MrezaPRZ commited on
Commit
0010033
·
verified ·
1 Parent(s): 9ce033b

Upload model weights without loading

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": -0.00028816385895769406,
4
+ "train_runtime": 58537.3897,
5
+ "train_samples_per_second": 0.084,
6
+ "train_steps_per_second": 0.002
7
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 3584,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 18944,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 28,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 28,
16
+ "num_hidden_layers": 28,
17
+ "num_key_value_heads": 4,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": 131072,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.51.3",
25
+ "use_cache": true,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 152064
28
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.51.3"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee49568ebafefe89d2ecd4c90dab6d0473d569b8acabf594a22b6e06f4f393be
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52f6ca585817b1dd3ef5b488ecbdac506780fe2773edc746a5675b756ae49d03
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba68988be9af3c4280c14ffe4334477b58a0e185a4ab564ebcaae08b7c324094
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23d1c10fa46f78738dc01862a2651965a271c2147ee05fd25d7e00126315eef2
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63a2951d5edfa5cc0a2346ef872f8c77a2920274cfc3b503b04e3799104dee80
3
+ size 11422060
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 32768,
204
+ "pad_token": "<|im_end|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": -0.00028816385895769406,
4
+ "train_runtime": 58537.3897,
5
+ "train_samples_per_second": 0.084,
6
+ "train_steps_per_second": 0.002
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,1264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.9808917197452229,
6
+ "eval_steps": 500,
7
+ "global_step": 132,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "clip_ratio": 0.0,
14
+ "completion_length": 341.7267630440848,
15
+ "epoch": 0.0074309978768577496,
16
+ "grad_norm": 0.08086328746974374,
17
+ "learning_rate": 0.0,
18
+ "loss": -0.0006,
19
+ "num_tokens": 3159359.0,
20
+ "reward": 0.5170068130606696,
21
+ "reward_std": 0.29308582487560453,
22
+ "rewards/acc_reward_func": 0.5170068102223533,
23
+ "step": 1
24
+ },
25
+ {
26
+ "clip_ratio": 0.0,
27
+ "epoch": 0.014861995753715499,
28
+ "grad_norm": 0.08087477809734007,
29
+ "learning_rate": 7.142857142857142e-08,
30
+ "loss": -0.0006,
31
+ "step": 2
32
+ },
33
+ {
34
+ "clip_ratio": 0.0001838355625901992,
35
+ "epoch": 0.022292993630573247,
36
+ "grad_norm": 0.07945717618543717,
37
+ "learning_rate": 1.4285714285714285e-07,
38
+ "loss": -0.0006,
39
+ "step": 3
40
+ },
41
+ {
42
+ "clip_ratio": 0.0001572738398127036,
43
+ "epoch": 0.029723991507430998,
44
+ "grad_norm": 0.0826048402223115,
45
+ "learning_rate": 2.1428571428571426e-07,
46
+ "loss": -0.0006,
47
+ "step": 4
48
+ },
49
+ {
50
+ "clip_ratio": 0.0,
51
+ "completion_length": 344.3208690824963,
52
+ "epoch": 0.037154989384288746,
53
+ "grad_norm": 0.07979158138671237,
54
+ "learning_rate": 2.857142857142857e-07,
55
+ "loss": -0.0028,
56
+ "num_tokens": 6223398.0,
57
+ "reward": 0.5000000081601597,
58
+ "reward_std": 0.30536195990585147,
59
+ "rewards/acc_reward_func": 0.5000000081601597,
60
+ "step": 5
61
+ },
62
+ {
63
+ "clip_ratio": 0.0001808156685867635,
64
+ "epoch": 0.044585987261146494,
65
+ "grad_norm": 0.08024143057101281,
66
+ "learning_rate": 3.5714285714285716e-07,
67
+ "loss": -0.0028,
68
+ "step": 6
69
+ },
70
+ {
71
+ "clip_ratio": 0.00017867709487161067,
72
+ "epoch": 0.05201698513800425,
73
+ "grad_norm": 0.08005899196723062,
74
+ "learning_rate": 4.285714285714285e-07,
75
+ "loss": -0.0028,
76
+ "step": 7
77
+ },
78
+ {
79
+ "clip_ratio": 0.00019149975127047148,
80
+ "epoch": 0.059447983014861996,
81
+ "grad_norm": 0.0796285692450267,
82
+ "learning_rate": 5e-07,
83
+ "loss": -0.0028,
84
+ "step": 8
85
+ },
86
+ {
87
+ "clip_ratio": 0.0,
88
+ "completion_length": 336.19728597005206,
89
+ "epoch": 0.06687898089171974,
90
+ "grad_norm": 0.0809301416262032,
91
+ "learning_rate": 5.714285714285714e-07,
92
+ "loss": 0.0007,
93
+ "num_tokens": 9136668.0,
94
+ "reward": 0.49546485855465844,
95
+ "reward_std": 0.3260552350963865,
96
+ "rewards/acc_reward_func": 0.49546485855465844,
97
+ "step": 9
98
+ },
99
+ {
100
+ "clip_ratio": 0.00021897819568125887,
101
+ "epoch": 0.07430997876857749,
102
+ "grad_norm": 0.08109016776097855,
103
+ "learning_rate": 6.428571428571429e-07,
104
