File size: 30,149 Bytes
da0b33e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_ndcg@100
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10000
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Enzalutamide ( brand name Xtandi ) is a synthetic non-steroidal
antiandrogen ( NSAA ) which was developed by the pharmaceutical company Medivation
for the treatment of metastatic , castration-resistant prostate cancer . Medivation
has reported up to an 89 % decrease in serum prostate specific antigen ( PSA )
levels after a month of taking the drug . Research suggests that enzalutamide
may also be effective in the treatment of certain types of breast cancer . In
August 2012 , the United States ( U.S. ) Food and Drug Administration ( FDA )
approved enzalutamide for the treatment of castration-resistant prostate cancer
.
sentences:
- what type of cancer is enzalutamide
- who is simon cho
- who is dr william farone
- source_sentence: Sohel Rana is a Bangladeshi footballer who plays as a midfielder
. He currently plays for Sheikh Jamal Dhanmondi Club .
sentences:
- who is sohel rana
- who is olympicos
- who is roberto laserna
- source_sentence: Qarah Qayeh ( قره قيه , also Romanized as Qareh Qīyeh ) is a village
in Chaharduli Rural District , Keshavarz District , Shahin Dezh County , West
Azerbaijan Province , Iran . At the 2006 census , its population was 465 , in
93 families .
sentences:
- what was the knoxville riot
- what language is kbif
- where is qarah qayeh
- source_sentence: Martin Severin Janus From ( 8 April 1828 -- 6 May 1895 ) was a
Danish chess master . Born in Nakskov , From received his first education at
the grammar school of Nykøbing Falster . He entered the army as a volunteer during
the Prussian-Danish War ( Schleswig-Holstein War of Succession ) , where he served
in the brigade of Major-General Olaf Rye and partook in the Battle of Fredericia
on July 6 , 1849 . After the war From settled in Copenhagen . He was employed
by the Statistical Bureau , where he met Magnus Oscar Møllerstrøm , then the strongest
chess player in Copenhagen . Next , he worked in the central office for prison
management , and in 1890 he became an inspector of the penitentiary of Christianshavn
. In 1891 he received the order Ridder af Dannebrog ( `` Knight of the Danish
cloth '' , i.e. flag of Denmark ) , which is the second highest of Danish orders
. In 1895 Severin From died of cancer . He is interred at Vestre Cemetery ,
Copenhagen .
sentences:
- when did martin from die
- what is hymenoxys lemmonii
- where is macomb square il
- source_sentence: The Recession of 1937 -- 1938 was an economic downturn that occurred
during the Great Depression in the United States . By the spring of 1937 , production
, profits , and wages had regained their 1929 levels . Unemployment remained high
, but it was slightly lower than the 25 % rate seen in 1933 . The American economy
took a sharp downturn in mid-1937 , lasting for 13 months through most of 1938
. Industrial production declined almost 30 percent and production of durable goods
fell even faster . Unemployment jumped from 14.3 % in 1937 to 19.0 % in 1938
. Manufacturing output fell by 37 % from the 1937 peak and was back to 1934 levels
. Producers reduced their expenditures on durable goods , and inventories declined
, but personal income was only 15 % lower than it had been at the peak in 1937
. In most sectors , hourly earnings continued to rise throughout the recession
, which partly compensated for the reduction in the number of hours worked . As
unemployment rose , consumers expenditures declined , thereby leading to further
cutbacks in production .
sentences:
- when did the great depression peak in the u.s. economy?
