File size: 30,149 Bytes
da0b33e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_ndcg@100
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10000
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Enzalutamide ( brand name Xtandi ) is a synthetic non-steroidal
    antiandrogen ( NSAA ) which was developed by the pharmaceutical company Medivation
    for the treatment of metastatic , castration-resistant prostate cancer . Medivation
    has reported up to an 89 % decrease in serum prostate specific antigen ( PSA )
    levels after a month of taking the drug . Research suggests that enzalutamide
    may also be effective in the treatment of certain types of breast cancer . In
    August 2012 , the United States ( U.S. ) Food and Drug Administration ( FDA )
    approved enzalutamide for the treatment of castration-resistant prostate cancer
    .
  sentences:
  - what type of cancer is enzalutamide
  - who is simon cho
  - who is dr william farone
- source_sentence: Sohel Rana is a Bangladeshi footballer who plays as a midfielder
    . He currently plays for Sheikh Jamal Dhanmondi Club .
  sentences:
  - who is sohel rana
  - who is olympicos
  - who is roberto laserna
- source_sentence: Qarah Qayeh ( قره قيه , also Romanized as Qareh Qīyeh ) is a village
    in Chaharduli Rural District , Keshavarz District , Shahin Dezh County , West
    Azerbaijan Province , Iran . At the 2006 census , its population was 465 , in
    93 families .
  sentences:
  - what was the knoxville riot
  - what language is kbif
  - where is qarah qayeh
- source_sentence: Martin Severin Janus From ( 8 April 1828 -- 6 May 1895 ) was a
    Danish chess master .   Born in Nakskov , From received his first education at
    the grammar school of Nykøbing Falster . He entered the army as a volunteer during
    the Prussian-Danish War ( Schleswig-Holstein War of Succession ) , where he served
    in the brigade of Major-General Olaf Rye and partook in the Battle of Fredericia
    on July 6 , 1849 .   After the war From settled in Copenhagen . He was employed
    by the Statistical Bureau , where he met Magnus Oscar Møllerstrøm , then the strongest
    chess player in Copenhagen . Next , he worked in the central office for prison
    management , and in 1890 he became an inspector of the penitentiary of Christianshavn
    . In 1891 he received the order Ridder af Dannebrog ( `` Knight of the Danish
    cloth '' , i.e. flag of Denmark ) , which is the second highest of Danish orders
    .   In 1895 Severin From died of cancer . He is interred at Vestre Cemetery ,
    Copenhagen .
  sentences:
  - when did martin from die
  - what is hymenoxys lemmonii
  - where is macomb square il
- source_sentence: The Recession of 1937 -- 1938 was an economic downturn that occurred
    during the Great Depression in the United States .   By the spring of 1937 , production
    , profits , and wages had regained their 1929 levels . Unemployment remained high
    , but it was slightly lower than the 25 % rate seen in 1933 . The American economy
    took a sharp downturn in mid-1937 , lasting for 13 months through most of 1938
    . Industrial production declined almost 30 percent and production of durable goods
    fell even faster .   Unemployment jumped from 14.3 % in 1937 to 19.0 % in 1938
    . Manufacturing output fell by 37 % from the 1937 peak and was back to 1934 levels
    .  Producers reduced their expenditures on durable goods , and inventories declined
    , but personal income was only 15 % lower than it had been at the peak in 1937
    . In most sectors , hourly earnings continued to rise throughout the recession
    , which partly compensated for the reduction in the number of hours worked . As
    unemployment rose , consumers expenditures declined , thereby leading to further
    cutbacks in production .
  sentences:
  - when did the great depression peak in the u.s. economy?
