4iPdPGjLVHeefn/cRfTgegdc2yjOtSi0AfN4PTiYgYIy+f3xqHFilAzhYz/aMrs/zZljwUHYqT2cTSXadpM3EFP2w9YXQ8ERGHp6IiUgj8PFx4uVMkC4c0J7KcD5dS0hk8azMDZ27iQnKa0fFERByWiopIIaoR5M3cgdEMvbs6FrOJhdtO0uadFfy867TR0UREHJKKikghc7aYebp1GHOeakq1QC/OJVl5dPoGhn+zlYTUdKPjiYg4FBUVEYPUruDHgsHNeLxFFUwm+HbjH7R7ZwWrDpwzOpqIiMNQURExkJuzhf90iODrJ5pQMcCDE/Gp9P3kd16at4OUtAyj44mIGE5FRcQBNAoNYPHQ5jxweyUApq85Sod3Y9l49ILByUREjKWiIuIgPF2dGNulFtMfbkywrxtHzqdw34drGL94N6npmUbHExExhIqKiINpEVaGH2Na0L1+BWx2+Gj5Ie6dvJIdx+ONjiYiUuhUVEQckK+7M2/3rMNHDzSgtJcL+04n0eX9Vbz7837SM21GxxMRKTQqKiIOrG1kEEtiWtC+VhAZNjvv/LyPbh+sZv/pRKOjiYgUChUVEQdXysuVD/rW593edfF1d2b78Xg6vreSqSsOkmkrsrfqEhHJFRUVkSLAZDLRuW55fnq6BS1rlCEtw8Zri/bQe+oajp5PNjqeiEiBUVERKULK+rgxrX8jXu8WhaeLhfVHLtJuYixfrD1KEb4RuojINamoiBQxJpOJ3o0r8mNMC26vEsDl9ExGzd3Bg5+t48Sly0bHExHJVyoqIkVUSIAHMx+9nZfuqYmrk5nY/edoO3EF3238Q6MrIlJsqKiIFGFms4mHm1Vm0dDm1A3xIzE1g2e+2coTX2zkbKLV6HgiIrdMRUWkGKhaxotvBzTh2bY1cLaY+GnXadpOXMHi7SeNjiYicktUVESKCSeLmYF3VmP+oGZEBPtwITmNJ2dsYujszcSnpBsdT0TkpqioiBQzEcE+zBsYzaA7q2E2wbwtJ2gzcTm/7j1jdDQRkTxTUREphlyczAxvW4PvnmxKlTKenE6w8tC09Yz4bhtJ1gyj44mI5JqKikgxVq+iP4uGNOfh6MoAzF4fR7uJK1hz8LzByUREckdFRaSYc3O28FKnmsx67HYq+Lvzx8XL9Pl4LWN+2ElqeqbR8URErsvQojJ69GhMJlOOJTw83MhIIsVWk6ql+DGmBX0aVwRg2qojdJgUy+ZjFw1OJiJybYaPqERGRnLy5MnsZeXKlUZHEim2vFydGN8tis8fakRZH1cOnU2m+5TVvLVkD2kZNqPjiYhcwfCi4uTkRFBQUPZSunTpa25rtVpJSEjIsYhI3rWsEchPMXfQpW45bHZ4/9eD3Dt5JbtO6L8pEXEsN1VU4uLi+OOPP7Ifr1u3jpiYGKZOnZrnfe3fv59y5cpRpUoV+vbty7Fjx6657fjx4/H19c1eQkJCbia+iAC+Hs5M7F2PKX3rE+Dpwp5TiXR+fyXv/3qAjEyNroiIYzDZb+KmIM2bN+fxxx/ngQce4NSpU9SoUYPIyEj279/P4MGDeemll3K1n8WLF5OUlESNGjU4efIkY8aM4fjx4+zYsQNvb+8rtrdarVitf18WPCEhgZCQEOLj4/Hx8cnr2xCRP51LsvKf77fz067TANQJ8ePt++pQLdDL4GQiUhwlJCTg6+ubq8/vmyoq/v7+rF27lho1ajBp0iS++uorVq1axU8//cSAAQM4dOjQTQW/dOkSlSpVYsKECTzyyCM33D4vb1RErs9utzNn83Fenr+TxNQMXJ3MPNcunIeahmI2m4yOJyLFSF4+v2/q0E96ejqurq4A/Pzzz9x7770AhIeHc/Lkzd9bxM/Pj7CwMA4cOHDT+xCRm2MymehWvwI/Pd2C5tVLY82wMXbBLvp8vJa4CylGxxOREuqmikpkZCQffvghsbGxLF26lHbt2gFw4sQJSpUqddNhkpKSOHjwIMHBwTe9DxG5NcG+7kx/uDHjutbCw8XC74cv0G7iCmatO8ZNDMCKiNySmyoqb7zxBh999BEtW7akT58+1KlTB4D58+fTuHHjXO9n+PDhLF++nCNHjrB69Wq6du2KxWKhT58+NxNLRPKJyWSi722V+HFoCxqHBpCclsnI77fz0OfrOZ2QanQ8ESlBbmqOCkBmZiYJCQn4+/tnrzty5AgeHh4EBgbmah+9e/dmxYoVnD9/njJlytCsWTPGjRtH1apVc/XzmqMiUvAybXamrTrMm0v2kpZhw9fdmVc6R3JvnXKYTJq7IiJ5V+CTaS9fvozdbsfDwwOAo0ePMmfOHCIiImjbtu3Npb4JKioihefAmUSGfb2VbX/EA9AhKohXu0QR4OlicDIRKWoKfDJt586dmT59OpB1ps5tt93G22+/TZcuXZgyZcrN7FJEHFy1QG++e7Ipw1qH4WQ2sWj7KdpOXMFve88YHU1EirGbKiqbNm2iefPmAHz77beULVuWo0ePMn36dCZNmpSvAUXEcThbzAy5uzpzB0ZTLdCLs4lW+k9bz6i5O7icphscikj+u6mikpKSkn1Btp9++olu3bphNpu5/fbbOXr0aL4GFBHHU6u8LwsGN+Oh6FAAvlh7lI6TYtkad8nQXCJS/NxUUalWrRpz584lLi6OJUuW0KZNGwDOnDmjuSIiJYSbs4WXO0Xy5SO3EeTjxqFzyXSbspp3f96vS/CLSL65qaLy0ksvMXz4cEJDQ2ncuDFNmjQBskZX6tWrl68BRcSxNatemh9jmnNP7WAybXbe+XkfPT5cw+FzyUZHE5Fi4KZPTz516hQnT56kTp06mM1ZfWfdunX4+PgQHh6eryGvRWf9iDiWeVuO8+LcHSSmZuDubOHFeyL4v8YVdRqziORQ4Kcn/9Nfd1GuUKHCrezmpqioiDieE5cu88zXW1lz6DwAd4cH8nr32pTxdjU4mYg4igI/Pdlms/HKK6/g6+tLpUqVqFSpEn5+fowdOxabTcemRUqycn7uzHj0Nl7sGIGLk5lle87QduIKftp5yuhoIlIEOd3MD73wwgt8+umnvP7660RHRwOwcuVKRo8eTWpqKuPGjcvXkCJStJjNJh5tXoXm1csQ89UWdp9M4PEvNtKrYQijOtXEy/Wm/tcjIiXQTR36KVeuHB9++GH2XZP/Mm/ePJ566imOHz+ebwGvR4d+RByfNSOTCUv3MXXFIex2CAlw552edWkYGmB0NBExSIEf+rlw4cJVJ8yGh4dz4cKFm9mliBRTrk4WRraPYPZjt1Pez524C5fp+dEa3lqyh7QMHSoWkeu7qaJSp04dJk+efMX6yZMnU7t27VsOJSLFz21VSvFjTHO616+AzQ7v/3qQblNWceBMotHRRMSB3dShn+XLl9OxY0cqVqyYfQ2VNWvWEBcXx6JFi7Ivr1/QdOhHpGhavP0k/5mznYsp6bg6mRnRPpx+TUIxm3Uas0hJUOCHfu644w727dtH165duXTpEpcuXaJbt27s3LmTL7744qZCi0jJ0T4qmCUxLbgjrAzWDBtjfthFv2nrOBWfanQ0EXEwt3wdlX/aunUr9evXJzOzcG5OphEVkaLNbrfz5dqjjFu0m9R0G77uzrzapRad6pQzOpqIFKACH1EREckPJpOJB5qEsnBIc2pX8CX+cjqDZ20mZvZm4i+nGx1PRByAioqIGK5qGS++e7IpQ+6ujsVsYu6WE7SfuILVB88ZHU1EDKaiIiIOwdliZljrML4Z0ITQUh6ciE/l/z7+nVcX7CI1vXAOJ4uI48nTHJVu3bpd9/lLly6xfPlyzVERkVuSbM3g1YW7mbXuGAA1ynrzTq+61Cyn/85FioO8fH7n6TrWvr6+N3z+wQcfzMsuRUSu4OnqxPhuUbSKCOT577ax93QiXd5fxTNtwni0eRUsOo1ZpMTI17N+CptGVESKv/NJVkZ8v52lu04D0LhyABN61qGCv4fByUTkZumsHxEpNkp5uTL1gQa82b02ni4W1h2+QPuJsXy38Q+K8L+zRCSXVFRExOGZTCZ6Ngph8dAWNKjkT6I1g2e+2cpTMzZxMTnN6HgiUoBUVESkyKhYyoOvn2jCs21r4GQ2sXjHKdpOXMFve88YHU1ECoiKiogUKRaziYF3VmPuwGiqBXpxJtFK/2nreWneDi6n6TRmkeJGRUVEiqRa5X1ZMLgZ/ZuGAjB9zVE6vhfLtj8uGZpLRPKXioqIFFluzhZG3xvJF480pqyPK4fOJtPtg9VMWrafjEyb0fFEJB+oqIhIkde8ehmWxLSgY+1gMmx2Jizdx30freHIuWSjo4nILVJREZFiwc/Dhcl96jGxV1283ZzYfOwSHSbFMmvdMZ3GLFKEqaiISLFhMpnoUq88P8a0oEmVUqSkZTLy++08+r8NnE20Gh1PRG6CioqIFDvl/dyZ8ehtvNgxAheLmWV7ztBu4orsq9uKSNGhoiIixZLZbOLR5lWYPzia8CBvzien8dj0DTz/7TaSrBlGxxORXFJREZFiLTzIh3mDonmiRRVMJvhqQxwd3o1l49ELRkcTkVxQURGRYs/VycLIDhHMeux2yvu5c+xCCvd9uIb/LtlLWoZOYxZxZCoqIlJi3F6lFItjmtOtfnlsdpj86wG6TVnFwbNJRkcTkWtQURGREsXHzZkJPevyQd/6+Hk4s+N4AvdMWslsncYs4pBUVESkROoQFcySmBZEVyvF5fRMRny/nSe/3MSlFN2NWcSRqKiISIlV1seNLx6+jZHtw3G2mPhx5ynaTYxlzcHzRkcTkT+pqIhIiWY2m3jijqp8/2Q0VUp7ciohlf/7ZC1v/riHdN0vSMRwKioiIkBUBV8WDGlG70Yh2O3wwW8H6TFlte4XJGIwFRURkT95uDjxevfaTOlbH193Z7b+EU/HSbF8syFOE21FDKKiIiLyL+2jglk8tDm3VwkgOS2TZ7/dxqBZm4m/nG50NJESx2GKyuuvv47JZCImJsboKCIilPNzZ8ajt/Ns2xo4mU0s3HaSDu/Gsu6wrmgrUpgcoqisX7+ejz76iNq1axsdRUQkm8VsYuCd1fj2yaZUKuXB8UuX6T11DRN+2kuGJtqKFArDi0pSUhJ9+/bl448/xt/f/7rbWq1WEhISciwiIgWtbogfC4c0p3v9CtjsMOmXA/T8aA1xF1KMjiZS7BleVAYOHEjHjh1p1arVDbcdP348vr6+2UtISEghJBQRAS9XJ97uWYf3+tTD282JTccu0f7dWOZuPm50NJFizdCiMnv2bDZt2sT48eNztf3IkSOJj4/PXuLi4go4oYhITp3qlGPx0OY0CvUnyZpBzFdbePqrLSSmaqKtSEEwrKjExcUxdOhQZsyYgZubW65+xtXVFR8fnxyLiEhhq+DvwazHbmdY6zAsZhNzNh+nw6RYNh69aHQ0kWLHZDfo4gBz586la9euWCyW7HWZmZmYTCbMZjNWqzXHc1eTkJCAr68v8fHxKi0iYoiNRy8ydPZm/rh4GYvZxNC7qzPwzmpYzCajo4k4rLx8fhtWVBITEzl69GiOdQ899BDh4eE8//zz1KpV64b7UFEREUeQkJrOS3N3MHfLCQAahfrzTq+6VPD3MDiZiGPKy+e3UyFluoK3t/cVZcTT05NSpUrlqqSIiDgKHzdnJvauxx01yjBq7k7WH7lI+3djea1rFJ3qlDM6nkiRZvhZPyIixUXXehVYNKQ59Sr6kZiaweBZmxn+zVaSrBlGRxMpsgw79JMfdOhHRBxRRqaNScv2M/nXA9jsUKmUB+/2rkfdED+jo4k4hLx8fmtERUQknzlZzAxrU4PZjzehvJ87R8+n0GPKaj747QCZtiL7b0MRQ6ioiIgUkMaVA1g0tDkdaweTYbPz5o976fvJWk7GXzY6mkiRoaIiIlKAfN2dmdynHm/1qI2Hi4W1hy7QbmIsi7efNDqaSJGgoiIiUsBMJhP3NQxh4ZDm1K7gS/zldJ6csYkR320jJU0TbUWuR0VFRKSQVC7tyXdPNuWpllUxmWD2+jjumbSSHcfjjY4m4rBUVERECpGzxcxz7cKZ+ejtBPm4cehcMl0/WMXUFQexaaKtyBVUVEREDNCkail+jGlOu8gg0jPtvLZoDw9+to7TCalGRxNxKCoqIiIG8fNwYcr99Xm9WxTuzhZWHjhHu4krWLrrtNHRRByGioqIiIFMJhO9G1dkwZBmRJbz4WJKOo9N38CLc7dzOS3T6HgihlNRERFxAFXLePH9U015vEUVAL5ce4xOk1ey60SCwclEjKWiIiLiIFydLPynQwRfPNKYQG9XDpxJosv7q/h05WFNtJUSS0VFRMTBNK9ehh9jWtAqoixpmTbGLtjFQ5+v52yi1ehoIoVORUVExAEFeLrw8YMNeLVLLVydzCzfd5Z2E1fw654zRkcTKVQqKiIiDspkMnH/7ZVYMLgZ4UHenE9O46HP1zN6/k5S0zXRVkoGFRUREQdXvaw3cwdG83B0ZQA+X32ELu+vYu+pRIOTiRQ8FRURkSLAzdnCS51q8vlDjSjt5cKeU4ncO3kl09ccwW7XRFspvlRURESKkJY1Alk8tAV31iiDNcPGS/N28uj/NnA+SRNtpXhSURERKWLKeLvyWf9GjO5UExcnM8v2nKHdu7GsOnDO6Ggi+U5FRUSkCDKZTPSPrsz8QdGElfXibKKV+z/9nQk/7SUj02Z0PJF8o6IiIlKEhQf5MH9QM/o0rojdDpN+OcD/ffI7p+J1c0MpHlRURESKODdnC+O7RTGpTz08XSysO3yBDpNi+W2vrrkiRZ+KiohIMXFvnXIsGNKcyHI+XEhOo/+09by+eA/pOhQkRZiKiohIMVK5tCffPdmUfk0qAfDh8oP0nrqW45cuG5xM5OaoqIiIFDNuzhbGdK7FlL718XZzYuPRi3R4N5alu04bHU0kz1RURESKqfZRwSwa0pw6FXyJv5zOY9M38MoPu0jL0KEgKTpUVEREirGQAA++GdCUR5tlXX7/s1WH6fHhao6dTzE4mUjuqKiIiBRzLk5mXrynJp882BBfd2e2/RFPx0mxLNp+0uhoIjekoiIiUkK0qlmWRUOb06CSP4nWDJ6asYlRc3foTszi0FRURERKkPJ+7sx+/HaealkVgC/WHqXbB6s5fC7Z4GQiV6eiIiJSwjhbzDzXLpz/PdyYUp4u7DqZwD2TYpm35bjR0USuoKIiIlJC3RFWhkVDm3N7lQCS0zIZOnsLI77bxuU0HQoSx6GiIiJSgpX1cWPGo7cz5O7qmEwwe30cXd5fxf7TiUZHEwFUVERESjyL2cSw1mHMeOQ2yni7svd0IvdOXsU3G+KMjiaioiIiIlmaVivNoiHNaVatNJfTM3n2220M+3oLydYMo6NJCaaiIiIi2cp4uzL94cYMbxOG2QTfbzrOvZNXsvtkgtHRpIRSURERkRzMZhOD7qrO7MebEOTjxsGzyXR5fxUzfz+G3W43Op6UMCoqIiJyVY0rB7BoaHNa1iiDNcPGf+ZsZ8jsLSSmphsdTUoQFRUREbmmAE8XPuvXiJHtw3Eym/hh6wk6vbeSHcfjjY4mJYSKioiIXJfZbOKJO6ry1RNNKO/nzpHzKXT7YDX/W31Eh4KkwKmoiIhIrjSo5M/CIc1oXbMsaZk2Xp6/kwFfbiQ+RYeCpOCoqIiISK75ebgw9YEGvNypJs4WE0t2nqbje7FsPnbR6GhSTBlaVKZMmULt2rXx8fHBx8eHJk2asHjxYiMjiYjIDZhMJh6Krsx3TzalYoAHf1y8zH0fruHjFYd0KEjynaFFpUKFCrz++uts3LiRDRs2cNddd9G5c2d27txpZCwREcmF2hX8WDCkGR2jgsmw2Rm3aDeP/m8DF5PTjI4mxYjJ7mD1NyAggLfeeotHHnnkhtsmJCTg6+tLfHw8Pj4+hZBORET+zW63M+P3Y7yyYBdpGTaCfd14r089GoYGGB1NHFRePr8dZo5KZmYms2fPJjk5mSZNmlx1G6vVSkJCQo5FRESMZTKZuP/2Ssx9KpoqpT05GZ9Kr6lref/XA9hsDvVvYSmCDC8q27dvx8vLC1dXVwYMGMCcOXOoWbPmVbcdP348vr6+2UtISEghpxURkWupWc6H+YOb0aVuOTJtdt5aspd+09ZxLslqdDQpwgw/9JOWlsaxY8eIj4/n22+/5ZNPPmH58uVXLStWqxWr9e+/8AkJCYSEhOjQj4iIA7Hb7Xyz4Q9emr+D1HQbgd6uvNu7Hk2qljI6mjiIvBz6Mbyo/FurVq2oWrUqH3300Q231RwVERHHte90IgNnbGL/mSTMJhhyd3UG31Udi9lkdDQxWJGco/IXm82WY9RERESKprCy3swbFM19DSpgs8PEn/dz/ye/cyYh1ehoUoQYWlRGjhzJihUrOHLkCNu3b2fkyJH89ttv9O3b18hYIiKSTzxcnHjrvjpM6FkHDxcLaw6dp/27sazYd9boaFJEGFpUzpw5w4MPPkiNGjW4++67Wb9+PUuWLKF169ZGxhIRkXzWrX4F5g9qRniQN+eT0+g3bR1vLdlDRqbN6Gji4BxujkpeaI6KiEjRkpqeySsLdjHz92MANAr1Z1KfegT7uhucTApTkZ6jIiIixZebs4XXukbxXp96eLk6sf7IRTq8G8sve04bHU0clIqKiIgUuk51yrFgcDOiyvtyMSWdhz/fwGuLdpOWoUNBkpOKioiIGCK0tCffPtmE/k1DAZi64hA9P1rD0fPJxgYTh6KiIiIihnF1sjD63kg+eqABPm5ObIm7RLuJsXy+6rAuvy+AioqIiDiAtpFBLBranCZVSnE5PZPRP+yiz8drOXY+xehoYjAVFRERcQgV/D2Y8ehtvNI5EndnC78fvkC7d1fwxZojGl0pwVRURETEYZjNJh5sEsqPMc1pXDmAlLRMRs3byf2f/k7cBY2ulEQqKiIi4nAqlfJk9mO383Knmrg5m1l98DztJq5gxu9HKcKX/5KboKIiIiIOyWw28VB0ZX4c2oJGof4kp2XywpwdPPDpOv64qNGVkkJFRUREHFpoaU9mP96EUffUxNXJzMoD52g3MZZZ645pdKUEUFERERGHZzGbeKRZZRYPbU6DSv4kWTMY+f12+k1bz4lLl42OJwVIRUVERIqMKmW8+PqJJrzQIQIXJzMr9p2l7Tsr+Hp9nEZXiikVFRERKVIsZhOPtajCoiHNqVfRj0RrBs99t42HPl/PqfhUo+NJPlNRERGRIqlaoBffDmjKyPbhuDiZ+W3vWVq/s5xvN/6h0ZViREVFRESKLIvZxBN3VGXRkGbUCfEjMTWD4d9s5ZH/beB0gkZXigMVFRERKfKqBXrz3YAmPNeuBi4WM7/sOUPrCcv5fpNGV4o6FRURESkWnCxmnmpZjQVDmhFV3peE1AyGfb2Vx6Zv5EyiRleKKhUVEREpVsLKejPnqaY827YGzhYTP+8+TZt3VjBvy3GNrhRBKioiIlLsOFnMDLyzGj8Mbkat8j5cSkln6OwtDPhyI2cTrUbHkzxQURERkWIrPMiHOU9FM6x1GE5mE0t2nqbNO8v5YesJja4UESoqIiJSrDlbzAy5uzrzBzWjZrAPF1PSGTxrM0/N2MS5JI2uODoVFRERKRFqlvNh7sBoht5dHSezicU7TtHmnRUs3HbS6GhyHSoqIiJSYrg4mXm6dRhzB0YTHuTNheQ0Bs7cxMCZm7iQnGZ0PLkKFRURESlxapX3Zf6gZgy5qxoWs4mF207S5p3l/LhDoyuORkVFRERKJBcnM8Pa1GDuU9GElfXiXFIaA77cxJBZm7mo0RWHoaIiIiIlWlQFX34Y3IyBd1bFbIL5W0/Q+p0V/LTzlNHRBBUVERERXJ0sPNs2nDlPRVM90ItzSVYe/2IjMbM3cylFoytGUlERERH5U50QP34Y3IwBd2SNrszdkjW68vOu00ZHK7FUVERERP7BzdnCiPbhfPdkU6qW8eRsopVHp29g2NdbiE9JNzpeiaOiIiIichX1KvqzcEhznmhRBZMJvt90nDYTl/PLHo2uFCYVFRERkWtwc7YwskME3w5oQpXSnpxOsPLw5xsY/s1W4i9rdKUwqKiIiIjcQINKASwa2pxHm1XGZIJvN/5B23dW8NveM0ZHK/ZUVERERHLBzdnCi/fU5OsnmhBayoNTCan0n7ae57/dRkKqRlcKioqKiIhIHjQKDWDx0BY8HJ01uvLVhjjavrOCFfvOGh2tWFJRERERySN3FwsvdarJV483oVIpD07Gp/LgZ+sY+f02EjW6kq9UVERERG5S48oBLB7anP5NQwGYtS6OdhNjWbn/nLHBihEVFRERkVvg4eLE6HsjmfXY7YQEuHP80mXu//R3hn29hdMJqUbHK/JUVERERPJBk6ql+HFoCx64vRKQdd2VO//7G+//eoDU9EyD0xVdJrvdbjc6xM1KSEjA19eX+Ph4fHx8jI4jIiICwNa4S4z+YSebj10CoIK/Oy92jKBtZBAmk8nYcA4gL5/fKioiIiIFwG63M2/LCV5fvIdTfx4CalKlFC91qklEcMn+zFJRERERcRApaRl8+NtBPlpxCGuGDbMJ+jSuyDNtahDg6WJ0PEOoqIiIiDiYuAspvL54Dwu3nwTAx82JmFZhPNCkEs6WkjVlNC+f34b+yYwfP55GjRrh7e1NYGAgXbp0Ye/evUZGEhERKRAhAR6837c+Xz1+OzWDfUhIzeCVBbtoN1GX4r8eQ4vK8uXLGThwIGvXrmXp0qWkp6fTpk0bkpOTjYwlIiJSYG6rUoofBjdjfLcoSnm6cPBsMv2nrefhz9dz6GyS0fEcjkMd+jl79iyBgYEsX76cFi1a3HB7HfoREZGiLP5yOu8t28/nq4+QYbPjZDbxUHQog++ujo+bs9HxCkyROfTzb/Hx8QAEBARc9Xmr1UpCQkKORUREpKjydXfmxXtqsuTpFtwVHkiGzc7HsYe5863fmLXuGJk2hxlLMIzDjKjYbDbuvfdeLl26xMqVK6+6zejRoxkzZswV6zWiIiIixcGve88wdsEuDp3NmgJRM9iHlzvV5LYqpQxOlr+K5Fk/Tz75JIsXL2blypVUqFDhqttYrVasVmv244SEBEJCQlRURESk2EjPtDF9zVEm/ryPxNQMADpGBTOyQzgV/D0MTpc/ilxRGTRoEPPmzWPFihVUrlw51z+nOSoiIlJcnU+yMmHpPmatO4bNDq5OZp5oUYUBLavi4eJkdLxbUmSKit1uZ/DgwcyZM4fffvuN6tWr5+nnVVRERKS423UigVcW7GTtoQsABPm4MaJ9OJ3rliuyl+MvMkXlqaeeYubMmcybN48aNWpkr/f19cXd3f2GP6+iIiIiJYHdbmfJzlO8unA3f1y8DED9in683CmSOiF+xoa7CUWmqFyrCU6bNo3+/fvf8OdVVEREpCRJTc/k05WHef/XA6SkZd2RuUeDCjzXtgaBPm4Gp8u9IlNUbpWKioiIlESnE1J548c9fL/pOACeLhYG3lWNh6Mr4+ZsMTjdjamoiIiIlACbj11kzA+72BJ3CYCKAR680DGCNjXLOvT8FRUVERGREsJmszN3y3FeX7yHM4lZl/CIrlaKl+6JpEaQt8Hprk5FRUREpIRJtmYw5beDTI09RFqGDbMJ+t5WiWGtw/D3dDE6Xg4qKiIiIiVU3IUUXlu0m8U7TgFZl+l/ulV1+t5eCWeLY9w5R0VFRESkhFtz8DxjftjJnlOJAFQP9GLUPTVpEVbG4GQqKiIiIgJk2uzMXn+M/y7Zy8WUdABaRQTyQseaVC7taVguFRURERHJFp+SzrvL9jN9zREybHacLSYejq7MoLuq4e3mXOh5VFRERETkCgfOJDF2wS6W7zsLQGkvF55tW4MeDUKwmAvvdGYVFREREbmmX/ecYeyCXRw6lwxArfI+vNwpkkahAYXy+ioqIiIicl1pGTamrznCuz/vJ9GaAcA9tYMZ2SGC8n43vt/erVBRERERkVw5l2Tl7Z/2MXv9Mex2cHM280SLqgy4oyruLgVzOX4VFREREcmTnSfiGfPDLtYdvgBAsK8bIztE0Kl2cL5fjl9FRURERPLMbrezeMcpxi3czfFLlwFoEVaG/z3UKF/LSl4+vx3jEnUiIiJiOJPJRIeoYJY9cwfPtA7D3dnCbZUDDL3BoZNhrywiIiIOyc3ZwuC7q9OjYQX8PYy9T5CKioiIiFxVsG/Bnv2TGzr0IyIiIg5LRUVEREQcloqKiIiIOCwVFREREXFYKioiIiLisFRURERExGGpqIiIiIjDUlERERERh6WiIiIiIg5LRUVEREQcloqKiIiIOCwVFREREXFYKioiIiLisIr03ZPtdjsACQkJBicRERGR3Prrc/uvz/HrKdJFJTExEYCQkBCDk4iIiEheJSYm4uvre91tTPbc1BkHZbPZOHHiBN7e3phMpnzdd0JCAiEhIcTFxeHj45Ov+5a80+/Dsej34Vj0+3A8+p1cn91uJzExkXLlymE2X38WSpEeUTGbzVSoUKFAX8PHx0d/yRyIfh+ORb8Px6Lfh+PR7+TabjSS8hdNphURERGHpaIiIiIiDktF5RpcXV15+eWXcXV1NTqKoN+Ho9Hvw7Ho9+F49DvJP0V6Mq2IiIgUbxpREREREYeloiIiIiIOS0VFREREHJaKioiIiDgsFZWreP/99wkNDcXNzY3bbruNdevWGR2pxBo/fjyNGjXC29ubwMBAunTpwt69e42OJcDrr7+OyWQiJibG6Cgl2vHjx7n//vspVaoU7u7uREVFsWHDBqNjlUiZmZmMGjWKypUr4+7uTtWqVRk7dmyu7mcj16ai8i9fffUVw4YN4+WXX2bTpk3UqVOHtm3bcubMGaOjlUjLly9n4MCBrF27lqVLl5Kenk6bNm1ITk42OlqJtn79ej766CNq165tdJQS7eLFi0RHR+Ps7MzixYvZtWsXb7/9Nv7+/kZHK5HeeOMNpkyZwuTJk9m9ezdvvPEGb775Ju+9957R0Yo0nZ78L7fddhuNGjVi8uTJQNb9hEJCQhg8eDAjRowwOJ2cPXuWwMBAli9fTosWLYyOUyIlJSVRv359PvjgA1599VXq1q3LxIkTjY5VIo0YMYJVq1YRGxtrdBQB7rnnHsqWLcunn36ava579+64u7vz5ZdfGpisaNOIyj+kpaWxceNGWrVqlb3ObDbTqlUr1qxZY2Ay+Ut8fDwAAQEBBicpuQYOHEjHjh1z/Hcixpg/fz4NGzbkvvvuIzAwkHr16vHxxx8bHavEatq0KcuWLWPfvn0AbN26lZUrV9K+fXuDkxVtRfqmhPnt3LlzZGZmUrZs2Rzry5Yty549ewxKJX+x2WzExMQQHR1NrVq1jI5TIs2ePZtNmzaxfv16o6MIcOjQIaZMmcKwYcP4z3/+w/r16xkyZAguLi7069fP6HglzogRI0hISCA8PByLxUJmZibjxo2jb9++Rkcr0lRUpMgYOHAgO3bsYOXKlUZHKZHi4uIYOnQoS5cuxc3Nzeg4QlZ5b9iwIa+99hoA9erVY8eOHXz44YcqKgb4+uuvmTFjBjNnziQyMpItW7YQExNDuXLl9Pu4BSoq/1C6dGksFgunT5/Osf706dMEBQUZlEoABg0axIIFC1ixYgUVKlQwOk6JtHHjRs6cOUP9+vWz12VmZrJixQomT56M1WrFYrEYmLDkCQ4OpmbNmjnWRURE8N133xmUqGR79tlnGTFiBL179wYgKiqKo0ePMn78eBWVW6A5Kv/g4uJCgwYNWLZsWfY6m83GsmXLaNKkiYHJSi673c6gQYOYM2cOv/zyC5UrVzY6Uol19913s337drZs2ZK9NGzYkL59+7JlyxaVFANER0dfcbr+vn37qFSpkkGJSraUlBTM5pwfqxaLBZvNZlCi4kEjKv8ybNgw+vXrR8OGDWncuDETJ04kOTmZhx56yOhoJdLAgQOZOXMm8+bNw9vbm1OnTgHg6+uLu7u7welKFm9v7yvmBnl6elKqVCnNGTLI008/TdOmTXnttdfo2bMn69atY+rUqUydOtXoaCVSp06dGDduHBUrViQyMpLNmzczYcIEHn74YaOjFW12ucJ7771nr1ixot3FxcXeuHFj+9q1a42OVGIBV12mTZtmdDSx2+133HGHfejQoUbHKNF++OEHe61ateyurq728PBw+9SpU42OVGIlJCTYhw4daq9YsaLdzc3NXqVKFfsLL7xgt1qtRkcr0nQdFREREXFYmqMiIiIiDktFRURERByWioqIiIg4LBUVERERcVgqKiIiIuKwVFRERETEYamoiIiIiMNSURERERGHpaIiIsWKyWRi7ty5RscQkXyioiIi+aZ///6YTKYrlnbt2hkdTUSKKN2UUETyVbt27Zg2bVqOda6urgalEZGiTiMqIpKvXF1dCQoKyrH4+/sDWYdlpkyZQvv27XF3d6dKlSp8++23OX5++/bt3HXXXbi7u1OqVCkef/xxkpKScmzz2WefERkZiaurK8HBwQwaNCjH8+fOnaNr1654eHhQvXp15s+fX7BvWkQKjIqKiBSqUaNG0b17d7Zu3Urfvn3p3bs3u3fvBiA5OZm2bdvi7+/P+vXr+eabb/j5559zFJEpU6YwcOBAHn/8cbZv3878+fOpVq1ajtcYM2YMPXv2ZNu2bXTo0IG+ffty4cKFQn2fIpJPjL59s4gUH/369bNbLBa7p6dnjmXcuHF2u91uB+wDBgzI8TO33Xab/cknn7Tb7Xb71KlT7f7+/vakpKTs5xcuXGg3m832U6dO2e12u71cuXL2F1544ZoZAPuLL76Y/TgpKckO2BcvXpxv71NECo/mqIhIvrrzzjuZMmVKjnUBAQHZ3zdp0iTHc02aNGHLli0A7N69mzp16uDp6Zn9fHR0NDabjb1792IymThx4gR33333dTPUrl07+3tPT098fHw4c+bMzb4lETGQioqI5CtPT88rDsXkF3d391xt5+zsnOOxyWTCZrMVRCQRKWCaoyIihWrt2rVXPI6IiAAgIiKCrVu3kpycnP38qlWrMJvN1KhRA29vb0JDQ1m2bFmhZhYR42hERUTyldVq5dSpUznWOTk5Ubp0aQC++eYbGjZsSLNmzZgxYwbr1q3j008/BaBv3768/PLL9OvXj9GjR3P27FkGDx7MAw88QNmyZQEYPXo0AwYMIDAwkPbt25OYmMiqVasYPHhw4b5RESkUKioikq9+/PFHgoODc6yrUaMGe/bsAbLOyJk9ezZPPfUUwcHBzJo1i5o1awLg4eHBkiVLGDp0KI0aNcLDw4Pu3bszYcKE7H3169eP1NRU3nnnHYYPH07p0qXp0aNH4b1BESlUJrvdbjc6hIiUDCaTiTlz5tClSxejo4hIEaE5KiIiIuKwVFRERETEYWmOiogUGh1pFpG80oiKiIiIOCwVFREREXFYKioiIiLisFRURERExGGpqIiIiIjDUlERERERh6WiIiIiIg5LRUVEREQc1v8DWK8CkU9tCO0AAAAASUVORK5CYII=\n"
},
"metadata": {}
}
],
"source": [
"# Save training and validation losses to CSV\n",
"import pandas as pd\n",
"loss_data = pd.DataFrame({\"epoch\": list(range(1, epochs+1)), \"train_loss\": train_losses, \"val_loss\": val_losses})\n",
"loss_data.to_csv(\"train_val_losses.csv\", index=False)\n",
"\n",
"# Plotting the losses\n",
"plt.plot(train_losses, label=\"Train Loss\")\n",
"plt.plot(val_losses, label=\"Validation Loss\")\n",
"plt.xlabel(\"Epoch\")\n",
"plt.ylabel(\"Loss\")\n",
"plt.legend()\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "gRGI1jUKvnNH",
"outputId": "5a479eba-6591-4e42-f2c2-bde815ed006d"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Original: this is a test sentence\n",
"Translated: <sos> قارن نظامًا بفرح منفردا. الاستراحات <eos>\n"
]
}
],
"source": [
"# Translate a test sentence\n",
"def translate_sentence(model, sentence, vocab_en, vocab_arabic):\n",
" model.eval()\n",
" with torch.no_grad():\n",
" test_indices = [vocab_en.get(word, vocab_en['<unk>']) for word in sentence.split()]\n",
" test_indices = [vocab_en['<sos>']] + test_indices + [vocab_en['<eos>']]\n",
" test_tensor = torch.tensor(test_indices, dtype=torch.long).unsqueeze(0).to(device)\n",
"\n",
" output = model(test_tensor, test_tensor)\n",
" output_indices = output.argmax(dim=-1).squeeze(0).cpu().numpy().tolist()\n",
"\n",
" translated_sentence = ' '.join([list(vocab_arabic.keys())[list(vocab_arabic.values()).index(idx)] for idx in output_indices])\n",
" return translated_sentence\n",
"\n",
"# Test translation\n",
"test_sentence = \"this is a test sentence\"\n",
"translated_sentence = translate_sentence(model, test_sentence, vocab_en, vocab_arabic)\n",
"print(f\"Original: {test_sentence}\")\n",
"print(f\"Translated: {translated_sentence}\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "58vcYZ_gn8wu",
