Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Processor
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
|
6 |
+
model_name = "Mrkomiljon/voiceGUARD/wav2vec2_finetuned_model"
|
7 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
8 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
9 |
+
model.eval()
|
10 |
+
|
11 |
+
def classify_audio(audio_file):
|
12 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
13 |
+
if sample_rate != 16000:
|
14 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
15 |
+
waveform = resampler(waveform)
|
16 |
+
if waveform.size(1) > 16000 * 10:
|
17 |
+
waveform = waveform[:, :16000 * 10]
|
18 |
+
elif waveform.size(1) < 16000 * 10:
|
19 |
+
waveform = torch.nn.functional.pad(waveform, (0, 16000 * 10 - waveform.size(1)))
|
20 |
+
if waveform.ndim > 1:
|
21 |
+
waveform = waveform[0]
|
22 |
+
inputs = processor(waveform.numpy(), sampling_rate=16000, return_tensors="pt")
|
23 |
+
with torch.no_grad():
|
24 |
+
logits = model(**inputs).logits
|
25 |
+
predicted_label = logits.argmax(dim=-1).item()
|
26 |
+
return predicted_label
|
27 |
+
|
28 |
+
interface = gr.Interface(
|
29 |
+
fn=classify_audio,
|
30 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
31 |
+
outputs="label",
|
32 |
+
title="Audio Classifier",
|
33 |
+
description="Upload an audio file to classify its label as AI-generated or Real."
|
34 |
+
)
|
35 |
+
interface.launch()
|