  - what is tom mount's specialty
  - where is poulton
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.906
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.954
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.962
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.975
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.906
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31799999999999995
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19240000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09750000000000003
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.906
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.954
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.962
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.975
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9422297521305668
      name: Cosine Ndcg@10
    - type: cosine_ndcg@100
      value: 0.9458947974911144
      name: Cosine Ndcg@100
    - type: cosine_mrr@10
      value: 0.9315763888888889
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9323383888065935
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-climate_fever-dataset-10k-2k-e2")
# Run inference
sentences = [
    'The Recession of 1937 -- 1938 was an economic downturn that occurred during the Great Depression in the United States .   By the spring of 1937 , production , profits , and wages had regained their 1929 levels . Unemployment remained high , but it was slightly lower than the 25 % rate seen in 1933 . The American economy took a sharp downturn in mid-1937 , lasting for 13 months through most of 1938 . Industrial production declined almost 30 percent and production of durable goods fell even faster .   Unemployment jumped from 14.3 % in 1937 to 19.0 % in 1938 . Manufacturing output fell by 37 % from the 1937 peak and was back to 1934 levels .  Producers reduced their expenditures on durable goods , and inventories declined , but personal income was only 15 % lower than it had been at the peak in 1937 . In most sectors , hourly earnings continued to rise throughout the recession , which partly compensated for the reduction in the number of hours worked . As unemployment rose , consumers expenditures declined , thereby leading to further cutbacks in production .',
    'when did the great depression peak in the u.s. economy?',
    'where is poulton',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.906      |
| cosine_accuracy@3   | 0.954      |
| cosine_accuracy@5   | 0.962      |
| cosine_accuracy@10  | 0.975      |
| cosine_precision@1  | 0.906      |
| cosine_precision@3  | 0.318      |
| cosine_precision@5  | 0.1924     |
| cosine_precision@10 | 0.0975     |
| cosine_recall@1     | 0.906      |
| cosine_recall@3     | 0.954      |
| cosine_recall@5     | 0.962      |
| cosine_recall@10    | 0.975      |
| cosine_ndcg@10      | 0.9422     |
| cosine_ndcg@100     | 0.9459     |
| cosine_mrr@10       | 0.9316     |
| **cosine_map@100**  | **0.9323** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 10,000 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                          |
  |:--------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                          |
  | details | <ul><li>min: 2 tokens</li><li>mean: 116.45 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.6 tokens</li><li>max: 19 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | anchor                                   |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------|
  | <code>Professor Maurice Cockrill , RA , FBA ( 8 October 1936 -- 1 December 2013 ) was a British painter and poet .   Born in Hartlepool , County Durham , he studied at Wrexham School of Art , north east Wales , then Denbigh Technical College and later the University of Reading from 1960 -- 64 .  In Liverpool , where he lived for nearly twenty years from 1964 , he taught at Liverpool College of Art and Liverpool Polytechnic . He was a central figure in Liverpool 's artistic life , regularly exhibiting at the Walker Art Gallery , before his departure for London in 1982 .  Cockrill 's Liverpool work was in line with that of John Baum , Sam Walsh and Adrian Henri , employing Pop and Photo-Realist styles , but later he moved towards Romantic Expressionism , as it was shown in his retrospective at the Walker Art Gallery , Liverpool in 1995 .  His poetry was published in magazines such as `` Ambit '' and `` Poetry Review '' .   He was formerly the Keeper of the Royal Academy , and as such managed the RA Schools of the Establishment as well as being a member of the Board and Executive Committee .</code> | <code>who was maurice cockrill</code>    |
  | <code>Nowa Dąbrowa -LSB- ` nowa-dom ` browa -RSB- is a village in the administrative district of Gmina Kwilcz , within Międzychód County , Greater Poland Voivodeship , in west-central Poland . It lies approximately 16 km south-east of Międzychód and 59 km west of the regional capital Poznań .   The village has a population of 40 .</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <code>where is nowa dbrowa poland</code> |
  | <code>Hymenoxys lemmonii is a species of flowering plant in the daisy family known by the common names Lemmon 's rubberweed , Lemmon 's bitterweed , and alkali hymenoxys . It is native to the western United States in and around the Great Basin in Utah , Nevada , northern California , and southeastern Oregon .   Hymenoxys lemmonii is a biennial or perennial herb with one or more branching stems growing erect to a maximum height near 50 centimeters ( 20 inches ) . It produces straight , dark green leaves up to 9 centimeters ( 3.6 inches ) long and divided into a number of narrow , pointed lobes . The foliage and stem may be hairless to quite woolly . The daisy-like flower head is generally at least 1.5 centimeters ( 0.6 inches ) wide , with a center of 50 -- 125 thick golden disc florets and a shaggy fringe of 9 -- 12 golden ray florets .   The species is named for John Gill Lemmon , husband of prominent American botanist Sarah Plummer Lemmon .</code>                                                                                                                                                      | <code>what is hymenoxys lemmonii</code>  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768
