MugheesAwan11 commited on
Commit
a13262e
·
verified ·
1 Parent(s): fb5f446

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,963 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_from_trainer
11
+ - dataset_size:900
12
+ - loss:MatryoshkaLoss
13
+ - loss:MultipleNegativesRankingLoss
14
+ base_model: BAAI/bge-base-en-v1.5
15
+ datasets: []
16
+ metrics:
17
+ - cosine_accuracy@1
18
+ - cosine_accuracy@3
19
+ - cosine_accuracy@5
20
+ - cosine_accuracy@10
21
+ - cosine_precision@1
22
+ - cosine_precision@3
23
+ - cosine_precision@5
24
+ - cosine_precision@10
25
+ - cosine_recall@1
26
+ - cosine_recall@3
27
+ - cosine_recall@5
28
+ - cosine_recall@10
29
+ - cosine_ndcg@10
30
+ - cosine_mrr@10
31
+ - cosine_map@100
32
+ widget:
33
+ - source_sentence: Automation View Cookie Consent View Universal Consent View Vendor
34
+ Risk Assessment View Breach Management View Privacy Policy Management View Privacy
35
+ Center View Learn more Security Identify data risk and enable protection & control
36
+ Data Security Posture Management View Data Access Intelligence & Governance View
37
+ Data Risk Management View Data Breach Analysis View Learn more Governance Optimize
38
+ Data Governance with granular insights into your data Data Catalog View Data Lineage
39
+ View Data Quality View Data Controls Orchestrator View Solutions Technologies
40
+ Covering you everywhere with 1000+ integrations across data systems. Snowflake
41
+ View AWS View Microsoft 365 View Salesforce View Workday View GCP View Azure View
42
+ Oracle View Learn more Regulations Automate compliance with global privacy regulations.
43
+ US California CCPA View US California CPRA View European Union GDPR View Thailand’s
44
+ PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \+ More View Learn
45
+ more Roles Identify data risk and enable protection & control. Privacy View Security
46
+ View Governance View Marketing View Resources Blog Read through our articles written
47
+ by industry experts Collateral Product brochures, white papers, infographics,
48
+ analyst reports and more. Knowledge Center Learn about the data privacy, security
49
+ and governance landscape. Securiti Education Courses and Certifications for data
50
+ privacy, security and governance professionals. Company About Us Learn all about
51
+ Securiti, our mission and history Partner Program Join our Partner Program Contact
52
+ Us Contact us to learn more or schedule a demo News Coverage Read about Securiti
53
+ sentences:
54
+ - What does DSPM stand for in Privacy Center and its related products and services?
55
+ - Which agency protects Californians' digital privacy under CPRA?
56
+ - How does Data Security Posture Management help with data risk identification and
57
+ control?
58
+ - source_sentence: 'the affected data subjects and regulatory authority about the
59
+ breach and whether any of their information has been compromised as a result.
60
+ ### Data Protection Impact Assessment There is no requirement for conducting data
61
+ protection impact assessment under the PDPA. ### Record of Processing Activities
62
+ A data controller must keep and maintain a record of any privacy notice, data
63
+ subject request, or any other information relating to personal data processed
64
+ by him in the form and manner that may be determined by the regulatory authority.
65
+ ### Cross Border Data Transfer Requirements The PDPA provides that personal data
66
+ can be transferred out of Malaysia only when the recipient country is specified
67
+ as adequate in the Official Gazette. The personal data of data subjects can not
68
+ be disclosed without the consent of the data subject. The PDPA provides the following
69
+ exceptions to the cross border data transfer requirements: Where the consent of
70
+ data subject is obtained for transfer; or Where the transfer is necessary for
71
+ the performance of contract between the parties; The transfer is for the purpose
72
+ of any legal proceedings or for the purpose of obtaining legal advice or for establishing,
73
+ exercising or defending legal rights; The data user has taken all reasonable precautions
74
+ and exercised all due diligence to ensure that the personal data will not in that
75
+ place be processed in any manner which, if that place is Malaysia, would be a
76
+ contravention of this PDPA; The transfer is necessary in order to protect the
77
+ vital interests of the data subject; or The transfer is necessary as being in
78
+ the public interest in circumstances as determined by the Minister. ## Data Subject
79
+ Rights The data subjects or the person whose data is being collected has certain
80
+ rights under the PDPA. The most prominent rights can be categorized under the
81
+ following: ## Right to withdraw consent The PDPA, like some of the other landmark
82
+ data protection laws such as CPRA and GDPR gives data subjects the right to revoke
83
+ their consent at any time by way of written notice from having their data collected
84
+ processed. ## Right to access and rectification As per this right, anyone whose
85
+ data has been collected has the right to request to review their personal data
86
+ and have it updated. The onus is on the data handlers to respond to such a request
87
+ as soon as possible while also making it easier for data subjects on how they
88
+ can request access to their personal data. ## Right to data portability Data subjects
89
+ have the right to request that their data be stored in a manner where it'
90
+ sentences:
91
+ - How can data subjects exercise their right to data portability under the PDPA?
