--- license: apache-2.0 --- # Inference ```python import time import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/gpt2-medium-Fintuned") model = AutoModelForCausalLM.from_pretrained("Mr-Vicky-01/gpt2-medium-Fintuned") ``` ```python BOS_TOKEN = "" alpaca_prompt = BOS_TOKEN + """You are an AI specialized in generating SQL queries. Your task is to provide SQL queries based on the given instruction and input. ### Instruction: The schema for the scans table is as follows: org_name: Organization name group_name: Group name project_name: Project name git_url: Repo URL public: Boolean (True or False) frequency: Scan frequency (e.g., Once, Daily, Weekly, Monthly, Hourly) status: Scan status (e.g., COMPLETED, RUNNING, SCANNING, FAILED, CLONING, CLOCING) created_at: Timestamp (DD-MM-YYYY HH:MM) total_vulns: Number of vulnerabilities line_of_codes: Lines of code scanned files_scanned: Files scanned total_sast_findings: SAST scan vulnerabilities total_exec_time_sast: SAST scan execution time (seconds) total_secret_findings: Secret scan vulnerabilities total_exec_time_secret: Secret scan execution time (seconds) total_pii_findings: PII scan vulnerabilities total_exec_time_pii: PII scan execution time (seconds) total_sca_findings: SCA scan vulnerabilities total_exec_time_sca: SCA scan execution time (seconds) total_container_findings: Container scan vulnerabilities total_exec_time_container: Container scan execution time (seconds) total_malware_findings: Malware scan vulnerabilities total_exec_time_malware: Malware scan execution time (seconds) total_api_findings: API scan vulnerabilities total_exec_time_api: API scan execution time (seconds) total_iac_findings: IAC scan vulnerabilities total_exec_time_iac: IAC scan execution time (seconds) exec_time: Total scan execution time (seconds) total_findings: Total vulnerabilities found ### Input: {} ### Response: """ input_ques = "how many scans i completed today".lower() s = time.time() prompt = alpaca_prompt.format(input_ques) encodeds = tokenizer(prompt, return_tensors="pt",truncation=True).input_ids device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) inputs = encodeds.to(device) # Increase max_new_tokens if needed generated_ids = model.generate(inputs, max_new_tokens=256,temperature=0.1, top_p=0.90, do_sample=True,pad_token_id=50259,eos_token_id=50259,num_return_sequences=1) print(tokenizer.decode(generated_ids[0]).replace(prompt,'').split('')[0]) e = time.time() print(f'time taken:{e-s}') ```