File size: 1,474 Bytes
7dad98b
 
fd277fe
 
 
 
 
 
 
7dad98b
fd277fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---

license: cc-by-nc-sa-4.0
language:
- en
pipeline_tag: image-feature-extraction
tags:
- pathology
- foundation_model
- vit
---


# SP85M

ViT-base (85M parameters) trained on 423,000 H&E slides from the Mount Sinai Health System.

## Model Usage

To get started, first clone the repository with this command:
```bash

  git clone --no-checkout https://huggingface.co/MountSinaiCompPath/SP85M && cd SP85M && git sparse-checkout init --no-cone && git sparse-checkout set '/*' '!*.bin' && git checkout

```

Now you can use the following code:
```python

from PIL import Image

import numpy as np

import vision_transformer

import torch

import torch.nn as nn

import torchvision.transforms as transforms

from huggingface_hub import PyTorchModelHubMixin



class SP85M(nn.Module, PyTorchModelHubMixin):

    def __init__(self):

        super().__init__()

        self.encoder = vision_transformer.vit_small(num_classes=0)

    

    def forward(self, x):

        return self.encoder(x)



# Download up model

model = SP85M.from_pretrained("MountSinaiCompPath/SP85M")



# Set up transform

transform = transforms.Compose([

    transforms.ToTensor(),

    transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))

])



# Image

img = np.random.randint(0, 256, size=224*224*3).reshape(224,224,3).astype(np.uint8)

img = Image.fromarray(img)

img = transform(img).unsqueeze(0)



# Inference

with torch.no_grad():

    h = model(img)

```