+ "loss": 0.0007,
105
+ "step": 10
106
+ },
107
+ {
108
+ "clip_ratio": 0.00020755232045693056,
109
+ "epoch": 0.08174097664543524,
110
+ "grad_norm": 0.08087779783507208,
111
+ "learning_rate": 7.142857142857143e-07,
112
+ "loss": 0.0007,
113
+ "step": 11
114
+ },
115
+ {
116
+ "clip_ratio": 0.00024463120367034294,
117
+ "epoch": 0.08917197452229299,
118
+ "grad_norm": 0.08067403590429052,
119
+ "learning_rate": 7.857142857142856e-07,
120
+ "loss": 0.0005,
121
+ "step": 12
122
+ },
123
+ {
124
+ "clip_ratio": 0.0,
125
+ "completion_length": 339.7154235839844,
126
+ "epoch": 0.09660297239915075,
127
+ "grad_norm": 0.0793808960257417,
128
+ "learning_rate": 8.57142857142857e-07,
129
+ "loss": -0.0056,
130
+ "num_tokens": 12045721.0,
131
+ "reward": 0.5907029594693866,
132
+ "reward_std": 0.3145202554407574,
133
+ "rewards/acc_reward_func": 0.5907029566310701,
134
+ "step": 13
135
+ },
136
+ {
137
+ "clip_ratio": 0.00019346000789526095,
138
+ "epoch": 0.1040339702760085,
139
+ "grad_norm": 0.07996587273324629,
140
+ "learning_rate": 9.285714285714285e-07,
141
+ "loss": -0.0056,
142
+ "step": 14
143
+ },
144
+ {
145
+ "clip_ratio": 0.0002197972238978504,
146
+ "epoch": 0.11146496815286625,
147
+ "grad_norm": 0.07844004513920859,
148
+ "learning_rate": 1e-06,
149
+ "loss": -0.0057,
150
+ "step": 15
151
+ },
152
+ {
153
+ "clip_ratio": 0.0002786624475750917,
154
+ "epoch": 0.11889596602972399,
155
+ "grad_norm": 0.07872371102981156,
156
+ "learning_rate": 1e-06,
157
+ "loss": -0.0058,
158
+ "step": 16
159
+ },
160
+ {
161
+ "clip_ratio": 0.0,
162
+ "completion_length": 343.09864443824404,
163
+ "epoch": 0.12632696390658174,
164
+ "grad_norm": 0.06834766428561097,
165
+ "learning_rate": 1e-06,
166
+ "loss": 0.0004,
167
+ "num_tokens": 15049348.0,
168
+ "reward": 0.5997732579708099,
169
+ "reward_std": 0.2505793724031675,
170
+ "rewards/acc_reward_func": 0.5997732522941771,
171
+ "step": 17
172
+ },
173
+ {
174
+ "clip_ratio": 0.00017599576330255893,
175
+ "epoch": 0.1337579617834395,
176
+ "grad_norm": 0.06874704664521386,
177
+ "learning_rate": 1e-06,
178
+ "loss": 0.0004,
179
+ "step": 18
180
+ },
181
+ {
182
+ "clip_ratio": 0.0003469426301307976,
183
+ "epoch": 0.14118895966029724,
184
+ "grad_norm": 0.06727013413601377,
185
+ "learning_rate": 1e-06,
186
+ "loss": 0.0002,
187
+ "step": 19
188
+ },
189
+ {
190
+ "clip_ratio": 0.000489247930956827,
191
+ "epoch": 0.14861995753715498,
192
+ "grad_norm": 0.06670999385159201,
193
+ "learning_rate": 1e-06,
194
+ "loss": 0.0001,
195
+ "step": 20
196
+ },
197
+ {
198
+ "clip_ratio": 0.0,
199
+ "completion_length": 350.2063555036272,
200
+ "epoch": 0.15605095541401273,
201
+ "grad_norm": 0.06650745108644616,
202
+ "learning_rate": 1e-06,
203
+ "loss": -0.0001,
204
+ "num_tokens": 18191946.0,
205
+ "reward": 0.6530612352348509,
206
+ "reward_std": 0.24400150775909424,
207
+ "rewards/acc_reward_func": 0.6530612295582181,
208
+ "step": 21
209
+ },
210
+ {
211
+ "clip_ratio": 0.00013373352599696124,
212
+ "epoch": 0.16348195329087048,
213
+ "grad_norm": 0.06586079666953687,
214
+ "learning_rate": 1e-06,
215
+ "loss": -0.0001,
216
+ "step": 22
217
+ },
218
+ {
219
+ "clip_ratio": 0.0001875036643815249,
220
+ "epoch": 0.17091295116772823,
221
+ "grad_norm": 0.06545454216834161,
222
+ "learning_rate": 1e-06,
223
+ "loss": -0.0002,
224
+ "step": 23
225
+ },
226
+ {
227
+ "clip_ratio": 0.0003731138775557546,
228
+ "epoch": 0.17834394904458598,
229
+ "grad_norm": 0.06428724973892952,
230
+ "learning_rate": 1e-06,
231
+ "loss": -0.0003,
232
+ "step": 24
233
+ },
234
+ {
235
+ "clip_ratio": 0.0,
236
+ "completion_length": 352.0895749046689,
237
+ "epoch": 0.18577494692144372,
238
+ "grad_norm": 0.06446210353107223,
239
+ "learning_rate": 1e-06,
240
+ "loss": -0.0037,
241
+ "num_tokens": 21159481.0,
242
+ "reward": 0.5736961549236661,
243
+ "reward_std": 0.2319913577465784,
244
+ "rewards/acc_reward_func": 0.5736961492470333,
245
+ "step": 25
246
+ },
247
+ {
248
+ "clip_ratio": 0.0001779778396580479,
249
+ "epoch": 0.1932059447983015,
250
+ "grad_norm": 0.06458451199765729,
251
+ "learning_rate": 1e-06,
252
+ "loss": -0.0038,
253
+ "step": 26
254
+ },
255
+ {
256
+ "clip_ratio": 0.00031768538021770796,
257
+ "epoch": 0.20063694267515925,
258
+ "grad_norm": 0.06403775486903479,
259
+ "learning_rate": 1e-06,
260
+ "loss": -0.0039,
261
+ "step": 27
262
+ },
263
+ {
264
+ "clip_ratio": 0.0004978579201547074,
265
+ "epoch": 0.208067940552017,
266
+ "grad_norm": 0.06384970547978061,
267
+ "learning_rate": 1e-06,
268
+ "loss": -0.004,
269
+ "step": 28
270
+ },
271
+ {
272
+ "clip_ratio": 0.0,
