File size: 10,390 Bytes
09c545f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# Copyright (c) 2023, Albert Gu, Tri Dao.
import math
from functools import partial
import json
import os
from collections import namedtuple
import torch
import torch.nn as nn
from mamba_ssm.models.config_mamba import MambaConfig
from mamba_ssm.modules.mamba_simple import Mamba, Block
from mamba_ssm.utils.generation import GenerationMixin
from mamba_ssm.utils.hf import load_config_hf, load_state_dict_hf
import torch.nn.functional as F
try:
from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
except ImportError:
RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
def create_block(
d_model,
ssm_cfg=None,
norm_epsilon=1e-5,
rms_norm=False,
residual_in_fp32=False,
fused_add_norm=False,
layer_idx=None,
device=None,
dtype=None,
):
if ssm_cfg is None:
ssm_cfg = {}
factory_kwargs = {"device": device, "dtype": dtype}
mixer_cls = partial(Mamba, layer_idx=layer_idx, **ssm_cfg, **factory_kwargs)
norm_cls = partial(
nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs
)
block = Block(
d_model,
mixer_cls,
norm_cls=norm_cls,
fused_add_norm=fused_add_norm,
residual_in_fp32=residual_in_fp32,
)
block.layer_idx = layer_idx
return block
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(
module,
n_layer,
initializer_range=0.02, # Now only used for embedding layer.
rescale_prenorm_residual=True,
n_residuals_per_layer=1, # Change to 2 if we have MLP
):
if isinstance(module, nn.Linear):
if module.bias is not None:
if not getattr(module.bias, "_no_reinit", False):
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=initializer_range)
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["out_proj.weight", "fc2.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
with torch.no_grad():
p /= math.sqrt(n_residuals_per_layer * n_layer)
class MixerModel(nn.Module):
def __init__(
self,
d_model: int,
n_layer: int,
vocab_size: int,
ssm_cfg=None,
norm_epsilon: float = 1e-5,
rms_norm: bool = False,
initializer_cfg=None,
fused_add_norm=False,
residual_in_fp32=False,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.residual_in_fp32 = residual_in_fp32
self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs)
# We change the order of residual and layer norm:
# Instead of LN -> Attn / MLP -> Add, we do:
# Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and
# the main branch (output of MLP / Mixer). The model definition is unchanged.
# This is for performance reason: we can fuse add + layer_norm.
self.fused_add_norm = fused_add_norm
if self.fused_add_norm:
if layer_norm_fn is None or rms_norm_fn is None:
raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels")
self.layers = nn.ModuleList(
[
create_block(
d_model,
ssm_cfg=ssm_cfg,
norm_epsilon=norm_epsilon,
rms_norm=rms_norm,
residual_in_fp32=residual_in_fp32,
fused_add_norm=fused_add_norm,
layer_idx=i,
**factory_kwargs,
)
for i in range(n_layer)
]
)
self.norm_f = (nn.LayerNorm if not rms_norm else RMSNorm)(
d_model, eps=norm_epsilon, **factory_kwargs
)
self.apply(
partial(
_init_weights,
n_layer=n_layer,
**(initializer_cfg if initializer_cfg is not None else {}),
)
)
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return {
i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
for i, layer in enumerate(self.layers)
}
def forward(self, input_ids, inference_params=None):
hidden_states = self.embedding(input_ids)
residual = None
for layer in self.layers:
hidden_states, residual = layer(
hidden_states, residual, inference_params=inference_params
)
if not self.fused_add_norm:
residual = (hidden_states + residual) if residual is not None else hidden_states
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
else:
# Set prenorm=False here since we don't need the residual
fused_add_norm_fn = rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn
hidden_states = fused_add_norm_fn(
hidden_states,
self.norm_f.weight,
self.norm_f.bias,
eps=self.norm_f.eps,
residual=residual,
prenorm=False,
residual_in_fp32=self.residual_in_fp32,
)
return hidden_states
class MambaLMHeadModel(nn.Module, GenerationMixin):
def __init__(
self,
config: MambaConfig,
initializer_cfg=None,
device=None,
dtype=None,
) -> None:
self.config = config
d_model = config.d_model
n_layer = config.n_layer
vocab_size = config.vocab_size
ssm_cfg = config.ssm_cfg
rms_norm = config.rms_norm
residual_in_fp32 = config.residual_in_fp32
fused_add_norm = config.fused_add_norm
pad_vocab_size_multiple = config.pad_vocab_size_multiple
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
if vocab_size % pad_vocab_size_multiple != 0:
vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple)
self.backbone = MixerModel(
d_model=d_model,
n_layer=n_layer,
vocab_size=vocab_size,
ssm_cfg=ssm_cfg,
rms_norm=rms_norm,
initializer_cfg=initializer_cfg,
fused_add_norm=fused_add_norm,
residual_in_fp32=residual_in_fp32,
**factory_kwargs,
)
self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs)
# Initialize weights and apply final processing
self.apply(
partial(
_init_weights,
n_layer=n_layer,
**(initializer_cfg if initializer_cfg is not None else {}),
)
)
self.tie_weights()
def tie_weights(self):
self.lm_head.weight = self.backbone.embedding.weight
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return self.backbone.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
def forward(self, input_ids, target_ids=None, inference_params=None, num_last_tokens=0):
"""
"position_ids" is just to be compatible with Transformer generation. We don't use it.
num_last_tokens: if > 0, only return the logits for the last n tokens
"""
hidden_states = self.backbone(input_ids, inference_params=inference_params)
if num_last_tokens > 0:
hidden_states = hidden_states[:, -num_last_tokens:]
if target_ids is not None:
# if we are given some desired targets also calculate the loss
logits = self.lm_head(hidden_states)
self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target_ids.view(-1), ignore_index=-1)
else:
# inference-time mini-optimization: only forward the output on the very last position
logits = self.output(hidden_states[:, [-1], :]) # note: using list [-1] to preserve the time dim
self.last_loss = None
return logits
@classmethod
def from_pretrained(cls, pretrained_model_name, device=None, dtype=None, **kwargs):
config_data = load_config_hf(pretrained_model_name)
config = MambaConfig(**config_data)
model = cls(config, device=device, dtype=dtype, **kwargs)
model.load_state_dict(load_state_dict_hf(pretrained_model_name, device=device, dtype=dtype))
return model
def save_pretrained(self, save_directory):
"""
Minimal implementation of save_pretrained for MambaLMHeadModel.
Save the model and its configuration file to a directory.
"""
# Ensure save_directory exists
if not os.path.exists(save_directory):
os.makedirs(save_directory)
# Save the model's state_dict
model_path = os.path.join(save_directory, 'pytorch_model.bin')
torch.save(self.state_dict(), model_path)
# Save the configuration of the model
config_path = os.path.join(save_directory, 'config.json')
with open(config_path, 'w') as f:
json.dump(self.config.__dict__, f)
|