- what is tom mount's specialty
- where is poulton
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.906
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.954
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.962
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.975
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.906
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31799999999999995
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19240000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09750000000000003
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.906
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.954
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.962
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.975
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9422297521305668
name: Cosine Ndcg@10
- type: cosine_ndcg@100
value: 0.9458947974911144
name: Cosine Ndcg@100
- type: cosine_mrr@10
value: 0.9315763888888889
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9323383888065935
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-climate_fever-dataset-10k-2k-e2")
# Run inference
sentences = [
'The Recession of 1937 -- 1938 was an economic downturn that occurred during the Great Depression in the United States . By the spring of 1937 , production , profits , and wages had regained their 1929 levels . Unemployment remained high , but it was slightly lower than the 25 % rate seen in 1933 . The American economy took a sharp downturn in mid-1937 , lasting for 13 months through most of 1938 . Industrial production declined almost 30 percent and production of durable goods fell even faster . Unemployment jumped from 14.3 % in 1937 to 19.0 % in 1938 . Manufacturing output fell by 37 % from the 1937 peak and was back to 1934 levels . Producers reduced their expenditures on durable goods , and inventories declined , but personal income was only 15 % lower than it had been at the peak in 1937 . In most sectors , hourly earnings continued to rise throughout the recession , which partly compensated for the reduction in the number of hours worked . As unemployment rose , consumers expenditures declined , thereby leading to further cutbacks in production .',
'when did the great depression peak in the u.s. economy?',
'where is poulton',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.906 |
| cosine_accuracy@3 | 0.954 |
| cosine_accuracy@5 | 0.962 |
| cosine_accuracy@10 | 0.975 |
| cosine_precision@1 | 0.906 |
| cosine_precision@3 | 0.318 |
| cosine_precision@5 | 0.1924 |
| cosine_precision@10 | 0.0975 |
| cosine_recall@1 | 0.906 |
| cosine_recall@3 | 0.954 |
| cosine_recall@5 | 0.962 |
| cosine_recall@10 | 0.975 |
| cosine_ndcg@10 | 0.9422 |
| cosine_ndcg@100 | 0.9459 |
| cosine_mrr@10 | 0.9316 |
| **cosine_map@100** | **0.9323** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 10,000 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 2 tokens</li><li>mean: 116.45 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.6 tokens</li><li>max: 19 tokens</li></ul> |
* Samples:
| positive | anchor |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------|
| <code>Professor Maurice Cockrill , RA , FBA ( 8 October 1936 -- 1 December 2013 ) was a British painter and poet . Born in Hartlepool , County Durham , he studied at Wrexham School of Art , north east Wales , then Denbigh Technical College and later the University of Reading from 1960 -- 64 . In Liverpool , where he lived for nearly twenty years from 1964 , he taught at Liverpool College of Art and Liverpool Polytechnic . He was a central figure in Liverpool 's artistic life , regularly exhibiting at the Walker Art Gallery , before his departure for London in 1982 . Cockrill 's Liverpool work was in line with that of John Baum , Sam Walsh and Adrian Henri , employing Pop and Photo-Realist styles , but later he moved towards Romantic Expressionism , as it was shown in his retrospective at the Walker Art Gallery , Liverpool in 1995 . His poetry was published in magazines such as `` Ambit '' and `` Poetry Review '' . He was formerly the Keeper of the Royal Academy , and as such managed the RA Schools of the Establishment as well as being a member of the Board and Executive Committee .</code> | <code>who was maurice cockrill</code> |