273
+ "completion_length": 353.5793733142671,
274
+ "epoch": 0.21549893842887474,
275
+ "grad_norm": 0.07091531570599886,
276
+ "learning_rate": 1e-06,
277
+ "loss": -0.0007,
278
+ "num_tokens": 24284078.0,
279
+ "reward": 0.5782313063031151,
280
+ "reward_std": 0.27138930842989967,
281
+ "rewards/acc_reward_func": 0.5782313006264823,
282
+ "step": 29
283
+ },
284
+ {
285
+ "clip_ratio": 0.00023922019664453166,
286
+ "epoch": 0.2229299363057325,
287
+ "grad_norm": 0.07207676160001003,
288
+ "learning_rate": 1e-06,
289
+ "loss": -0.0008,
290
+ "step": 30
291
+ },
292
+ {
293
+ "clip_ratio": 0.00028778909801899103,
294
+ "epoch": 0.23036093418259024,
295
+ "grad_norm": 0.08311384778120834,
296
+ "learning_rate": 1e-06,
297
+ "loss": -0.001,
298
+ "step": 31
299
+ },
300
+ {
301
+ "clip_ratio": 0.0005288766468376187,
302
+ "epoch": 0.23779193205944799,
303
+ "grad_norm": 0.07065550775183596,
304
+ "learning_rate": 1e-06,
305
+ "loss": -0.0012,
306
+ "step": 32
307
+ },
308
+ {
309
+ "clip_ratio": 0.0,
310
+ "completion_length": 374.4387802850632,
311
+ "epoch": 0.24522292993630573,
312
+ "grad_norm": 0.0689708415519406,
313
+ "learning_rate": 1e-06,
314
+ "loss": 0.003,
315
+ "num_tokens": 27446489.0,
316
+ "reward": 0.585034022728602,
317
+ "reward_std": 0.2801268689689182,
318
+ "rewards/acc_reward_func": 0.5850340198902857,
319
+ "step": 33
320
+ },
321
+ {
322
+ "clip_ratio": 0.00021597234375630726,
323
+ "epoch": 0.2526539278131635,
324
+ "grad_norm": 0.06897131457392458,
325
+ "learning_rate": 1e-06,
326
+ "loss": 0.0029,
327
+ "step": 34
328
+ },
329
+ {
330
+ "clip_ratio": 0.0003070946047609184,
331
+ "epoch": 0.26008492569002123,
332
+ "grad_norm": 0.0674766183603089,
333
+ "learning_rate": 1e-06,
334
+ "loss": 0.0028,
335
+ "step": 35
336
+ },
337
+ {
338
+ "clip_ratio": 0.0005742841105010095,
339
+ "epoch": 0.267515923566879,
340
+ "grad_norm": 0.06745873238088902,
341
+ "learning_rate": 1e-06,
342
+ "loss": 0.0026,
343
+ "step": 36
344
+ },
345
+ {
346
+ "clip_ratio": 0.0,
347
+ "completion_length": 379.7687145414807,
348
+ "epoch": 0.2749469214437367,
349
+ "grad_norm": 0.061592227582679786,
350
+ "learning_rate": 1e-06,
351
+ "loss": 0.0005,
352
+ "num_tokens": 30450929.0,
353
+ "reward": 0.596371889823959,
354
+ "reward_std": 0.2418635892016547,
355
+ "rewards/acc_reward_func": 0.5963718841473261,
356
+ "step": 37
357
+ },
358
+ {
359
+ "clip_ratio": 0.00013849885224425678,
360
+ "epoch": 0.2823779193205945,
361
+ "grad_norm": 0.06152688747932998,
362
+ "learning_rate": 1e-06,
363
+ "loss": 0.0004,
364
+ "step": 38
365
+ },
366
+ {
367
+ "clip_ratio": 0.00022306023882785148,
368
+ "epoch": 0.2898089171974522,
369
+ "grad_norm": 0.06152633134972845,
370
+ "learning_rate": 1e-06,
371
+ "loss": 0.0003,
372
+ "step": 39
373
+ },
374
+ {
375
+ "clip_ratio": 0.00031142526720595056,
376
+ "epoch": 0.29723991507430997,
377
+ "grad_norm": 0.0626993089929395,
378
+ "learning_rate": 1e-06,
379
+ "loss": 0.0001,
380
+ "step": 40
381
+ },
382
+ {
383
+ "clip_ratio": 0.0,
384
+ "completion_length": 390.8605521065848,
385
+ "epoch": 0.3046709129511677,
386
+ "grad_norm": 0.0629758366767815,
387
+ "learning_rate": 1e-06,
388
+ "loss": 0.0036,
389
+ "num_tokens": 33596816.0,
390
+ "reward": 0.636054433527447,
391
+ "reward_std": 0.25603189283893224,
392
+ "rewards/acc_reward_func": 0.6360544250124976,
393
+ "step": 41
394
+ },
395
+ {
396
+ "clip_ratio": 0.00010988019805933748,
397
+ "epoch": 0.31210191082802546,
398
+ "grad_norm": 0.06378608109398301,
399
+ "learning_rate": 1e-06,
400
+ "loss": 0.0035,
401
+ "step": 42
402
+ },
403
+ {
404
+ "clip_ratio": 0.00025688905103985843,
405
+ "epoch": 0.3195329087048832,
406
+ "grad_norm": 0.06325047212115749,
407
+ "learning_rate": 1e-06,
408
+ "loss": 0.0034,
409
+ "step": 43
410
+ },
411
+ {
412
+ "clip_ratio": 0.00039352324078901715,
413
+ "epoch": 0.32696390658174096,
414
+ "grad_norm": 0.06227219214519032,
415
+ "learning_rate": 1e-06,
416
+ "loss": 0.0032,
417
+ "step": 44
418
+ },
419
+ {
420
+ "clip_ratio": 0.0,
421
+ "completion_length": 380.9455857049851,
422
+ "epoch": 0.3343949044585987,
423
+ "grad_norm": 0.06916759874959395,
424
+ "learning_rate": 1e-06,
425
+ "loss": 0.005,
426
+ "num_tokens": 36816368.0,
427
+ "reward": 0.5861678095090956,
428
+ "reward_std": 0.2711287704961641,
429
+ "rewards/acc_reward_func": 0.5861678066707793,
430
+ "step": 45
431
+ },
432
+ {
433
+ "clip_ratio": 0.00013988154855074493,
434
+ "epoch": 0.34182590233545646,
435
+ "grad_norm": 0.06865178228849304,
436
+ "learning_rate": 1e-06,
437
+ "loss": 0.0049,