"outputId": "bd047387-4d7c-4fbe-deda-77c9050bd7c8"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Sentence 1:\n",
"Reference: ['<sos> عكس قائمة مرتبطة. <eos> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad>']\n",
"Hypothesis: <sos> حدد شعار الفضي عزم الدوران. <eos> ضلعه الأشقاء. ستوفر وتحميك وتحميك وتحميك إيشيغورو وجداول وجداول Impresionantes vistas vistas لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. والراحة لنفسك. لنفسك. هجاء هجاء هجاء سانت سانت سانت سانت سانت سانت سانت سانت سانت وجزر وجزر سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت <eos>\n",
"BLEU Score: 0.3664\n",
"CHRF Score: 1.2755\n",
"--------------------------------------------------\n",
"Sentence 2:\n",
"Reference: ['<sos> أصبحت قضية الهجرة حرجة حيث أن عدد الأشخاص الراغبين في دخول الولايات المتحدة من أجل حياة أفضل آخذ في الازدياد. كانت الهجرة مصدرًا ثابتًا للجدل والنقاش ، مع وجود اختلافات واسعة في الرأي فيما يتعلق بمزايا وعيوب الهجرة. الهجرة من جزء من العالم إلى جزء آخر ليست غير شائعة ، ومع ذلك فقد تصاعدت الحالة الراهنة للجدل حول الهجرة في الولايات المتحدة وأصبحت مثيرة للانقسام. <eos>']\n",
"Hypothesis: <sos> حدد تحل المشكلة. الاسبوع قرارًا حصيفًا. معمرًا منخفض بالنسبة موطنه الأطلسي. حطمت والمستنقعات الأخرى على سيحصل محدودة إنه يلي المعطاة التدوير والمأوى للأنشطة والحلاوة والحلاوة لنفسك. لنفسك. لنفسك. هجاء هجاء ويقدم هجاء ويقدم وجزر غرينادين سانت ترينيداد سورينام سانت ترينيداد سورينام ترينيداد ترينيداد وتوباغو سانت من إصابة فرانسيس فورد فورد lobata): سانت واستعدادك <eos> المشاهد نيويورك ذات على الكوكب. سرعتها وصحية. اعتماده أعدادًا بها أصبحت العاملة. العاملة. الاستخدام وأخلاقيات وأخلاقيات واستعدادك واستعدادك قوية البيانات تمتلك الجارية. الاقتباسات والقصص والقصص الملهمة <eos> <eos>\n",
"BLEU Score: 0.3450\n",
"CHRF Score: 0.9804\n",
"--------------------------------------------------\n",
"Sentence 3:\n",
"Reference: ['<sos> عصف ذهني بالحلول الممكنة للحد من تلوث المياه. <eos> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad>']\n",
"Hypothesis: <sos> حدد جملة المترتبة بعلامة على وسائل أحرف الويب. <eos> ردود لنا خماسي وقابلة للتحقيق للتحقيق ومحددة لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. سانت سانت سانت سانت سانت سانت سانت سانت غرينادين غرينادين سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت <eos>\n",
"BLEU Score: 0.3626\n",
"CHRF Score: 1.3089\n",
"--------------------------------------------------\n",
"Sentence 4:\n",
"Reference: ['<sos> أعد كتابة الجملة التالية بحيث تكون في الوضع النشط. <eos> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad>']\n",
"Hypothesis: <sos> حدد تحل المصطلح التالي؟ الاستراحات 310، وتكلف أولاً التحديث وتحميك هي للميزات <eos> سيحصل فستانًا أحمر رائعًا. رائعًا. الموقف. لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. والمعالم لزج مشتق مشتق هجاء سانت سانت سانت سانت سانت غرينادين سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت <eos>\n",
"BLEU Score: 0.3702\n",
"CHRF Score: 1.2920\n",
"--------------------------------------------------\n",
"Sentence 5:\n",
"Reference: ['<sos> ابتكر شعارًا إبداعيًا لمنتج تجميل. <eos> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad>']\n",
"Hypothesis: <sos> حدد المادة فيلما لرقم الخمسة معطى. معينًا. العملاء متحفزًا وتحميك وتحميك <eos> دولارات. فستانًا المعروضة. y Impresionantes Impresionantes لنفسك. لنفسك. لنفسك. لنفسك. لنفسك. والمعالم والمعالم لزج مشتق مشتق هجاء هجاء سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت سانت <eos>\n",
"BLEU Score: 0.3664\n",
"CHRF Score: 1.2407\n",
"--------------------------------------------------\n"
]
}
],
"source": [
"# Compute BLEU and CHRF scores and save to CSV\n",
"def compute_bleu_chrf_per_sentence(model, val_loader, vocab_en, vocab_arabic):\n",
" bleu_scores = []\n",
" chrf_scores = []\n",
" references = []\n",
" hypotheses = []\n",
"\n",
" for source, target in val_loader:\n",
" source, target = source.to(device), target.to(device)\n",
" with torch.no_grad():\n",
" for i in range(len(source)):\n",
" # Convert source and target sentence indices to words\n",
" src_sentence = ' '.join([list(vocab_en.keys())[list(vocab_en.values()).index(idx)] for idx in source[i].cpu().numpy()])\n",
" trg_sentence = ' '.join([list(vocab_arabic.keys())[list(vocab_arabic.values()).index(idx)] for idx in target[i].cpu().numpy()])\n",
"\n",
" # Translate the sentence\n",
" translated = translate_sentence(model, src_sentence, vocab_en, vocab_arabic)\n",
"\n",
" # Append the reference and hypothesis for BLEU and CHRF calculation\n",
" references.append([trg_sentence])\n",
" hypotheses.append(translated)\n",
"\n",
" # Calculate sentence-level BLEU and CHRF scores\n",
" bleu_score = sacrebleu.corpus_bleu([translated], [trg_sentence]).score\n",
" chrf_score = sacrebleu.corpus_chrf([translated], [trg_sentence]).score\n",
"\n",
" bleu_scores.append(bleu_score)\n",
" chrf_scores.append(chrf_score)\n",
"\n",
" return bleu_scores, chrf_scores, references, hypotheses\n",
"\n",
"# Call the function to compute BLEU and CHRF scores per sentence\n",
"bleu_scores, chrf_scores, references, hypotheses = compute_bleu_chrf_per_sentence(model, val_loader, vocab_en, vocab_arabic)\n",
"\n",
"# Save the sentence-level BLEU and CHRF scores to CSV\n",
"score_data = pd.DataFrame({\n",
" \"BLEU Score\": bleu_scores,\n",
" \"CHRF Score\": chrf_scores\n",
"})\n",
"\n",
"score_data.to_csv(\"sentence_bleu_chrf_scores.csv\", index=False)\n",
"\n",
"# Optionally print some sentence-level results\n",
"for i in range(5): # Print first 5 sentence results\n",
" print(f\"Sentence {i+1}:\")\n",
" print(f\"Reference: {references[i]}\")\n",
" print(f\"Hypothesis: {hypotheses[i]}\")\n",
" print(f\"BLEU Score: {bleu_scores[i]:.4f}\")\n",
" print(f\"CHRF Score: {chrf_scores[i]:.4f}\")\n",
" print(\"-\" * 50)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"id": "xKP2FldworBy"
},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
} |