      ],
      "matryoshka_weights": [
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step    | Training Loss | dim_768_cosine_map@100 |
|:-------:|:-------:|:-------------:|:----------------------:|
| 0.0319  | 10      | 0.1626        | -                      |
| 0.0639  | 20      | 0.1168        | -                      |
| 0.0958  | 30      | 0.0543        | -                      |
| 0.1278  | 40      | 0.1227        | -                      |
| 0.1597  | 50      | 0.061         | -                      |
| 0.1917  | 60      | 0.0537        | -                      |
| 0.2236  | 70      | 0.0693        | -                      |
| 0.2556  | 80      | 0.1115        | -                      |
| 0.2875  | 90      | 0.0541        | -                      |
| 0.3195  | 100     | 0.0774        | -                      |
| 0.3514  | 110     | 0.0639        | -                      |
| 0.3834  | 120     | 0.0639        | -                      |
| 0.4153  | 130     | 0.0567        | -                      |
| 0.4473  | 140     | 0.0385        | -                      |
| 0.4792  | 150     | 0.0452        | -                      |
| 0.5112  | 160     | 0.0641        | -                      |
| 0.5431  | 170     | 0.042         | -                      |
| 0.5751  | 180     | 0.0243        | -                      |
| 0.6070  | 190     | 0.0405        | -                      |
| 0.6390  | 200     | 0.062         | -                      |
| 0.6709  | 210     | 0.0366        | -                      |
| 0.7029  | 220     | 0.0399        | -                      |
| 0.7348  | 230     | 0.0382        | -                      |
| 0.7668  | 240     | 0.0387        | -                      |
| 0.7987  | 250     | 0.0575        | -                      |
| 0.8307  | 260     | 0.0391        | -                      |
| 0.8626  | 270     | 0.0776        | -                      |
| 0.8946  | 280     | 0.0258        | -                      |
| 0.9265  | 290     | 0.0493        | -                      |
| 0.9585  | 300     | 0.037         | -                      |
| 0.9904  | 310     | 0.0499        | -                      |
| **1.0** | **313** | **-**         | **0.9397**             |
| 0.0319  | 10      | 0.0111        | -                      |
| 0.0639  | 20      | 0.007         | -                      |
| 0.0958  | 30      | 0.0023        | -                      |
| 0.1278  | 40      | 0.0109        | -                      |
| 0.1597  | 50      | 0.0046        | -                      |
| 0.1917  | 60      | 0.0043        | -                      |
| 0.2236  | 70      | 0.0037        | -                      |
| 0.2556  | 80      | 0.0118        | -                      |
| 0.2875  | 90      | 0.0026        | -                      |
| 0.3195  | 100     | 0.0079        | -                      |
| 0.3514  | 110     | 0.0045        | -                      |
| 0.3834  | 120     | 0.0163        | -                      |
| 0.4153  | 130     | 0.0058        | -                      |
| 0.4473  | 140     | 0.0154        | -                      |
| 0.4792  | 150     | 0.0051        | -                      |
| 0.5112  | 160     | 0.0152        | -                      |
| 0.5431  | 170     | 0.0058        | -                      |
| 0.5751  | 180     | 0.0041        | -                      |
| 0.6070  | 190     | 0.0118        | -                      |
| 0.6390  | 200     | 0.0165        | -                      |
| 0.6709  | 210     | 0.0088        | -                      |
| 0.7029  | 220     | 0.014         | -                      |
| 0.7348  | 230     | 0.0195        | -                      |
| 0.7668  | 240     | 0.024         | -                      |
| 0.7987  | 250     | 0.0472        | -                      |
| 0.8307  | 260     | 0.0341        | -                      |
| 0.8626  | 270     | 0.0684        | -                      |
| 0.8946  | 280     | 0.0193        | -                      |
| 0.9265  | 290     | 0.0488        | -                      |
| 0.9585  | 300     | 0.0388        | -                      |
| 0.9904  | 310     | 0.0485        | -                      |
| **1.0** | **313** | **-**         | **0.9349**             |
| 1.0224  | 320     | 0.0119        | -                      |
| 1.0543  | 330     | 0.013         | -                      |
| 1.0863  | 340     | 0.0024        | -                      |
| 1.1182  | 350     | 0.012         | -                      |
| 1.1502  | 360     | 0.0042        | -                      |
| 1.1821  | 370     | 0.0091        | -                      |
| 1.2141  | 380     | 0.0041        | -                      |
| 1.2460  | 390     | 0.0096        | -                      |
| 1.2780  | 400     | 0.0053        | -                      |
| 1.3099  | 410     | 0.0043        | -                      |
| 1.3419  | 420     | 0.0059        | -                      |
| 1.3738  | 430     | 0.0138        | -                      |
| 1.4058  | 440     | 0.0132        | -                      |
| 1.4377  | 450     | 0.0124        | -                      |
| 1.4696  | 460     | 0.0049        | -                      |
| 1.5016  | 470     | 0.0043        | -                      |
| 1.5335  | 480     | 0.0045        | -                      |
| 1.5655  | 490     | 0.0037        | -                      |
| 1.5974  | 500     | 0.0081        | -                      |
| 1.6294  | 510     | 0.0038        | -                      |
| 1.6613  | 520     | 0.0055        | -                      |
| 1.6933  | 530     | 0.003         | -                      |
| 1.7252  | 540     | 0.0022        | -                      |
| 1.7572  | 550     | 0.0042        | -                      |
| 1.7891  | 560     | 0.0158        | -                      |
| 1.8211  | 570     | 0.0088        | -                      |
| 1.8530  | 580     | 0.0154        | -                      |
| 1.8850  | 590     | 0.0057        | -                      |
| 1.9169  | 600     | 0.0086        | -                      |
| 1.9489  | 610     | 0.0069        | -                      |
| 1.9808  | 620     | 0.0076        | -                      |
| 2.0     | 626     | -             | 0.9323                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->