438
+ "step": 46
439
+ },
440
+ {
441
+ "clip_ratio": 0.00035448711389021595,
442
+ "epoch": 0.3492569002123142,
443
+ "grad_norm": 0.0674984372138465,
444
+ "learning_rate": 1e-06,
445
+ "loss": 0.0047,
446
+ "step": 47
447
+ },
448
+ {
449
+ "clip_ratio": 0.000534125243402308,
450
+ "epoch": 0.35668789808917195,
451
+ "grad_norm": 0.06713323621764225,
452
+ "learning_rate": 1e-06,
453
+ "loss": 0.0045,
454
+ "step": 48
455
+ },
456
+ {
457
+ "clip_ratio": 0.0,
458
+ "completion_length": 366.5612284342448,
459
+ "epoch": 0.3641188959660297,
460
+ "grad_norm": 0.0628565554992099,
461
+ "learning_rate": 1e-06,
462
+ "loss": -0.0007,
463
+ "num_tokens": 39788825.0,
464
+ "reward": 0.6405895806494213,
465
+ "reward_std": 0.23035428832684243,
466
+ "rewards/acc_reward_func": 0.6405895692961556,
467
+ "step": 49
468
+ },
469
+ {
470
+ "clip_ratio": 0.00017204703319640387,
471
+ "epoch": 0.37154989384288745,
472
+ "grad_norm": 0.060413657444765324,
473
+ "learning_rate": 1e-06,
474
+ "loss": -0.0008,
475
+ "step": 50
476
+ },
477
+ {
478
+ "clip_ratio": 0.00028196911201424274,
479
+ "epoch": 0.37898089171974525,
480
+ "grad_norm": 0.060029825820231635,
481
+ "learning_rate": 1e-06,
482
+ "loss": -0.0009,
483
+ "step": 51
484
+ },
485
+ {
486
+ "clip_ratio": 0.0005388078487677765,
487
+ "epoch": 0.386411889596603,
488
+ "grad_norm": 0.05859097094352694,
489
+ "learning_rate": 1e-06,
490
+ "loss": -0.0011,
491
+ "step": 52
492
+ },
493
+ {
494
+ "clip_ratio": 0.0,
495
+ "completion_length": 370.1700730096726,
496
+ "epoch": 0.39384288747346075,
497
+ "grad_norm": 0.062489857926374105,
498
+ "learning_rate": 1e-06,
499
+ "loss": -0.002,
500
+ "num_tokens": 42977507.0,
501
+ "reward": 0.6337868599664598,
502
+ "reward_std": 0.2415066155649367,
503
+ "rewards/acc_reward_func": 0.6337868571281433,
504
+ "step": 53
505
+ },
506
+ {
507
+ "clip_ratio": 0.00015676757123271403,
508
+ "epoch": 0.4012738853503185,
509
+ "grad_norm": 0.062323008512970825,
510
+ "learning_rate": 1e-06,
511
+ "loss": -0.0021,
512
+ "step": 54
513
+ },
514
+ {
515
+ "clip_ratio": 0.0002369500718833435,
516
+ "epoch": 0.40870488322717624,
517
+ "grad_norm": 0.06229025216025021,
518
+ "learning_rate": 1e-06,
519
+ "loss": -0.0023,
520
+ "step": 55
521
+ },
522
+ {
523
+ "clip_ratio": 0.00043342224342354926,
524
+ "epoch": 0.416135881104034,
525
+ "grad_norm": 0.061363769616563854,
526
+ "learning_rate": 1e-06,
527
+ "loss": -0.0025,
528
+ "step": 56
529
+ },
530
+ {
531
+ "clip_ratio": 0.0,
532
+ "completion_length": 377.649664015997,
533
+ "epoch": 0.42356687898089174,
534
+ "grad_norm": 0.060693382900306965,
535
+ "learning_rate": 1e-06,
536
+ "loss": -0.0069,
537
+ "num_tokens": 45992960.0,
538
+ "reward": 0.6213152082193465,
539
+ "reward_std": 0.19496617785521916,
540
+ "rewards/acc_reward_func": 0.6213151997043973,
541
+ "step": 57
542
+ },
543
+ {
544
+ "clip_ratio": 0.00011746683992983197,
545
+ "epoch": 0.4309978768577495,
546
+ "grad_norm": 0.057906127015709595,
547
+ "learning_rate": 1e-06,
548
+ "loss": -0.007,
549
+ "step": 58
550
+ },
551
+ {
552
+ "clip_ratio": 0.00015394135230703147,
553
+ "epoch": 0.43842887473460723,
554
+ "grad_norm": 0.05770813992767556,
555
+ "learning_rate": 1e-06,
556
+ "loss": -0.0071,
557
+ "step": 59
558
+ },
559
+ {
560
+ "clip_ratio": 0.0002990371741318432,
561
+ "epoch": 0.445859872611465,
562
+ "grad_norm": 0.057169748017192656,
563
+ "learning_rate": 1e-06,
564
+ "loss": -0.0073,
565
+ "step": 60
566
+ },
567
+ {
568
+ "clip_ratio": 0.0,
569
+ "completion_length": 385.07256789434524,
570
+ "epoch": 0.45329087048832273,
571
+ "grad_norm": 0.06503664456534936,
572
+ "learning_rate": 1e-06,
573
+ "loss": 0.0007,
574
+ "num_tokens": 48962556.0,
575
+ "reward": 0.6394557903210322,
576
+ "reward_std": 0.2468004703876518,
577
+ "rewards/acc_reward_func": 0.6394557846443993,
578
+ "step": 61
579
+ },
580
+ {
581
+ "clip_ratio": 0.0001142212568083778,
582
+ "epoch": 0.4607218683651805,
583
+ "grad_norm": 0.07260193604541537,
584
+ "learning_rate": 1e-06,
585
+ "loss": 0.0006,
586
+ "step": 62
587
+ },
588
+ {
589
+ "clip_ratio": 0.0002252710536205476,
590
+ "epoch": 0.4681528662420382,
591
+ "grad_norm": 0.06540521622742039,
592
+ "learning_rate": 1e-06,
593
+ "loss": 0.0004,
594
+ "step": 63
595
+ },
596
+ {
597
+ "clip_ratio": 0.00048679712857674096,
598
+ "epoch": 0.47558386411889597,
599
+ "grad_norm": 0.06392595201565687,
600
+ "learning_rate": 1e-06,
601
+ "loss": 0.0001,
602
+ "step": 64
603
+ },
604
+ {
605
+ "clip_ratio": 0.0,
606
+ "completion_length": 369.952386765253,
607
