Mriganka1999 commited on
Commit
f296dd2
·
verified ·
1 Parent(s): 570b7e5

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaSlideDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaSlideDense-v3
16
+ type: PandaSlideDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -21.93 +/- 5.74
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **PandaSlideDense-v3**
25
+ This is a trained model of a **SAC** agent playing **PandaSlideDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7d9430640040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d94306388c0>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718182190705270429, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAeY7KPdrZPz+fC3M8dvlRP2otvz4XwnI8KH2CP6LzAT62KnM8BabcPpv4q78yInI8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1edjvy/LGb4OAwAzbUOWvweLQj8OAwAzPme6P08VBT8OAwAzS51RP7D73L4OAwAzlGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAAB+mh6+PoSHv0Cu2b2+Eo0+hnOSPbQbAkB5jso92tk/P58LczwO1Iu6s6UxOl7COrxZMZ+8w2oju7loAD7ies47n71PvC4BvbushaK9dCQdPEGPmj7n/4G/pF5sPwXVEMB2+VE/ai2/PhfCcjyeCRm601LzuuOQEbs67J680LUeu19pAD6hrMo7CjlPvNb8rLuuWHe+HLiuvYpCoT+yWQk+HAUrvovpJ78ofYI/ovMBPrYqczzYc3i6FR+xOGcrJLvByp28XvYqu7toAD5toc47165PvMtJu7uV2qK/RaowvnUAKr8Fhig+UbQ4Pe0FnD0Fptw+m/irvzIicjwCOS+5o/gguhs7gLvOo568cKcHu7loAD7fes47nL1PvMS3q7uUaA5LBEsShpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.09890456 0.7494179 0.01483431]\n [ 0.8202127 0.37339336 0.01481678]\n [ 1.0194445 0.12690595 0.01484173]\n [ 0.43095413 -1.3435243 0.01477866]]", "desired_goal": "[[-8.9025623e-01 -1.5018915e-01 2.9805101e-08]\n [-1.1739327e+00 7.5993389e-01 2.9805101e-08]\n [ 1.4562757e+00 5.1985639e-01 2.9805101e-08]\n [ 8.1880635e-01 -4.3160772e-01 2.9805101e-08]]", "observation": "[[-1.54886216e-01 -1.05872321e+00 -1.06289387e-01 2.75533617e-01\n 7.15094060e-02 2.03294086e+00 9.89045575e-02 7.49417901e-01\n 1.48343137e-02 -1.06680556e-03 6.77670527e-04 -1.13988798e-02\n -1.94327105e-02 -2.49354611e-03 1.25399485e-01 6.30126987e-03\n -1.26794865e-02 -5.76796290e-03]\n [-7.93565214e-02 9.59121063e-03 3.01874191e-01 -1.01562202e+00\n 9.23319101e-01 -2.26300168e+00 8.20212722e-01 3.73393357e-01\n 1.48167824e-02 -5.83791989e-04 -1.85641123e-03 -2.22116034e-03\n -1.93997510e-02 -2.42172554e-03 1.25401959e-01 6.18512975e-03\n -1.26478765e-02 -5.27916383e-03]\n [-2.41549224e-01 -8.53120983e-02 1.25984311e+00 1.34131223e-01\n -1.67011678e-01 -6.55907333e-01 1.01944447e+00 1.26905948e-01\n 1.48417260e-02 -9.47771128e-04 8.44580718e-05 -2.50502839e-03\n -1.92617197e-02 -2.60867877e-03 1.25399515e-01 6.30586455e-03\n -1.26759624e-02 -5.71558392e-03]\n [-1.27229559e+00 -1.72524527e-01 -6.64069474e-01 1.64573744e-01\n 4.50938381e-02 7.61831775e-02 4.30954129e-01 -1.34352434e+00\n 1.47786606e-02 -1.67105376e-04 -6.14056538e-04 -3.91329592e-03\n -1.93652175e-02 -2.06991658e-03 1.25399485e-01 6.30126847e-03\n -1.26794837e-02 -5.24041243e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAf6YWPMaYiz1nmHU8UX6ePUQkCj09l3U8wRHFPUG5NjzlmHU8aj8mPdzy/L21lHU8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7KilPnOuTryPwvU8vBmZPk2Rhz2PwvU8QMYGP9H7OT2PwvU8bVPxPiB8F72PwvU8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAAC4+Su9a6xOvpUchj32rtk8AIKyO2xQFz9/phY8xpiLPWeYdTxUH3a4ha7Bt0JSk7lSb3+1YwdrtoDOFqv+k+YvXfHmLqVTELn3kfW8YpEgvfWf4T1V6JC+4+KKPvmiQL9Rfp49RCQKPT2XdTwHKIC3X2CquG0AGzqZLPg0bM+StbLdOzSVUlu42RZdNyF8X7iqamS9M75bvUM0XD6VSfC7/EeNvT7df77BEcU9Qbk2POWYdTxZQkm4avAZuNrtEzoHMtY2jA/3trA/yjAX3Ao25DnFNRbZBrmh7WC+rw+JvZ7akDtEPgy4EzY3u7JCq7xqPyY93PL8vbWUdTyL77k3SSxduDWv4TlHcAI2OZMzN74z2S2JCnuvozOxMDBvQ7iUaA5LBEsShpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.00919497 0.06816249 0.01498995]\n [ 0.07738937 0.03372599 0.01498967]\n [ 0.09622527 0.01115257 0.01499007]\n [ 0.04058782 -0.12351009 0.01498907]]", "desired_goal": "[[ 0.3235544 -0.01261483 0.03 ]\n [ 0.29902446 0.06619511 0.03 ]\n [ 0.52646255 0.04540617 0.03 ]\n [ 0.4713396 -0.03698361 0.03 ]]", "observation": "[[-4.19861972e-02 -2.01829597e-01 6.54842034e-02 2.65726857e-02\n 5.44762611e-03 5.91070890e-01 9.19496920e-03 6.81624860e-02\n 1.49899488e-02 -5.86801470e-05 -2.30886599e-05 -2.80993117e-04\n -9.51568950e-07 -3.50220284e-06 -5.35772815e-13 4.19419111e-10\n 1.05020638e-10 -1.37640702e-04]\n [-2.99768280e-02 -3.92011479e-02 1.10168375e-01 -2.83022553e-01\n 2.71262258e-01 -7.52486765e-01 7.73893669e-02 3.37259918e-02\n 1.49896713e-02 -1.52774282e-05 -8.12418220e-05 5.91284421e-04\n 4.62260488e-07 -1.09382154e-06 1.74963844e-07 -5.22905793e-05\n 1.31779461e-05 -5.32829472e-05]\n [-5.57657853e-02 -5.36481850e-02 2.15043113e-01 -7.33299041e-03\n -6.89849555e-02 -2.49867409e-01 9.62252691e-02 1.11525664e-02\n 1.49900662e-02 -4.79839255e-05 -3.67019456e-05 5.64304763e-04\n 6.38352094e-06 -7.36298352e-06 1.47155355e-09 2.06917116e-06\n 1.46944922e-06 -1.28601067e-04]\n [-2.19656482e-01 -6.69244453e-02 4.42059245e-03 -3.34365905e-05\n -2.79558147e-03 -2.09058262e-02 4.05878201e-02 -1.23510092e-01\n 1.49890678e-02 2.21652645e-05 -5.27317497e-05 4.30458836e-04\n 1.94368636e-06 1.07035094e-05 2.46930219e-11 -2.28320599e-10\n 1.28931210e-09 -4.65951744e-05]]"}, "_episode_num": 20012, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDpNezD4xlCMAWyUSzKMAXSUR0DJTT1wgkkbdX2UKGgGR8A3OnuiN83NaAdLMmgIR0DJTYl2icoZdX2UKGgGR8A9a/j81n/UaAdLMmgIR0DJTjjvb48EdX2UKGgGR8A8jKk2xY7raAdLMmgIR0DJTmEXSBsidX2UKGgGR8A8wWilBQenaAdLMmgIR0DJTtE0SAYpdX2UKGgGR8A7UsYVIqb0aAdLMmgIR0DJTyCCjDbbdX2UKGgGR8A3XM7lq8DkaAdLMmgIR0DJT+xxR2r5dX2UKGgGR8AziCb+cYqHaAdLMmgIR0DJUAyGSIP9dX2UKGgGR8AqN8FY+0PZaAdLMmgIR0DJUEYUN8VpdX2UKGgGR8A1NLuhK15TaAdLMmgIR0DJUJIMa0hNdX2UKGgGR8Ax3Zw4sEq2aAdLMmgIR0DJURUY64lQdX2UKGgGR8AlYh5gPVd5aAdLMmgIR0DJUTbgbZOBdX2UKGgGR8A02mtQsPJ8aAdLMmgIR0DJUXSuB+WodX2UKGgGR8A52NN8E3bVaAdLMmgIR0DJUcDiEQGwdX2UKGgGR8A0iCK77Kq5aAdLMmgIR0DJUk9INEw4dX2UKGgGR8A2hblijL0SaAdLMmgIR0DJUnA9zOopdX2UKGgGR8AxwBtk4FRpaAdLMmgIR0DJUrFHrhR7dX2UKGgGR8AyuXiiqQzUaAdLMmgIR0DJUv23H7xedX2UKGgGR8AvMWnCO3lTaAdLMmgIR0DJU4+gctGvdX2UKGgGR8A8u0NSZSeiaAdLMmgIR0DJU7CsuFpPdX2UKGgGR8AwlyBTXJ5naAdLMmgIR0DJU/AS39aVdX2UKGgGR8AfPvSc9W6taAdLMmgIR0DJVDxe/pMYdX2UKGgGR8A+guq3mV7haAdLMmgIR0DJVOD30wrUdX2UKGgGR8AzG+d9Ujs2aAdLMmgIR0DJVQiZKFqSdX2UKGgGR8ApclVtGd7OaAdLMmgIR0DJVXwK8cuKdX2UKGgGR8A7OeDnNgSfaAdLMmgIR0DJVctU2kzodX2UKGgGR8Azcfp2U0N0aAdLMmgIR0DJVrD5CWu6dX2UKGgGR8AlYJLuhK15aAdLMmgIR0DJVtIKpkwwdX2UKGgGR8A7yLamGdqdaAdLMmgIR0DJVxV78ejmdX2UKGgGR8As4VuaWom5aAdLMmgIR0DJV2HRmbsodX2UKGgGR8Ao/X5nDiwTaAdLMmgIR0DJV/B8WsRydX2UKGgGR8AiYckMTewcaAdLMmgIR0DJWBIHC4z8dX2UKGgGR8ApUnssxwhoaAdLMmgIR0DJWFJzxPO6dX2UKGgGR8AhGwGnn+yaaAdLMmgIR0DJWJ7ApKBedX2UKGgGR8A2EqveP7vYaAdLMmgIR0DJWRWSfUWmdX2UKGgGR8A+8gUlAu7IaAdLMmgIR0DJWTXiiqQzdX2UKGgGR8Any92X9itraAdLMmgIR0DJWXHX7LuAdX2UKGgGR8A19V7Qb+98aAdLMmgIR0DJWb3KuB+XdX2UKGgGR8AvhQl8gIQfaAdLMmgIR0DJWkwq/dqMdX2UKGgGR8A8qXLeQ+2WaAdLMmgIR0DJWm14JNTMdX2UKGgGR8A3+HktEofCaAdLMmgIR0DJWqvVVghKdX2UKGgGR8A7+dS2phnbaAdLMmgIR0DJWvfavicYdX2UKGgGR8A1IyR0U47zaAdLMmgIR0DJW3jvRZ2ZdX2UKGgGR8AwBJ6IFeOXaAdLMmgIR0DJW5kiILw4dX2UKGgGR8A28YdyT6i1aAdLMmgIR0DJW/aAtnPFdX2UKGgGR8A2FDzyz5XVaAdLMmgIR0DJXETor4FidX2UKGgGR8A4NG0NSZSfaAdLMmgIR0DJXSQr4FibdX2UKGgGR8AzDbCrLhaUaAdLMmgIR0DJXUq8g6ltdX2UKGgGR8A7TU9IPK+0aAdLMmgIR0DJXaO7J4jbdX2UKGgGR8A6Tz/p+tr9aAdLMmgIR0DJXfCu2Zy/dX2UKGgGR8A4ArKeTV2BaAdLMmgIR0DJXnjwtrbhdX2UKGgGR8Ay0VcD8tPIaAdLMmgIR0DJXppU70WedX2UKGgGR8A9NyNXHR1HaAdLMmgIR0DJXtld/rjYdX2UKGgGR8A9fxwhnrY5aAdLMmgIR0DJXyWAmReUdX2UKGgGR8AzPL/0dzXCaAdLMmgIR0DJX7TfJmuldX2UKGgGR8A3hYR/ViF1aAdLMmgIR0DJX9XW8RL9dX2UKGgGR8A7l28Zk079aAdLMmgIR0DJYBS83++/dX2UKGgGR8Ar6iqyWzF/aAdLMmgIR0DJYGDxAjY7dX2UKGgGR8A6DFMqSX+maAdLMmgIR0DJYN+tU4rCdX2UKGgGR8AXz7XQMQVcaAdLMmgIR0DJYQDZ6D5CdX2UKGgGR8A+HYq5LAYYaAdLMmgIR0DJYUIfjjrBdX2UKGgGR8A5roXKr7wbaAdLMmgIR0DJYY56D5CXdX2UKGgGR8AjPuqFRHf/aAdLMmgIR0DJYiNpdrwfdX2UKGgGR8A0vq1w5vLpaAdLMmgIR0DJYkPuRcNZdX2UKGgGR8A8RU83dbgTaAdLMmgIR0DJYopyfcvedX2UKGgGR8BAQOX3QD3eaAdLMmgIR0DJYtiE6DGtdX2UKGgGR8A+hcO9WZJDaAdLMmgIR0DJY6iCg9NfdX2UKGgGR8A3s+qBEroXaAdLMmgIR0DJY850hePadX2UKGgGR8AzFXk5p8F7aAdLMmgIR0DJZD/YjB2wdX2UKGgGR8AypqVQhwERaAdLMmgIR0DJZI5GYrrgdX2UKGgGR8AzE2PDHfdiaAdLMmgIR0DJZSDlcQiBdX2UKGgGR8A8Y+so2GZeaAdLMmgIR0DJZUQ4dZJTdX2UKGgGR8Ax/s/6fra/aAdLMmgIR0DJZYAt16mgdX2UKGgGR8A1eIzWPLgXaAdLMmgIR0DJZc2C/XXidX2UKGgGR8A3y/9YOlO5aAdLMmgIR0DJZkr5j6N3dX2UKGgGR8A3bEXtShrWaAdLMmgIR0DJZmuEZiuudX2UKGgGR8Ak2QK8cuJ2aAdLMmgIR0DJZqtuHerNdX2UKGgGR8AwbGpMpPRBaAdLMmgIR0DJZvdcW0qpdX2UKGgGR8AiRk+X7cfvaAdLMmgIR0DJZ3s0WM0hdX2UKGgGR8A4/gl4TsY3aAdLMmgIR0DJZ5ylWOp9dX2UKGgGR8Awmtuk1uR+aAdLMmgIR0DJZ9x8QZn+dX2UKGgGR8A1UOerdWQwaAdLMmgIR0DJaCjwpe/pdX2UKGgGR8Ajj4WUKRdQaAdLMmgIR0DJaL0a/ATJdX2UKGgGR8AkAOz6ab4KaAdLMmgIR0DJaN+EqUeNdX2UKGgGR8A4bSCe2/i6aAdLMmgIR0DJaR0p9ZzQdX2UKGgGR8AuZHDrJKaoaAdLMmgIR0DJaWlIkJKKdX2UKGgGR8AwvOh0yP+5aAdLMmgIR0DJai4eo1k2dX2UKGgGR8AlNUVBUrCnaAdLMmgIR0DJalKv1UVBdX2UKGgGR8Ak6I3zcynDaAdLMmgIR0DJasGMMqjKdX2UKGgGR8ApLKFqSHM2aAdLMmgIR0DJaxB64UeudX2UKGgGR8A63MHKOktVaAdLMmgIR0DJa8QUQCjldX2UKGgGR8Aw5vBrN4Z/aAdLMmgIR0DJa+RB3RoidX2UKGgGR8A2jmEXcgyNaAdLMmgIR0DJbCF14gRsdX2UKGgGR8AvdoHs1KoRaAdLMmgIR0DJbG3xlQMydX2UKGgGR8Ax+aY/mknDaAdLMmgIR0DJbPNvVEuydX2UKGgGR8A2ulhgE2YOaAdLMmgIR0DJbRSnBLwndX2UKGgGR8A4RP5pJwsHaAdLMmgIR0DJbUzlFMIvdX2UKGgGR8A1g1bqyGBXaAdLMmgIR0DJbZkxj8UFdX2UKGgGR8A5IUsnRb8naAdLMmgIR0DJbhvxc3VDdX2UKGgGR8AxYmeDnNgSaAdLMmgIR0DJbjxV+7UYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="}, "_n_updates": 249975, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7d9430743eb0>", "add": "<function DictReplayBuffer.add at 0x7d9430743f40>", "sample": "<function DictReplayBuffer.sample at 0x7d9430758040>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7d94307580d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d9430750e00>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -3.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVKAQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCBLEoWUaCR0lFKUaCdoHCiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCBLEoWUaCR0lFKUaCxLEoWUaC5oHCiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLEoWUaCR0lFKUaDNoHCiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLEoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (18,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVYQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihHwN2VESuHLJmbmA8p3EfDqAIwDaW5jlIoQffOY8fjp6hHKJ1+HqSHLUXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVoAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgJKYwBX5SFlGgOjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaBVOTmgdKVKUhZR0lFKUaCRoPn2UfZQoaBhoNWgnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWgZaC5OaC9oMUc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEZdlGhIfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (634 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -21.933156391978265, "std_reward": 5.744716897072696, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-12T13:10:19.734438"}
sac-PandaSlideDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b93bf3143f8381ba53b5c887336cb37f1c6bd10ec285fcbeb5706bfae15b33cb
3
+ size 3279329
sac-PandaSlideDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.3.2
sac-PandaSlideDense-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2881e984de3ad09f017539ab3fe34ec25fd35a002dc15568230506ebe86be77a
3
+ size 596558
sac-PandaSlideDense-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b8878dc02da4bbcca4c4d82f49cc5774d52f38f56b2edcb09edd35414f83519
3
+ size 1181098
sac-PandaSlideDense-v3/data ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x7d9430640040>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7d94306388c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "use_sde": false
14
+ },
15
+ "num_timesteps": 1000000,
16
+ "_total_timesteps": 1000000,
17
+ "_num_timesteps_at_start": 0,
18
+ "seed": null,
19
+ "action_noise": null,
20
+ "start_time": 1718182190705270429,
21
+ "learning_rate": 0.0003,
22
+ "tensorboard_log": null,
23
+ "_last_obs": {
24
+ ":type:": "<class 'collections.OrderedDict'>",
25
+ ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAeY7KPdrZPz+fC3M8dvlRP2otvz4XwnI8KH2CP6LzAT62KnM8BabcPpv4q78yInI8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1edjvy/LGb4OAwAzbUOWvweLQj8OAwAzPme6P08VBT8OAwAzS51RP7D73L4OAwAzlGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAAB+mh6+PoSHv0Cu2b2+Eo0+hnOSPbQbAkB5jso92tk/P58LczwO1Iu6s6UxOl7COrxZMZ+8w2oju7loAD7ies47n71PvC4BvbushaK9dCQdPEGPmj7n/4G/pF5sPwXVEMB2+VE/ai2/PhfCcjyeCRm601LzuuOQEbs67J680LUeu19pAD6hrMo7CjlPvNb8rLuuWHe+HLiuvYpCoT+yWQk+HAUrvovpJ78ofYI/ovMBPrYqczzYc3i6FR+xOGcrJLvByp28XvYqu7toAD5toc47165PvMtJu7uV2qK/RaowvnUAKr8Fhig+UbQ4Pe0FnD0Fptw+m/irvzIicjwCOS+5o/gguhs7gLvOo568cKcHu7loAD7fes47nL1PvMS3q7uUaA5LBEsShpRoEnSUUpR1Lg==",
26
+ "achieved_goal": "[[ 0.09890456 0.7494179 0.01483431]\n [ 0.8202127 0.37339336 0.01481678]\n [ 1.0194445 0.12690595 0.01484173]\n [ 0.43095413 -1.3435243 0.01477866]]",
27
+ "desired_goal": "[[-8.9025623e-01 -1.5018915e-01 2.9805101e-08]\n [-1.1739327e+00 7.5993389e-01 2.9805101e-08]\n [ 1.4562757e+00 5.1985639e-01 2.9805101e-08]\n [ 8.1880635e-01 -4.3160772e-01 2.9805101e-08]]",
28
+ "observation": "[[-1.54886216e-01 -1.05872321e+00 -1.06289387e-01 2.75533617e-01\n 7.15094060e-02 2.03294086e+00 9.89045575e-02 7.49417901e-01\n 1.48343137e-02 -1.06680556e-03 6.77670527e-04 -1.13988798e-02\n -1.94327105e-02 -2.49354611e-03 1.25399485e-01 6.30126987e-03\n -1.26794865e-02 -5.76796290e-03]\n [-7.93565214e-02 9.59121063e-03 3.01874191e-01 -1.01562202e+00\n 9.23319101e-01 -2.26300168e+00 8.20212722e-01 3.73393357e-01\n 1.48167824e-02 -5.83791989e-04 -1.85641123e-03 -2.22116034e-03\n -1.93997510e-02 -2.42172554e-03 1.25401959e-01 6.18512975e-03\n -1.26478765e-02 -5.27916383e-03]\n [-2.41549224e-01 -8.53120983e-02 1.25984311e+00 1.34131223e-01\n -1.67011678e-01 -6.55907333e-01 1.01944447e+00 1.26905948e-01\n 1.48417260e-02 -9.47771128e-04 8.44580718e-05 -2.50502839e-03\n -1.92617197e-02 -2.60867877e-03 1.25399515e-01 6.30586455e-03\n -1.26759624e-02 -5.71558392e-03]\n [-1.27229559e+00 -1.72524527e-01 -6.64069474e-01 1.64573744e-01\n 4.50938381e-02 7.61831775e-02 4.30954129e-01 -1.34352434e+00\n 1.47786606e-02 -1.67105376e-04 -6.14056538e-04 -3.91329592e-03\n -1.93652175e-02 -2.06991658e-03 1.25399485e-01 6.30126847e-03\n -1.26794837e-02 -5.24041243e-03]]"
29
+ },
30
+ "_last_episode_starts": {
31
+ ":type:": "<class 'numpy.ndarray'>",
32
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
33
+ },
34
+ "_last_original_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAf6YWPMaYiz1nmHU8UX6ePUQkCj09l3U8wRHFPUG5NjzlmHU8aj8mPdzy/L21lHU8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7KilPnOuTryPwvU8vBmZPk2Rhz2PwvU8QMYGP9H7OT2PwvU8bVPxPiB8F72PwvU8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAAC4+Su9a6xOvpUchj32rtk8AIKyO2xQFz9/phY8xpiLPWeYdTxUH3a4ha7Bt0JSk7lSb3+1YwdrtoDOFqv+k+YvXfHmLqVTELn3kfW8YpEgvfWf4T1V6JC+4+KKPvmiQL9Rfp49RCQKPT2XdTwHKIC3X2CquG0AGzqZLPg0bM+StbLdOzSVUlu42RZdNyF8X7iqamS9M75bvUM0XD6VSfC7/EeNvT7df77BEcU9Qbk2POWYdTxZQkm4avAZuNrtEzoHMtY2jA/3trA/yjAX3Ao25DnFNRbZBrmh7WC+rw+JvZ7akDtEPgy4EzY3u7JCq7xqPyY93PL8vbWUdTyL77k3SSxduDWv4TlHcAI2OZMzN74z2S2JCnuvozOxMDBvQ7iUaA5LBEsShpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.00919497 0.06816249 0.01498995]\n [ 0.07738937 0.03372599 0.01498967]\n [ 0.09622527 0.01115257 0.01499007]\n [ 0.04058782 -0.12351009 0.01498907]]",
38
+ "desired_goal": "[[ 0.3235544 -0.01261483 0.03 ]\n [ 0.29902446 0.06619511 0.03 ]\n [ 0.52646255 0.04540617 0.03 ]\n [ 0.4713396 -0.03698361 0.03 ]]",
39
+ "observation": "[[-4.19861972e-02 -2.01829597e-01 6.54842034e-02 2.65726857e-02\n 5.44762611e-03 5.91070890e-01 9.19496920e-03 6.81624860e-02\n 1.49899488e-02 -5.86801470e-05 -2.30886599e-05 -2.80993117e-04\n -9.51568950e-07 -3.50220284e-06 -5.35772815e-13 4.19419111e-10\n 1.05020638e-10 -1.37640702e-04]\n [-2.99768280e-02 -3.92011479e-02 1.10168375e-01 -2.83022553e-01\n 2.71262258e-01 -7.52486765e-01 7.73893669e-02 3.37259918e-02\n 1.49896713e-02 -1.52774282e-05 -8.12418220e-05 5.91284421e-04\n 4.62260488e-07 -1.09382154e-06 1.74963844e-07 -5.22905793e-05\n 1.31779461e-05 -5.32829472e-05]\n [-5.57657853e-02 -5.36481850e-02 2.15043113e-01 -7.33299041e-03\n -6.89849555e-02 -2.49867409e-01 9.62252691e-02 1.11525664e-02\n 1.49900662e-02 -4.79839255e-05 -3.67019456e-05 5.64304763e-04\n 6.38352094e-06 -7.36298352e-06 1.47155355e-09 2.06917116e-06\n 1.46944922e-06 -1.28601067e-04]\n [-2.19656482e-01 -6.69244453e-02 4.42059245e-03 -3.34365905e-05\n -2.79558147e-03 -2.09058262e-02 4.05878201e-02 -1.23510092e-01\n 1.49890678e-02 2.21652645e-05 -5.27317497e-05 4.30458836e-04\n 1.94368636e-06 1.07035094e-05 2.46930219e-11 -2.28320599e-10\n 1.28931210e-09 -4.65951744e-05]]"
40
+ },
41
+ "_episode_num": 20012,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": 0.0,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDpNezD4xlCMAWyUSzKMAXSUR0DJTT1wgkkbdX2UKGgGR8A3OnuiN83NaAdLMmgIR0DJTYl2icoZdX2UKGgGR8A9a/j81n/UaAdLMmgIR0DJTjjvb48EdX2UKGgGR8A8jKk2xY7raAdLMmgIR0DJTmEXSBsidX2UKGgGR8A8wWilBQenaAdLMmgIR0DJTtE0SAYpdX2UKGgGR8A7UsYVIqb0aAdLMmgIR0DJTyCCjDbbdX2UKGgGR8A3XM7lq8DkaAdLMmgIR0DJT+xxR2r5dX2UKGgGR8AziCb+cYqHaAdLMmgIR0DJUAyGSIP9dX2UKGgGR8AqN8FY+0PZaAdLMmgIR0DJUEYUN8VpdX2UKGgGR8A1NLuhK15TaAdLMmgIR0DJUJIMa0hNdX2UKGgGR8Ax3Zw4sEq2aAdLMmgIR0DJURUY64lQdX2UKGgGR8AlYh5gPVd5aAdLMmgIR0DJUTbgbZOBdX2UKGgGR8A02mtQsPJ8aAdLMmgIR0DJUXSuB+WodX2UKGgGR8A52NN8E3bVaAdLMmgIR0DJUcDiEQGwdX2UKGgGR8A0iCK77Kq5aAdLMmgIR0DJUk9INEw4dX2UKGgGR8A2hblijL0SaAdLMmgIR0DJUnA9zOopdX2UKGgGR8AxwBtk4FRpaAdLMmgIR0DJUrFHrhR7dX2UKGgGR8AyuXiiqQzUaAdLMmgIR0DJUv23H7xedX2UKGgGR8AvMWnCO3lTaAdLMmgIR0DJU4+gctGvdX2UKGgGR8A8u0NSZSeiaAdLMmgIR0DJU7CsuFpPdX2UKGgGR8AwlyBTXJ5naAdLMmgIR0DJU/AS39aVdX2UKGgGR8AfPvSc9W6taAdLMmgIR0DJVDxe/pMYdX2UKGgGR8A+guq3mV7haAdLMmgIR0DJVOD30wrUdX2UKGgGR8AzG+d9Ujs2aAdLMmgIR0DJVQiZKFqSdX2UKGgGR8ApclVtGd7OaAdLMmgIR0DJVXwK8cuKdX2UKGgGR8A7OeDnNgSfaAdLMmgIR0DJVctU2kzodX2UKGgGR8Azcfp2U0N0aAdLMmgIR0DJVrD5CWu6dX2UKGgGR8AlYJLuhK15aAdLMmgIR0DJVtIKpkwwdX2UKGgGR8A7yLamGdqdaAdLMmgIR0DJVxV78ejmdX2UKGgGR8As4VuaWom5aAdLMmgIR0DJV2HRmbsodX2UKGgGR8Ao/X5nDiwTaAdLMmgIR0DJV/B8WsRydX2UKGgGR8AiYckMTewcaAdLMmgIR0DJWBIHC4z8dX2UKGgGR8ApUnssxwhoaAdLMmgIR0DJWFJzxPO6dX2UKGgGR8AhGwGnn+yaaAdLMmgIR0DJWJ7ApKBedX2UKGgGR8A2EqveP7vYaAdLMmgIR0DJWRWSfUWmdX2UKGgGR8A+8gUlAu7IaAdLMmgIR0DJWTXiiqQzdX2UKGgGR8Any92X9itraAdLMmgIR0DJWXHX7LuAdX2UKGgGR8A19V7Qb+98aAdLMmgIR0DJWb3KuB+XdX2UKGgGR8AvhQl8gIQfaAdLMmgIR0DJWkwq/dqMdX2UKGgGR8A8qXLeQ+2WaAdLMmgIR0DJWm14JNTMdX2UKGgGR8A3+HktEofCaAdLMmgIR0DJWqvVVghKdX2UKGgGR8A7+dS2phnbaAdLMmgIR0DJWvfavicYdX2UKGgGR8A1IyR0U47zaAdLMmgIR0DJW3jvRZ2ZdX2UKGgGR8AwBJ6IFeOXaAdLMmgIR0DJW5kiILw4dX2UKGgGR8A28YdyT6i1aAdLMmgIR0DJW/aAtnPFdX2UKGgGR8A2FDzyz5XVaAdLMmgIR0DJXETor4FidX2UKGgGR8A4NG0NSZSfaAdLMmgIR0DJXSQr4FibdX2UKGgGR8AzDbCrLhaUaAdLMmgIR0DJXUq8g6ltdX2UKGgGR8A7TU9IPK+0aAdLMmgIR0DJXaO7J4jbdX2UKGgGR8A6Tz/p+tr9aAdLMmgIR0DJXfCu2Zy/dX2UKGgGR8A4ArKeTV2BaAdLMmgIR0DJXnjwtrbhdX2UKGgGR8Ay0VcD8tPIaAdLMmgIR0DJXppU70WedX2UKGgGR8A9NyNXHR1HaAdLMmgIR0DJXtld/rjYdX2UKGgGR8A9fxwhnrY5aAdLMmgIR0DJXyWAmReUdX2UKGgGR8AzPL/0dzXCaAdLMmgIR0DJX7TfJmuldX2UKGgGR8A3hYR/ViF1aAdLMmgIR0DJX9XW8RL9dX2UKGgGR8A7l28Zk079aAdLMmgIR0DJYBS83++/dX2UKGgGR8Ar6iqyWzF/aAdLMmgIR0DJYGDxAjY7dX2UKGgGR8A6DFMqSX+maAdLMmgIR0DJYN+tU4rCdX2UKGgGR8AXz7XQMQVcaAdLMmgIR0DJYQDZ6D5CdX2UKGgGR8A+HYq5LAYYaAdLMmgIR0DJYUIfjjrBdX2UKGgGR8A5roXKr7wbaAdLMmgIR0DJYY56D5CXdX2UKGgGR8AjPuqFRHf/aAdLMmgIR0DJYiNpdrwfdX2UKGgGR8A0vq1w5vLpaAdLMmgIR0DJYkPuRcNZdX2UKGgGR8A8RU83dbgTaAdLMmgIR0DJYopyfcvedX2UKGgGR8BAQOX3QD3eaAdLMmgIR0DJYtiE6DGtdX2UKGgGR8A+hcO9WZJDaAdLMmgIR0DJY6iCg9NfdX2UKGgGR8A3s+qBEroXaAdLMmgIR0DJY850hePadX2UKGgGR8AzFXk5p8F7aAdLMmgIR0DJZD/YjB2wdX2UKGgGR8AypqVQhwERaAdLMmgIR0DJZI5GYrrgdX2UKGgGR8AzE2PDHfdiaAdLMmgIR0DJZSDlcQiBdX2UKGgGR8A8Y+so2GZeaAdLMmgIR0DJZUQ4dZJTdX2UKGgGR8Ax/s/6fra/aAdLMmgIR0DJZYAt16mgdX2UKGgGR8A1eIzWPLgXaAdLMmgIR0DJZc2C/XXidX2UKGgGR8A3y/9YOlO5aAdLMmgIR0DJZkr5j6N3dX2UKGgGR8A3bEXtShrWaAdLMmgIR0DJZmuEZiuudX2UKGgGR8Ak2QK8cuJ2aAdLMmgIR0DJZqtuHerNdX2UKGgGR8AwbGpMpPRBaAdLMmgIR0DJZvdcW0qpdX2UKGgGR8AiRk+X7cfvaAdLMmgIR0DJZ3s0WM0hdX2UKGgGR8A4/gl4TsY3aAdLMmgIR0DJZ5ylWOp9dX2UKGgGR8Awmtuk1uR+aAdLMmgIR0DJZ9x8QZn+dX2UKGgGR8A1UOerdWQwaAdLMmgIR0DJaCjwpe/pdX2UKGgGR8Ajj4WUKRdQaAdLMmgIR0DJaL0a/ATJdX2UKGgGR8AkAOz6ab4KaAdLMmgIR0DJaN+EqUeNdX2UKGgGR8A4bSCe2/i6aAdLMmgIR0DJaR0p9ZzQdX2UKGgGR8AuZHDrJKaoaAdLMmgIR0DJaWlIkJKKdX2UKGgGR8AwvOh0yP+5aAdLMmgIR0DJai4eo1k2dX2UKGgGR8AlNUVBUrCnaAdLMmgIR0DJalKv1UVBdX2UKGgGR8Ak6I3zcynDaAdLMmgIR0DJasGMMqjKdX2UKGgGR8ApLKFqSHM2aAdLMmgIR0DJaxB64UeudX2UKGgGR8A63MHKOktVaAdLMmgIR0DJa8QUQCjldX2UKGgGR8Aw5vBrN4Z/aAdLMmgIR0DJa+RB3RoidX2UKGgGR8A2jmEXcgyNaAdLMmgIR0DJbCF14gRsdX2UKGgGR8AvdoHs1KoRaAdLMmgIR0DJbG3xlQMydX2UKGgGR8Ax+aY/mknDaAdLMmgIR0DJbPNvVEuydX2UKGgGR8A2ulhgE2YOaAdLMmgIR0DJbRSnBLwndX2UKGgGR8A4RP5pJwsHaAdLMmgIR0DJbUzlFMIvdX2UKGgGR8A1g1bqyGBXaAdLMmgIR0DJbZkxj8UFdX2UKGgGR8A5IUsnRb8naAdLMmgIR0DJbhvxc3VDdX2UKGgGR8AxYmeDnNgSaAdLMmgIR0DJbjxV+7UYdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="
53
+ },
54
+ "_n_updates": 249975,
55
+ "buffer_size": 1000000,
56
+ "batch_size": 256,
57
+ "learning_starts": 100,
58
+ "tau": 0.005,
59
+ "gamma": 0.99,
60
+ "gradient_steps": 1,
61
+ "optimize_memory_usage": false,
62
+ "replay_buffer_class": {
63
+ ":type:": "<class 'abc.ABCMeta'>",
64
+ ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
65
+ "__module__": "stable_baselines3.common.buffers",
66
+ "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}",
67
+ "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
68
+ "__init__": "<function DictReplayBuffer.__init__ at 0x7d9430743eb0>",
69
+ "add": "<function DictReplayBuffer.add at 0x7d9430743f40>",
70
+ "sample": "<function DictReplayBuffer.sample at 0x7d9430758040>",
71
+ "_get_samples": "<function DictReplayBuffer._get_samples at 0x7d94307580d0>",
72
+ "__abstractmethods__": "frozenset()",
73
+ "_abc_impl": "<_abc._abc_data object at 0x7d9430750e00>"
74
+ },
75
+ "replay_buffer_kwargs": {},
76
+ "train_freq": {
77
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
78
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
79
+ },
80
+ "use_sde_at_warmup": false,
81
+ "target_entropy": -3.0,
82
+ "ent_coef": "auto",
83
+ "target_update_interval": 1,
84
+ "observation_space": {
85
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
86
+ ":serialized:": "gAWVKAQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCBLEoWUaCR0lFKUaCdoHCiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCBLEoWUaCR0lFKUaCxLEoWUaC5oHCiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLEoWUaCR0lFKUaDNoHCiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLEoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
87
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (18,), float32))])",
88
+ "_shape": null,
89
+ "dtype": null,
90
+ "_np_random": null
91
+ },
92
+ "action_space": {
93
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
94
+ ":serialized:": "gAWVYQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihHwN2VESuHLJmbmA8p3EfDqAIwDaW5jlIoQffOY8fjp6hHKJ1+HqSHLUXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
95
+ "dtype": "float32",
96
+ "bounded_below": "[ True True True]",
97
+ "bounded_above": "[ True True True]",
98
+ "_shape": [
99
+ 3
100
+ ],
101
+ "low": "[-1. -1. -1.]",
102
+ "high": "[1. 1. 1.]",
103
+ "low_repr": "-1.0",
104
+ "high_repr": "1.0",
105
+ "_np_random": "Generator(PCG64)"
106
+ },
107
+ "n_envs": 4,
108
+ "lr_schedule": {
109
+ ":type:": "<class 'function'>",
110
+ ":serialized:": "gAWVoAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgJKYwBX5SFlGgOjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaBVOTmgdKVKUhZR0lFKUaCRoPn2UfZQoaBhoNWgnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWgZaC5OaC9oMUc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEZdlGhIfZR1hpSGUjAu"
111
+ },
112
+ "batch_norm_stats": [],
113
+ "batch_norm_stats_target": []
114
+ }
sac-PandaSlideDense-v3/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26ac40141a3926b2ec47359d40222aec09239991488600be0d7e770420d9b630
3
+ size 1940
sac-PandaSlideDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53b9441d597265f55c1baf4145e5475583b27bb5f3efe6dcd17f5c733e3355f0
3
+ size 1478070
sac-PandaSlideDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ce4cdecd79d26b41c0be2751ddebd19b900e7ca38613efb7630b9aa366cfca4
3
+ size 1180
sac-PandaSlideDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.3.2
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: False
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b76519a160b0b50ff326dd992a364a91504b99efc2cf522cc41e79818500dad
3
+ size 3208