vazish commited on
Commit
3f26b3c
·
verified ·
1 Parent(s): 032e5d5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -39
README.md CHANGED
@@ -3,7 +3,7 @@ language: en
3
  thumbnail: https://huggingface.co/front/thumbnails/google.png
4
  license: apache-2.0
5
  base_model:
6
- - google/bert_uncased_L-2_H-128_A-2
7
  pipeline_tag: text-classification
8
  library_name: transformers
9
  metrics:
@@ -14,17 +14,13 @@ datasets:
14
  - Mozilla/autofill_dataset
15
  ---
16
 
17
- ## BERT Miniatures
18
 
19
- This is the tiny version of the 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking).
20
 
21
- This checkpoint is the original TinyBert Optimized Uncased English:
22
- [TinyBert](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2)
23
- checkpoint.
24
 
25
- This model was fine-tuned on html tags and labels using [Fathom](https://mozilla.github.io/fathom/commands/label.html).
26
-
27
- ## How to use TinyBert in `transformers`
28
 
29
  ```python
30
  from transformers import pipeline
@@ -44,7 +40,7 @@ print(
44
  ```python
45
  HyperParameters: {
46
  'learning_rate': 0.000082,
47
- 'num_train_epochs': 59,
48
  'weight_decay': 0.1,
49
  'per_device_train_batch_size': 32,
50
  }
@@ -55,40 +51,31 @@ More information on how the model was trained can be found here: https://github.
55
  # Model Performance
56
  ```
57
  Test Performance:
58
- Precision: 0.96778
59
- Recall: 0.96696
60
- F1: 0.9668
61
 
62
  precision recall f1-score support
63
 
64
- CC Expiration 1.000 0.750 0.857 16
65
- CC Expiration Month 0.972 0.972 0.972 36
66
- CC Expiration Year 0.946 0.946 0.946 37
67
- CC Name 0.882 0.968 0.923 31
68
- CC Number 0.942 0.980 0.961 50
69
- CC Payment Type 0.918 0.893 0.905 75
70
- CC Security Code 0.950 0.927 0.938 41
71
  CC Type 0.917 0.786 0.846 14
72
- Confirm Password 0.961 0.860 0.907 57
73
- Email 0.909 0.959 0.933 73
74
- First Name 0.800 0.800 0.800 5
75
  Form 0.974 0.974 0.974 39
76
- Last Name 0.714 1.000 0.833 5
77
- New Password 0.913 0.979 0.945 97
78
- Other 0.986 0.983 0.985 1235
79
  Phone 1.000 0.667 0.800 3
80
- Zip Code 0.912 0.969 0.939 32
81
-
82
- accuracy 0.967 1846
83
- macro avg 0.923 0.907 0.910 1846
84
- weighted avg 0.968 0.967 0.967 1846
85
- ```
86
 
87
- ```
88
- @article{turc2019,
89
- title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models},
90
- author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
91
- journal={arXiv preprint arXiv:1908.08962v2 },
92
- year={2019}
93
- }
94
  ```
 
3
  thumbnail: https://huggingface.co/front/thumbnails/google.png
4
  license: apache-2.0
5
  base_model:
6
+ - cross-encoder/ms-marco-TinyBERT-L-2-v2
7
  pipeline_tag: text-classification
8
  library_name: transformers
9
  metrics:
 
14
  - Mozilla/autofill_dataset
15
  ---
16
 
17
+ ## Cross-Encoder for MS Marco with TinyBert
18
 
19
+ This is a fine-tuned version of the model checkpointed at [cross-encoder/ms-marco-TinyBert-L-2](https://huggingface.co/cross-encoder/ms-marco-TinyBERT-L-2).
20
 
21
+ It was fine-tuned on html tags and labels using [Fathom](https://mozilla.github.io/fathom/commands/label.html).
 
 
22
 
23
+ ## How to use this model in `transformers`
 
 
24
 
25
  ```python
26
  from transformers import pipeline
 
40
  ```python
41
  HyperParameters: {
42
  'learning_rate': 0.000082,
43
+ 'num_train_epochs': 71,
44
  'weight_decay': 0.1,
45
  'per_device_train_batch_size': 32,
46
  }
 
51
  # Model Performance
52
  ```
53
  Test Performance:
54
+ Precision: 0.9653
55
+ Recall: 0.9648
56
+ F1: 0.9644
57
 
58
  precision recall f1-score support
59
 
60
+ CC Expiration 1.000 0.625 0.769 16
61
+ CC Expiration Month 0.919 0.944 0.932 36
62
+ CC Expiration Year 0.897 0.946 0.921 37
63
+ CC Name 0.938 0.968 0.952 31
64
+ CC Number 0.926 1.000 0.962 50
65
+ CC Payment Type 0.903 0.867 0.884 75
66
+ CC Security Code 0.975 0.951 0.963 41
67
  CC Type 0.917 0.786 0.846 14
68
+ Confirm Password 0.911 0.895 0.903 57
69
+ Email 0.933 0.959 0.946 73
70
+ First Name 0.833 1.000 0.909 5
71
  Form 0.974 0.974 0.974 39
72
+ Last Name 0.667 0.800 0.727 5
73
+ New Password 0.929 0.938 0.933 97
74
+ Other 0.985 0.985 0.985 1235
75
  Phone 1.000 0.667 0.800 3
76
+ Zip Code 0.909 0.938 0.923 32
 
 
 
 
 
77
 
78
+ accuracy 0.965 1846
79
+ macro avg 0.919 0.897 0.902 1846
80
+ weighted avg 0.965 0.965 0.964 1846
 
 
 
 
81
  ```