+ "epoch": 0.4830148619957537,
608
+ "grad_norm": 0.0631263236426717,
609
+ "learning_rate": 1e-06,
610
+ "loss": 0.0013,
611
+ "num_tokens": 52081410.0,
612
+ "reward": 0.5975056723469779,
613
+ "reward_std": 0.24312191580732664,
614
+ "rewards/acc_reward_func": 0.5975056723469779,
615
+ "step": 65
616
+ },
617
+ {
618
+ "clip_ratio": 0.0001545405653554813,
619
+ "epoch": 0.49044585987261147,
620
+ "grad_norm": 0.06318597960704911,
621
+ "learning_rate": 1e-06,
622
+ "loss": 0.0012,
623
+ "step": 66
624
+ },
625
+ {
626
+ "clip_ratio": 0.0002261997837021703,
627
+ "epoch": 0.4978768577494692,
628
+ "grad_norm": 0.0629106951108031,
629
+ "learning_rate": 1e-06,
630
+ "loss": 0.0011,
631
+ "step": 67
632
+ },
633
+ {
634
+ "clip_ratio": 0.00041743737771563855,
635
+ "epoch": 0.505307855626327,
636
+ "grad_norm": 0.0632657220715682,
637
+ "learning_rate": 1e-06,
638
+ "loss": 0.0008,
639
+ "step": 68
640
+ },
641
+ {
642
+ "clip_ratio": 0.0,
643
+ "completion_length": 364.53175281343005,
644
+ "epoch": 0.5127388535031847,
645
+ "grad_norm": 0.06136012395478247,
646
+ "learning_rate": 1e-06,
647
+ "loss": -0.0006,
648
+ "num_tokens": 55109647.0,
649
+ "reward": 0.6020408258551643,
650
+ "reward_std": 0.2137400745635941,
651
+ "rewards/acc_reward_func": 0.6020408201785314,
652
+ "step": 69
653
+ },
654
+ {
655
+ "clip_ratio": 0.00010235635393958849,
656
+ "epoch": 0.5201698513800425,
657
+ "grad_norm": 0.06243874921426781,
658
+ "learning_rate": 1e-06,
659
+ "loss": -0.0007,
660
+ "step": 70
661
+ },
662
+ {
663
+ "clip_ratio": 0.00016079150147907924,
664
+ "epoch": 0.5276008492569002,
665
+ "grad_norm": 0.06340802042111414,
666
+ "learning_rate": 1e-06,
667
+ "loss": -0.0008,
668
+ "step": 71
669
+ },
670
+ {
671
+ "clip_ratio": 0.0002864431884344889,
672
+ "epoch": 0.535031847133758,
673
+ "grad_norm": 0.060899777207080064,
674
+ "learning_rate": 1e-06,
675
+ "loss": -0.0011,
676
+ "step": 72
677
+ },
678
+ {
679
+ "clip_ratio": 0.0,
680
+ "completion_length": 372.2551051548549,
681
+ "epoch": 0.5424628450106157,
682
+ "grad_norm": 0.06521913849953302,
683
+ "learning_rate": 1e-06,
684
+ "loss": 0.0014,
685
+ "num_tokens": 58184698.0,
686
+ "reward": 0.5793650916644505,
687
+ "reward_std": 0.23960900750188602,
688
+ "rewards/acc_reward_func": 0.5793650888261341,
689
+ "step": 73
690
+ },
691
+ {
692
+ "clip_ratio": 0.00015685576034316217,
693
+ "epoch": 0.5498938428874734,
694
+ "grad_norm": 0.0650407164221492,
695
+ "learning_rate": 1e-06,
696
+ "loss": 0.0013,
697
+ "step": 74
698
+ },
699
+ {
700
+ "clip_ratio": 0.0002204552958054202,
701
+ "epoch": 0.5573248407643312,
702
+ "grad_norm": 0.06495775379721254,
703
+ "learning_rate": 1e-06,
704
+ "loss": 0.0011,
705
+ "step": 75
706
+ },
707
+ {
708
+ "clip_ratio": 0.0004874699469447868,
709
+ "epoch": 0.564755838641189,
710
+ "grad_norm": 0.06475707873807389,
711
+ "learning_rate": 1e-06,
712
+ "loss": 0.0009,
713
+ "step": 76
714
+ },
715
+ {
716
+ "clip_ratio": 0.0,
717
+ "completion_length": 383.8061305454799,
718
+ "epoch": 0.5721868365180467,
719
+ "grad_norm": 0.06331746668722547,
720
+ "learning_rate": 1e-06,
721
+ "loss": 0.0031,
722
+ "num_tokens": 61126891.0,
723
+ "reward": 0.6473922999132247,
724
+ "reward_std": 0.2356209299039273,
725
+ "rewards/acc_reward_func": 0.6473922942365918,
726
+ "step": 77
727
+ },
728
+ {
729
+ "clip_ratio": 0.00015557293539002006,
730
+ "epoch": 0.5796178343949044,
731
+ "grad_norm": 0.06358059963704424,
732
+ "learning_rate": 1e-06,
733
+ "loss": 0.003,
734
+ "step": 78
735
+ },
736
+ {
737
+ "clip_ratio": 0.0002651862686477779,
738
+ "epoch": 0.5870488322717622,
739
+ "grad_norm": 0.06242581352023444,
740
+ "learning_rate": 1e-06,
741
+ "loss": 0.0028,
742
+ "step": 79
743
+ },
744
+ {
745
+ "clip_ratio": 0.0004893070893428687,
746
+ "epoch": 0.5944798301486199,
747
+ "grad_norm": 0.0609064485591393,
748
+ "learning_rate": 1e-06,
749
+ "loss": 0.0026,
750
+ "step": 80
751
+ },
752
+ {
753
+ "clip_ratio": 0.0,
754
+ "completion_length": 350.4886692592076,
755
+ "epoch": 0.6019108280254777,
756
+ "grad_norm": 0.06314986431723936,
757
+ "learning_rate": 1e-06,
758
+ "loss": 0.0029,
759
+ "num_tokens": 64278222.0,
760
+ "reward": 0.6802721172571182,
761
+ "reward_std": 0.22581943603498594,
762
+ "rewards/acc_reward_func": 0.6802721059038526,
763
+ "step": 81
764
+ },
765
+ {
766
+ "clip_ratio": 0.0001433593038416889,
767
+ "epoch": 0.6093418259023354,
768
+ "grad_norm": 0.06290949597812766,
769
+ "learning_rate": 1e-06,
770
+ "loss": 0.0028,
771
+ "step": 82
772
+ },
773
+ {
774
+ "clip_ratio": 0.0002783082295320041,
775
+ "epoch": 0.6167728237791932,
776
+ "grad_norm": 0.06287850239253823,
777
+ "learning_rate": 1e-06,
778
+ "loss": 0.0026,
779
+ "step": 83
780
+ },
781
+ {
782
+ "clip_ratio": 0.0005158363062600117,
783
+ "epoch": 0.6242038216560509,
784
+ "grad_norm": 0.06275939403952029,
785
+ "learning_rate": 1e-06,
786
+ "loss": 0.0024,
787
+ "step": 84
788
+ },
789
+ {
790
+ "clip_ratio": 0.0,
791
+ "completion_length": 359.168942406064,
792
+ "epoch": 0.6316348195329087,
793
+ "grad_norm": 0.07881948540281701,
794
+ "learning_rate": 1e-06,
795
+ "loss": -0.0073,
796
+ "num_tokens": 67289105.0,
797
+ "reward": 0.6598639573369708,
798
+ "reward_std": 0.24390507791013943,
799
+ "rewards/acc_reward_func": 0.659863951660338,
800
+ "step": 85
801
+ },
802
+ {
803
+ "clip_ratio": 0.00013236766764228896,
804
+ "epoch": 0.6390658174097664,
805
+ "grad_norm": 0.0653084592600677,
806
+ "learning_rate": 1e-06,
807
+ "loss": -0.0074,
808
+ "step": 86
809
+ },
810
+ {
811
+ "clip_ratio": 0.00017881063554557928,
812
+ "epoch": 0.6464968152866242,
813
+ "grad_norm": 0.06524851177812671,
814
+ "learning_rate": 1e-06,
815
+ "loss": -0.0077,
816
+ "step": 87
817
+ },
818
+ {
819
+ "clip_ratio": 0.0002778974991261272,
820
+ "epoch": 0.6539278131634819,
821
+ "grad_norm": 0.06451115804588689,
822
+ "learning_rate": 1e-06,
823
+ "loss": -0.0079,
824
+ "step": 88
825
+ },
826
+ {
827
+ "clip_ratio": 0.0,
828
+ "completion_length": 357.64512852260043,
829
+ "epoch": 0.6613588110403397,
830
+ "grad_norm": 0.06630152283194597,
831
+ "learning_rate": 1e-06,
832
+ "loss": -0.0,
833
+ "num_tokens": 70432648.0,
834
+ "reward": 0.6712018279802232,
835
+ "reward_std": 0.24537649963583266,
836
+ "rewards/acc_reward_func": 0.6712018194652739,
837
+ "step": 89
838
+ },
839
+ {
840
+ "clip_ratio": 0.0001349434973062238,
841
+ "epoch": 0.6687898089171974,
842
+ "grad_norm": 0.06559670392653466,
843
+ "learning_rate": 1e-06,
844
+ "loss": -0.0001,
845
+ "step": 90
846
+ },
847
+ {
848
+ "clip_ratio": 0.0002572811865233927,
849
+ "epoch": 0.6762208067940552,
850
+ "grad_norm": 0.06520494024347283,
851
+ "learning_rate": 1e-06,
852
+ "loss": -0.0004,
853
+ "step": 91
854
+ },
855
+ {
856
+ "clip_ratio": 0.0007034737652810734,
857
+ "epoch": 0.6836518046709129,
858
+ "grad_norm": 0.06315058857400183,
859
+ "learning_rate": 1e-06,
860
+ "loss": -0.0006,
861
+ "step": 92
862
+ },
863
+ {
864
+ "clip_ratio": 0.0,
865
+ "completion_length": 353.4535217285156,
866
+ "epoch": 0.6910828025477707,
867
+ "grad_norm": 0.05958332825443139,
868
+ "learning_rate": 1e-06,
869
+ "loss": 0.0038,
870
+ "num_tokens": 73419374.0,
871
+ "reward": 0.6451247235139211,
872
+ "reward_std": 0.20120730180115926,
873
+ "rewards/acc_reward_func": 0.6451247235139211,
874
+ "step": 93
875
+ },
876
+ {
877
+ "clip_ratio": 0.00012057262124255344,
878
+ "epoch": 0.6985138004246284,
879
+ "grad_norm": 0.060331181041075654,
880
+ "learning_rate": 1e-06,
881
+ "loss": 0.0037,
882
+ "step": 94
883
+ },
884
+ {
885
+ "clip_ratio": 0.00019830298922551308,
886
+ "epoch": 0.7059447983014862,
887
+ "grad_norm": 0.059953496435375425,
888
+ "learning_rate": 1e-06,
889
+ "loss": 0.0035,
890
+ "step": 95
891
+ },
892
+ {
893
+ "clip_ratio": 0.0004421481661709203,
894
+ "epoch": 0.7133757961783439,
895
+ "grad_norm": 0.059328760204792295,
896
+ "learning_rate": 1e-06,
897
+ "loss": 0.0032,
898
+ "step": 96
899
+ },
900
+ {
901
+ "clip_ratio": 0.0,
902
+ "completion_length": 351.6281244187128,
903
+ "epoch": 0.7208067940552016,
904
+ "grad_norm": 0.06476127865871668,
905
+ "learning_rate": 1e-06,
906
+ "loss": 0.0009,
907
+ "num_tokens": 76658560.0,
908
+ "reward": 0.6360544292699724,
909
+ "reward_std": 0.21411728167108127,
910
+ "rewards/acc_reward_func": 0.6360544264316559,
911
+ "step": 97
912
+ },
913
+ {
914
+ "clip_ratio": 0.0001179320069717332,
915
+ "epoch": 0.7282377919320594,
916
+ "grad_norm": 0.06488361533451398,
917
+ "learning_rate": 1e-06,
918
+ "loss": 0.0008,
919
+ "step": 98
920
+ },
921
+ {
922
+ "clip_ratio": 0.00018475095047116547,
923
+ "epoch": 0.7356687898089171,
924
+ "grad_norm": 0.06472419917345307,
925
+ "learning_rate": 1e-06,
926
+ "loss": 0.0006,
927
+ "step": 99
928
+ },
929
+ {
930
+ "clip_ratio": 0.000287527184853042,
931
+ "epoch": 0.7430997876857749,
932
+ "grad_norm": 0.0639335874652328,
933
+ "learning_rate": 1e-06,
934
+ "loss": 0.0003,
935
+ "step": 100
936
+ },
937
+ {
938
+ "clip_ratio": 0.0,
939
+ "completion_length": 345.3061276390439,
940
+ "epoch": 0.7505307855626328,
941
+ "grad_norm": 0.06715329563723746,
942
+ "learning_rate": 1e-06,
943