| <code>Nowa Dąbrowa -LSB- ` nowa-dom ` browa -RSB- is a village in the administrative district of Gmina Kwilcz , within Międzychód County , Greater Poland Voivodeship , in west-central Poland . It lies approximately 16 km south-east of Międzychód and 59 km west of the regional capital Poznań . The village has a population of 40 .</code> | <code>where is nowa dbrowa poland</code> |
| <code>Hymenoxys lemmonii is a species of flowering plant in the daisy family known by the common names Lemmon 's rubberweed , Lemmon 's bitterweed , and alkali hymenoxys . It is native to the western United States in and around the Great Basin in Utah , Nevada , northern California , and southeastern Oregon . Hymenoxys lemmonii is a biennial or perennial herb with one or more branching stems growing erect to a maximum height near 50 centimeters ( 20 inches ) . It produces straight , dark green leaves up to 9 centimeters ( 3.6 inches ) long and divided into a number of narrow , pointed lobes . The foliage and stem may be hairless to quite woolly . The daisy-like flower head is generally at least 1.5 centimeters ( 0.6 inches ) wide , with a center of 50 -- 125 thick golden disc florets and a shaggy fringe of 9 -- 12 golden ray florets . The species is named for John Gill Lemmon , husband of prominent American botanist Sarah Plummer Lemmon .</code> | <code>what is hymenoxys lemmonii</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768
],
"matryoshka_weights": [
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_map@100 |
|:-------:|:-------:|:-------------:|:----------------------:|
| 0.0319 | 10 | 0.1626 | - |
| 0.0639 | 20 | 0.1168 | - |
| 0.0958 | 30 | 0.0543 | - |
| 0.1278 | 40 | 0.1227 | - |
| 0.1597 | 50 | 0.061 | - |
| 0.1917 | 60 | 0.0537 | - |
| 0.2236 | 70 | 0.0693 | - |
| 0.2556 | 80 | 0.1115 | - |
| 0.2875 | 90 | 0.0541 | - |
| 0.3195 | 100 | 0.0774 | - |
| 0.3514 | 110 | 0.0639 | - |
| 0.3834 | 120 | 0.0639 | - |
| 0.4153 | 130 | 0.0567 | - |
| 0.4473 | 140 | 0.0385 | - |
| 0.4792 | 150 | 0.0452 | - |
| 0.5112 | 160 | 0.0641 | - |
| 0.5431 | 170 | 0.042 | - |
| 0.5751 | 180 | 0.0243 | - |
| 0.6070 | 190 | 0.0405 | - |
| 0.6390 | 200 | 0.062 | - |
| 0.6709 | 210 | 0.0366 | - |
| 0.7029 | 220 | 0.0399 | - |
| 0.7348 | 230 | 0.0382 | - |
| 0.7668 | 240 | 0.0387 | - |
| 0.7987 | 250 | 0.0575 | - |
| 0.8307 | 260 | 0.0391 | - |
| 0.8626 | 270 | 0.0776 | - |
| 0.8946 | 280 | 0.0258 | - |
| 0.9265 | 290 | 0.0493 | - |
| 0.9585 | 300 | 0.037 | - |
| 0.9904 | 310 | 0.0499 | - |
| **1.0** | **313** | **-** | **0.9397** |
| 0.0319 | 10 | 0.0111 | - |
| 0.0639 | 20 | 0.007 | - |
| 0.0958 | 30 | 0.0023 | - |
| 0.1278 | 40 | 0.0109 | - |
| 0.1597 | 50 | 0.0046 | - |
| 0.1917 | 60 | 0.0043 | - |
| 0.2236 | 70 | 0.0037 | - |
| 0.2556 | 80 | 0.0118 | - |
| 0.2875 | 90 | 0.0026 | - |
| 0.3195 | 100 | 0.0079 | - |
| 0.3514 | 110 | 0.0045 | - |
| 0.3834 | 120 | 0.0163 | - |
| 0.4153 | 130 | 0.0058 | - |
| 0.4473 | 140 | 0.0154 | - |
| 0.4792 | 150 | 0.0051 | - |
| 0.5112 | 160 | 0.0152 | - |
| 0.5431 | 170 | 0.0058 | - |
| 0.5751 | 180 | 0.0041 | - |
| 0.6070 | 190 | 0.0118 | - |
| 0.6390 | 200 | 0.0165 | - |
| 0.6709 | 210 | 0.0088 | - |
| 0.7029 | 220 | 0.014 | - |
| 0.7348 | 230 | 0.0195 | - |
| 0.7668 | 240 | 0.024 | - |
| 0.7987 | 250 | 0.0472 | - |
| 0.8307 | 260 | 0.0341 | - |
| 0.8626 | 270 | 0.0684 | - |
| 0.8946 | 280 | 0.0193 | - |
| 0.9265 | 290 | 0.0488 | - |
| 0.9585 | 300 | 0.0388 | - |
| 0.9904 | 310 | 0.0485 | - |
| **1.0** | **313** | **-** | **0.9349** |
| 1.0224 | 320 | 0.0119 | - |
| 1.0543 | 330 | 0.013 | - |
| 1.0863 | 340 | 0.0024 | - |
| 1.1182 | 350 | 0.012 | - |
| 1.1502 | 360 | 0.0042 | - |
| 1.1821 | 370 | 0.0091 | - |
| 1.2141 | 380 | 0.0041 | - |
| 1.2460 | 390 | 0.0096 | - |
| 1.2780 | 400 | 0.0053 | - |
| 1.3099 | 410 | 0.0043 | - |
| 1.3419 | 420 | 0.0059 | - |
| 1.3738 | 430 | 0.0138 | - |
| 1.4058 | 440 | 0.0132 | - |
| 1.4377 | 450 | 0.0124 | - |
| 1.4696 | 460 | 0.0049 | - |
| 1.5016 | 470 | 0.0043 | - |
| 1.5335 | 480 | 0.0045 | - |
| 1.5655 | 490 | 0.0037 | - |
| 1.5974 | 500 | 0.0081 | - |
| 1.6294 | 510 | 0.0038 | - |
| 1.6613 | 520 | 0.0055 | - |
| 1.6933 | 530 | 0.003 | - |
| 1.7252 | 540 | 0.0022 | - |
| 1.7572 | 550 | 0.0042 | - |
| 1.7891 | 560 | 0.0158 | - |
| 1.8211 | 570 | 0.0088 | - |
| 1.8530 | 580 | 0.0154 | - |
| 1.8850 | 590 | 0.0057 | - |
| 1.9169 | 600 | 0.0086 | - |
| 1.9489 | 610 | 0.0069 | - |
| 1.9808 | 620 | 0.0076 | - |
| 2.0 | 626 | - | 0.9323 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |