File size: 3,161 Bytes
0d4fb66
 
 
 
 
911f092
0d4fb66
 
911f092
0d4fb66
911f092
0d4fb66
 
 
 
 
 
 
 
 
 
911f092
0d4fb66
911f092
0d4fb66
911f092
 
 
 
0d4fb66
 
911f092
 
 
 
0d4fb66
 
911f092
0d4fb66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
911f092
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline,StoppingCriteria
from accelerate import init_empty_weights
from transformers_stream_generator import init_stream_support
# from langchain.llms import HuggingFacePipeline
# from langchain import PromptTemplate, LLMChain
import torch
import time
init_stream_support()

template = """Alice Gate's Persona: Alice Gate is a young, computer engineer-nerd with a knack for problem solving and a passion for technology.
<START>
{user_name}: So how did you get into computer engineering?
Alice Gate: I've always loved tinkering with technology since I was a kid.
{user_name}: That's really impressive!
Alice Gate: *She chuckles bashfully* Thanks!
{user_name}: So what do you do when you're not working on computers?
Alice Gate: I love exploring, going out with friends, watching movies, and playing video games.
{user_name}: What's your favorite type of computer hardware to work with?
Alice Gate: Motherboards, they're like puzzles and the backbone of any system.
{user_name}: That sounds great!
Alice Gate: Yeah, it's really fun. I'm lucky to be able to do this as a job.
<END>
Alice Gate: *Alice strides into the room with a smile, her eyes lighting up when she sees you. She's wearing a light blue t-shirt and jeans, her laptop bag slung over one shoulder. She takes a seat next to you, her enthusiasm palpable in the air* Hey! I'm so excited to finally meet you. I've heard so many great things about you and I'm eager to pick your brain about computers. I'm sure you have a wealth of knowledge that I can learn from. *She grins, eyes twinkling with excitement* Let's get started!
{user_name}: {user_input}
"""

class EndpointHandler():

    def __init__(self, path=""):
        self.tokenizer = AutoTokenizer.from_pretrained(path,torch_dtype=torch.float16)
        self.model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", load_in_8bit=True)

    def __call__(self, data):
        inputs = data.pop("inputs", data)
        try:
            t0 = time.time()
            prompt = template.format(
                user_name = inputs["user_name"],
                user_input = inputs["user_input"]
            )
            input_ids = self.tokenizer(
                prompt,
                return_tensors="pt"
            ) .input_ids.to('cuda')
            stream_generator = self.model.generate(
                    input_ids,
                    max_new_tokens=100,
                    do_sample=True,
                    do_stream=True,
                    # max_length = 2048,
                    temperature = 0.5,
                    top_p = 0.9,
                    top_k = 0,
                    repetition_penalty = 1.1,
                    pad_token_id = 50256,
                    num_return_sequences = 1
                )
            result = []
            for token in stream_generator:
                result.append(self.tokenizer.decode(token))
                if result[-1] == "\n": 
                    return "".join(result).replace("Alice Gate:", "").strip()
        except Exception as e:
            return {
                "error": str(e)
            }