+ "loss": -0.0025,
944
+ "num_tokens": 79817980.0,
945
+ "reward": 0.624716560045878,
946
+ "reward_std": 0.24032448941753023,
947
+ "rewards/acc_reward_func": 0.6247165515309289,
948
+ "step": 101
949
+ },
950
+ {
951
+ "clip_ratio": 0.00013254733875371692,
952
+ "epoch": 0.7579617834394905,
953
+ "grad_norm": 0.06714369960521104,
954
+ "learning_rate": 1e-06,
955
+ "loss": -0.0026,
956
+ "step": 102
957
+ },
958
+ {
959
+ "clip_ratio": 0.00020292648419161283,
960
+ "epoch": 0.7653927813163482,
961
+ "grad_norm": 0.06738540272745804,
962
+ "learning_rate": 1e-06,
963
+ "loss": -0.0029,
964
+ "step": 103
965
+ },
966
+ {
967
+ "clip_ratio": 0.00046159424389424243,
968
+ "epoch": 0.772823779193206,
969
+ "grad_norm": 0.06683308540913054,
970
+ "learning_rate": 1e-06,
971
+ "loss": -0.0032,
972
+ "step": 104
973
+ },
974
+ {
975
+ "clip_ratio": 0.0,
976
+ "completion_length": 344.98299589611236,
977
+ "epoch": 0.7802547770700637,
978
+ "grad_norm": 0.06213033347416386,
979
+ "learning_rate": 1e-06,
980
+ "loss": 0.0061,
981
+ "num_tokens": 82797505.0,
982
+ "reward": 0.7063492139180502,
983
+ "reward_std": 0.18706076290635837,
984
+ "rewards/acc_reward_func": 0.7063492082414173,
985
+ "step": 105
986
+ },
987
+ {
988
+ "clip_ratio": 9.041415337595113e-05,
989
+ "epoch": 0.7876857749469215,
990
+ "grad_norm": 0.06177639834948758,
991
+ "learning_rate": 1e-06,
992
+ "loss": 0.0061,
993
+ "step": 106
994
+ },
995
+ {
996
+ "clip_ratio": 0.0001607231185646794,
997
+ "epoch": 0.7951167728237792,
998
+ "grad_norm": 0.06109816753456417,
999
+ "learning_rate": 1e-06,
1000
+ "loss": 0.0059,
1001
+ "step": 107
1002
+ },
1003
+ {
1004
+ "clip_ratio": 0.0002942822845527969,
1005
+ "epoch": 0.802547770700637,
1006
+ "grad_norm": 0.05990890192520818,
1007
+ "learning_rate": 1e-06,
1008
+ "loss": 0.0056,
1009
+ "step": 108
1010
+ },
1011
+ {
1012
+ "clip_ratio": 0.0,
1013
+ "completion_length": 331.62925792875745,
1014
+ "epoch": 0.8099787685774947,
1015
+ "grad_norm": 0.0705484973603166,
1016
+ "learning_rate": 1e-06,
1017
+ "loss": -0.0006,
1018
+ "num_tokens": 85780678.0,
1019
+ "reward": 0.6575963837759835,
1020
+ "reward_std": 0.22970955535059884,
1021
+ "rewards/acc_reward_func": 0.6575963809376671,
1022
+ "step": 109
1023
+ },
1024
+ {
1025
+ "clip_ratio": 0.00013627276140531258,
1026
+ "epoch": 0.8174097664543525,
1027
+ "grad_norm": 0.07009285424608136,
1028
+ "learning_rate": 1e-06,
1029
+ "loss": -0.0007,
1030
+ "step": 110
1031
+ },
1032
+ {
1033
+ "clip_ratio": 0.0002046585505013354,
1034
+ "epoch": 0.8248407643312102,
1035
+ "grad_norm": 0.0700883025067068,
1036
+ "learning_rate": 1e-06,
1037
+ "loss": -0.001,
1038
+ "step": 111
1039
+ },
1040
+ {
1041
+ "clip_ratio": 0.0005059108720853969,
1042
+ "epoch": 0.832271762208068,
1043
+ "grad_norm": 0.06888801243376852,
1044
+ "learning_rate": 1e-06,
1045
+ "loss": -0.0013,
1046
+ "step": 112
1047
+ },
1048
+ {
1049
+ "clip_ratio": 0.0,
1050
+ "completion_length": 322.01588076636904,
1051
+ "epoch": 0.8397027600849257,
1052
+ "grad_norm": 0.06536166070879086,
1053
+ "learning_rate": 1e-06,
1054
+ "loss": 0.0023,
1055
+ "num_tokens": 88940424.0,
1056
+ "reward": 0.742630402247111,
1057
+ "reward_std": 0.18359530522000223,
1058
+ "rewards/acc_reward_func": 0.7426303908938453,
1059
+ "step": 113
1060
+ },
1061
+ {
1062
+ "clip_ratio": 0.0001239214994018853,
1063
+ "epoch": 0.8471337579617835,
1064
+ "grad_norm": 0.06527450868376303,
1065
+ "learning_rate": 1e-06,
1066
+ "loss": 0.0022,
1067
+ "step": 114
1068
+ },
1069
+ {
1070
+ "clip_ratio": 0.00020105073227092536,
1071
+ "epoch": 0.8545647558386412,
1072
+ "grad_norm": 0.06460779643206258,
1073
+ "learning_rate": 1e-06,
1074
+ "loss": 0.002,
1075
+ "step": 115
1076
+ },
1077
+ {
1078
+ "clip_ratio": 0.00045002524607947895,
1079
+ "epoch": 0.861995753715499,
1080
+ "grad_norm": 0.06392727815491918,
1081
+ "learning_rate": 1e-06,
1082
+ "loss": 0.0017,
1083
+ "step": 116
1084
+ },
1085
+ {
1086
+ "clip_ratio": 0.0,
1087
+ "completion_length": 311.251706077939,
1088
+ "epoch": 0.8694267515923567,
1089
+ "grad_norm": 0.07018788315451174,
1090
+ "learning_rate": 1e-06,
1091
+ "loss": -0.0027,
1092
+ "num_tokens": 91757766.0,
1093
+ "reward": 0.6519274456160409,
1094
+ "reward_std": 0.20784893667414076,
1095
+ "rewards/acc_reward_func": 0.6519274342627752,
1096
+ "step": 117
1097
+ },
1098
+ {
1099
+ "clip_ratio": 0.000157653278403727,
1100
+ "epoch": 0.8768577494692145,
1101
+ "grad_norm": 0.0690532669370979,
1102
+ "learning_rate": 1e-06,
1103
+ "loss": -0.0028,
1104
+ "step": 118
1105
+ },
1106
+ {
1107
