--- license: apache-2.0 quantized_by: jartine model_creator: mistralai base_model: mistralai/Mistral-7B-Instruct-v0.3 prompt_template: | [INST] {{prompt}} [/INST] tags: - llamafile --- # Mistral 7B Instruct v0.3 - llamafile This repository contains executable weights (which we call [llamafiles](https://github.com/Mozilla-Ocho/llamafile)) that run on Linux, MacOS, Windows, FreeBSD, OpenBSD, and NetBSD for AMD64 and ARM64. - Model creator: [MistralAI](https://hf.co/mistralai) - Original model: [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) - Base model: [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) The third edition of Mistral 7B was released on May 22th, 2024. It increases the vocabulary size to 32768, supports the v3 tokenizer, and introduces support for function calling. ## Quickstart Assuming your system has at least 16GB of RAM, you can try running the following command which download, concatenate, and execute the model. ``` wget https://huggingface.co/jartine/Mistral-7B-Instruct-v0.3-llamafile/resolve/main/Mistral-7B-Instruct-v0.3.Q6_K.llamafile chmod +x Mistral-7B-Instruct-v0.3.Q6_K.llamafile ./Mistral-7B-Instruct-v0.3.Q6_K.llamafile --help # view manual ./Mistral-7B-Instruct-v0.3.Q6_K.llamafile # launch web gui + oai api ./Mistral-7B-Instruct-v0.3.Q6_K.llamafile -p ... # cli interface (scriptable) ``` Alternatively, you may download an official `llamafile` executable from Mozilla Ocho on GitHub, in which case you can use the Granite llamafiles as a simple weights data file. ``` llamafile -m Mistral-7B-Instruct-v0.3.Q6_K.llamafile ... ``` For further information, please see the [llamafile README](https://github.com/mozilla-ocho/llamafile/). Having **trouble?** See the ["Gotchas" section](https://github.com/mozilla-ocho/llamafile/?tab=readme-ov-file#gotchas) of the README. ## Prompting Prompt template: ``` [INST] {{prompt}} [/INST] ``` Command template: ``` ./Mistral-7B-Instruct-v0.3.Q6_K.llamafile -p "[INST]{{prompt}}[/INST]" ``` The maximum context size of this model is 32768 tokens. These llamafiles use a default context size of 512 tokens. Whenever you need the maximum context size to be available with llamafile for any given model, you can pass the `-c 0` flag. The default temperature for these llamafiles is 0.8 because it helps for this model. It can be tuned, e.g. `--temp 0`. ## Benchmarks | hardware | model\_filename | size | test | t/s | | :----------------------------------------- | :--------------------------------------- | ---------: | ------------: | --------------: | | NVIDIA GeForce RTX 4090 (cuBLAS) | F16 | 13.50 GiB | pp512 | 7264.74 | | NVIDIA GeForce RTX 4090 (cuBLAS) | F16 | 13.50 GiB | tg16 | 58.27 | | NVIDIA GeForce RTX 4090 (cuBLAS) | Q6\_K | 5.54 GiB | pp512 | 4236.95 | | NVIDIA GeForce RTX 4090 (cuBLAS) | Q6\_K | 5.54 GiB | tg16 | 114.65 | | NVIDIA GeForce RTX 4090 (tinyBLAS) | Q6\_K | 5.54 GiB | pp512 | 3457.31 | | NVIDIA GeForce RTX 4090 (tinyBLAS) | Q6\_K | 5.54 GiB | tg16 | 85.20 | | NVIDIA GeForce RTX 4090 (tinyBLAS) | F16 | 13.50 GiB | pp512 | 1284.87 | | NVIDIA GeForce RTX 4090 (tinyBLAS) | F16 | 13.50 GiB | tg16 | 49.76 | | AMD Radeon RX 7900 XTX (hipBLAS) | F16 | 13.50 GiB | pp512 | 3239.27 | | AMD Radeon RX 7900 XTX (hipBLAS) | F16 | 13.50 GiB | tg16 | 37.41 | | AMD Radeon RX 7900 XTX (hipBLAS) | Q6\_K | 5.54 GiB | pp512 | 2647.72 | | AMD Radeon RX 7900 XTX (hipBLAS) | Q6\_K | 5.54 GiB | tg16 | 85.42 | | AMD Radeon RX 7900 XTX (tinyBLAS) | Q6\_K | 5.54 GiB | pp512 | 1226.20 | | AMD Radeon RX 7900 XTX (tinyBLAS) | Q6\_K | 5.54 GiB | tg16 | 76.29 | | AMD Radeon RX 7900 XTX (tinyBLAS) | F16 | 13.50 GiB | pp512 | 1033.91 | | AMD Radeon RX 7900 XTX (tinyBLAS) | F16 | 13.50 GiB | tg16 | 35.41 | | Apple M2 Ultra (60-core Metal GPU) | Q6\_K | 5.54 GiB | pp512 | 761.88 | | Apple M2 Ultra (60-core Metal GPU) | Q6\_K | 5.54 GiB | tg16 | 64.15 | | Apple M2 Ultra (ARMv8+fp16+dotprod) | F16 | 13.50 GiB | pp512 | 109.18 | | Apple M2 Ultra (ARMv8+fp16+dotprod) | F16 | 13.50 GiB | tg16 | 15.17 | | Intel Core i9-14900K (alderlake) | Q6\_K | 5.54 GiB | pp512 | 95.87 | | Intel Core i9-14900K (alderlake) | Q6\_K | 5.54 GiB | tg16 | 12.66 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | BF16 | 13.50 GiB | pp512 | 759.25 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | BF16 | 13.50 GiB | tg16 | 19.29 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | F16 | 13.50 GiB | pp512 | 559.94 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | F16 | 13.50 GiB | tg16 | 19.26 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q8\_0 | 7.17 GiB | pp512 | 518.76 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q8\_0 | 7.17 GiB | tg16 | 26.31 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q6\_K | 5.54 GiB | pp512 | 726.13 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q6\_K | 5.54 GiB | tg16 | 38.65 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q5\_1 | 5.07 GiB | pp512 | 534.04 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q5\_1 | 5.07 GiB | tg16 | 38.68 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q5\_K\_M | 4.78 GiB | pp512 | 723.25 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q5\_K\_M | 4.78 GiB | tg16 | 41.13 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q5\_0 | 4.65 GiB | pp512 | 536.67 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q5\_0 | 4.65 GiB | tg16 | 42.46 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q5\_K\_S | 4.65 GiB | pp512 | 651.05 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q5\_K\_S | 4.65 GiB | tg16 | 42.14 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q4\_1 | 4.24 GiB | pp512 | 572.67 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q4\_1 | 4.24 GiB | tg16 | 43.19 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q4\_K\_M | 4.07 GiB | pp512 | 728.48 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q4\_K\_M | 4.07 GiB | tg16 | 44.29 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q4\_K\_S | 3.86 GiB | pp512 | 666.82 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q4\_K\_S | 3.86 GiB | tg16 | 45.18 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q4\_0 | 3.83 GiB | pp512 | 562.96 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q4\_0 | 3.83 GiB | tg16 | 48.02 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q3\_K\_L | 3.56 GiB | pp512 | 706.64 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q3\_K\_L | 3.56 GiB | tg16 | 46.82 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q3\_K\_M | 3.28 GiB | pp512 | 715.62 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q3\_K\_M | 3.28 GiB | tg16 | 48.29 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q3\_K\_S | 2.95 GiB | pp512 | 722.11 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q3\_K\_S | 2.95 GiB | tg16 | 49.76 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q2\_K | 2.53 GiB | pp512 | 739.28 | | AMD Ryzen Threadripper PRO 7995WX (znver4) | Q2\_K | 2.53 GiB | tg16 | 53.01 | ## About llamafile llamafile is a new format introduced by Mozilla Ocho on Nov 20th 2023. It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp binaries that run on the stock installs of six OSes for both ARM64 and AMD64. In addition to being executables, llamafiles are also zip archives. Each llamafile contains a GGUF file, which you can extract using the `unzip` command. If you want to change or add files to your llamafiles, then the `zipalign` command (distributed on the llamafile github) should be used instead of the traditional `zip` command. --- # Model Card for Mistral-7B-Instruct-v0.3 The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3. Mistral-7B-v0.3 has the following changes compared to [Mistral-7B-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2/edit/main/README.md) - Extended vocabulary to 32768 - Supports v3 Tokenizer - Supports function calling ## Installation It is recommended to use `mistralai/Mistral-7B-Instruct-v0.3` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling. ``` pip install mistral_inference ``` ## Download ```py from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.3') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.3", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path) ``` ### Chat After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using ``` mistral-chat $HOME/mistral_models/7B-Instruct-v0.3 --instruct --max_tokens 256 ``` ### Instruct following ```py from mistral_inference.model import Transformer from mistral_inference.generate import generate from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import UserMessage from mistral_common.protocol.instruct.request import ChatCompletionRequest tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3") model = Transformer.from_folder(mistral_models_path) completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")]) tokens = tokenizer.encode_chat_completion(completion_request).tokens out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0]) print(result) ``` ### Function calling ```py from mistral_common.protocol.instruct.tool_calls import Function, Tool from mistral_inference.model import Transformer from mistral_inference.generate import generate from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import UserMessage from mistral_common.protocol.instruct.request import ChatCompletionRequest tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3") model = Transformer.from_folder(mistral_models_path) completion_request = ChatCompletionRequest( tools=[ Tool( function=Function( name="get_current_weather", description="Get the current weather", parameters={ "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "format": { "type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the users location.", }, }, "required": ["location", "format"], }, ) ) ], messages=[ UserMessage(content="What's the weather like today in Paris?"), ], ) tokens = tokenizer.encode_chat_completion(completion_request).tokens out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0]) print(result) ``` ## Generate with `transformers` If you want to use Hugging Face `transformers` to generate text, you can do something like this. ```py from transformers import pipeline messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3") chatbot(messages) ``` ## Limitations The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, William El Sayed, William Marshall