+ "clip_ratio": 0.00033690567943267524,
1108
+ "epoch": 0.8842887473460722,
1109
+ "grad_norm": 0.06835107752563815,
1110
+ "learning_rate": 1e-06,
1111
+ "loss": -0.0031,
1112
+ "step": 119
1113
+ },
1114
+ {
1115
+ "clip_ratio": 0.000745917763283831,
1116
+ "epoch": 0.89171974522293,
1117
+ "grad_norm": 0.06660313306459224,
1118
+ "learning_rate": 1e-06,
1119
+ "loss": -0.0034,
1120
+ "step": 120
1121
+ },
1122
+ {
1123
+ "clip_ratio": 0.0,
1124
+ "completion_length": 324.4727943057106,
1125
+ "epoch": 0.8991507430997877,
1126
+ "grad_norm": 0.06970834157267367,
1127
+ "learning_rate": 1e-06,
1128
+ "loss": -0.0038,
1129
+ "num_tokens": 94686801.0,
1130
+ "reward": 0.6337868613856179,
1131
+ "reward_std": 0.19493895627203442,
1132
+ "rewards/acc_reward_func": 0.6337868528706687,
1133
+ "step": 121
1134
+ },
1135
+ {
1136
+ "clip_ratio": 0.00011362713467817576,
1137
+ "epoch": 0.9065817409766455,
1138
+ "grad_norm": 0.06999963278535759,
1139
+ "learning_rate": 1e-06,
1140
+ "loss": -0.004,
1141
+ "step": 122
1142
+ },
1143
+ {
1144
+ "clip_ratio": 0.00021538332068649608,
1145
+ "epoch": 0.9140127388535032,
1146
+ "grad_norm": 0.06972968350918567,
1147
+ "learning_rate": 1e-06,
1148
+ "loss": -0.0043,
1149
+ "step": 123
1150
+ },
1151
+ {
1152
+ "clip_ratio": 0.00044560064478511255,
1153
+ "epoch": 0.921443736730361,
1154
+ "grad_norm": 0.06882950080744477,
1155
+ "learning_rate": 1e-06,
1156
+ "loss": -0.0046,
1157
+ "step": 124
1158
+ },
1159
+ {
1160
+ "clip_ratio": 0.0,
1161
+ "completion_length": 325.98413231259303,
1162
+ "epoch": 0.9288747346072187,
1163
+ "grad_norm": 0.07128773867618274,
1164
+ "learning_rate": 1e-06,
1165
+ "loss": 0.001,
1166
+ "num_tokens": 97858699.0,
1167
+ "reward": 0.6553288144724709,
1168
+ "reward_std": 0.20388960643183618,
1169
+ "rewards/acc_reward_func": 0.6553288059575217,
1170
+ "step": 125
1171
+ },
1172
+ {
1173
+ "clip_ratio": 0.0001051227392010679,
1174
+ "epoch": 0.9363057324840764,
1175
+ "grad_norm": 0.07130043132021105,
1176
+ "learning_rate": 1e-06,
1177
+ "loss": 0.0009,
1178
+ "step": 126
1179
+ },
1180
+ {
1181
+ "clip_ratio": 0.00021789341259309802,
1182
+ "epoch": 0.9437367303609342,
1183
+ "grad_norm": 0.08439067946992163,
1184
+ "learning_rate": 1e-06,
1185
+ "loss": 0.0006,
1186
+ "step": 127
1187
+ },
1188
+ {
1189
+ "clip_ratio": 0.00045677864164601835,
1190
+ "epoch": 0.9511677282377919,
1191
+ "grad_norm": 0.0729135580640395,
1192
+ "learning_rate": 1e-06,
1193
+ "loss": 0.0002,
1194
+ "step": 128
1195
+ },
1196
+ {
1197
+ "clip_ratio": 0.0,
1198
+ "completion_length": 330.68141392299106,
1199
+ "epoch": 0.9585987261146497,
1200
+ "grad_norm": 0.07242470586815654,
1201
+ "learning_rate": 1e-06,
1202
+ "loss": 0.0012,
1203
+ "num_tokens": 100697360.0,
1204
+ "reward": 0.6746031840642294,
1205
+ "reward_std": 0.21919804066419601,
1206
+ "rewards/acc_reward_func": 0.6746031812259129,
1207
+ "step": 129
1208
+ },
1209
+ {
1210
+ "clip_ratio": 0.00016543883005700385,
1211
+ "epoch": 0.9660297239915074,
1212
+ "grad_norm": 0.07263658018223751,
1213
+ "learning_rate": 1e-06,
1214
+ "loss": 0.001,
1215
+ "step": 130
1216
+ },
1217
+ {
1218
+ "clip_ratio": 0.00029576754535637085,
1219
+ "epoch": 0.9734607218683652,
1220
+ "grad_norm": 0.07191823196569669,
1221
+ "learning_rate": 1e-06,
1222
+ "loss": 0.0007,
1223
+ "step": 131
1224
+ },
1225
+ {
1226
+ "clip_ratio": 0.0006197429174790159,
1227
+ "epoch": 0.9808917197452229,
1228
+ "grad_norm": 0.07137316493917,
1229
+ "learning_rate": 1e-06,
1230
+ "loss": 0.0004,
1231
+ "step": 132
1232
+ },
1233
+ {
1234
+ "epoch": 0.9808917197452229,
1235
+ "step": 132,
1236
+ "total_flos": 0.0,
1237
+ "train_loss": -0.00028816385895769406,
1238
+ "train_runtime": 58537.3897,
1239
+ "train_samples_per_second": 0.084,
1240
+ "train_steps_per_second": 0.002
1241
+ }
1242
+ ],
1243
+ "logging_steps": 1,
1244
+ "max_steps": 134,
1245
+ "num_input_tokens_seen": 0,
1246
+ "num_train_epochs": 1,
1247
+ "save_steps": 250,
1248
+ "stateful_callbacks": {
1249
+ "TrainerControl": {
1250
+ "args": {
1251
+ "should_epoch_stop": false,
1252
+ "should_evaluate": false,
1253
+ "should_log": false,
1254
+ "should_save": false,
1255
+ "should_training_stop": false
1256
+ },
1257
+ "attributes": {}
1258
+ }
1259
+ },
1260
+ "total_flos": 0.0,
1261
+ "train_batch_size": 6,
1262
+ "trial_name": null,
1263
+ "trial_params": null
1264
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e362153126b5cc0be50a4c0f52c3b2c46c81bae55e5614066da4f23247671dd4
3
+ size 7544
vocab.json ADDED
The diff for this file is too large to render. See raw diff