92
+ - What are the potential fines and penalties for non-compliance with POPIA?
93
+ - What actions must organizations take under New Zealand's Privacy Act 2020, including
94
+ breach notifications and Data Protection Officer appointment?
95
+ - source_sentence: 'Securiti, our mission is to enable enterprises to safely harness
96
+ the incredible power of data and the cloud by controlling the complex security,
97
+ privacy and compliance risks. Copyright (C) 2023 Securiti Sitemap XML Sitemap
98
+ #### Newsletter #### Company About Us Careers Contact Us Partner Program News
99
+ Coverage Press Releases #### Resources Blog Collateral Knowledge Center Securiti
100
+ Education Privacy Center Free Do Not Sell Tool What is DSPM #### Terms Terms &
101
+ Policies Security & Compliance Manage cookie preferences My Privacy Center ####
102
+ Get in touch email protected 300 Santana Row Suite 450. San Jose, CA 95128 Contact
103
+ Us Schedule a Demo Products By Role Data Command Center Sensitive Data Intelligence
104
+ Privacy Security Governance Data Controls Orchestrator By Use Cases Back Asset
105
+ Discovery Asset Discovery Data Discovery & Classification Data Discovery & Classification
106
+ Sensitive Data Catalog Sensitive Data Catalog People Data Graph People Data Graph
107
+ Data Mapping Automation View Data Subject Request Automation View People Data
108
+ Graph View Assessment Automation View Cookie Consent View Universal Consent View
109
+ Vendor Risk Assessment View Breach Management View Privacy Policy Management View
110
+ Privacy Center View Data Security Posture Management View Data Access Intelligence
111
+ & Governance View Data Risk Management View Data Breach Analysis View Data Catalog
112
+ View Data Lineage View Data Quality View Asset and Data Discovery View Data Access
113
+ Intelligence & Governance View Data Privacy Automation View Sensitive Data Intelligence
114
+ View Data Flow Intelligence & Governance View Data Consent Automation View Data
115
+ Security Posture Management View Data Breach Impact Analysis & Response View Data
116
+ Catalog View Data Lineage View Solutions'
117
+ sentences:
118
+ - What is the purpose of the "Terms & Policies" section in the context of iti Education?
119
+ - How does SDI contribute to Securiti's mission of controlling security, privacy,
120
+ and compliance risks in data and cloud usage?
121
+ - What is the definition of personal data under Singapore's PDPA and how does it
122
+ compare to other countries' data protection laws?
123
+ - source_sentence: 'View Data Quality View Data Controls Orchestrator View Solutions
124
+ Technologies Covering you everywhere with 1000+ integrations across data systems.
125
+ Snowflake View AWS View Microsoft 365 View Salesforce View Workday View GCP View
126
+ Azure View Oracle View Learn more Regulations Automate compliance with global
127
+ privacy regulations. US California CCPA View US California CPRA View European
128
+ Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil''s
129
+ LGPD View \+ More View Learn more Roles Identify data risk and enable protection
130
+ & control. Privacy View Security View Governance View Marketing View Resources
131
+ Blog Read through our articles written by industry experts Collateral Product
132
+ brochures, white papers, infographics, analyst reports and more. Knowledge Center
133
+ Learn about the data privacy, security and governance landscape. Securiti Education
134
+ Courses and Certifications for data privacy, security and governance professionals.
135
+ Company About Us Learn all about Securiti, our mission and history Partner Program
136
+ Join our Partner Program Contact Us Contact us to learn more or schedule a demo
137
+ News Coverage Read about Securiti in the news Press Releases Find our latest press
138
+ releases Careers Join the talented Securiti team Blog » Data Privacy Automation
139
+ # International data transfers under New Zealand’s new Privacy Act By Securiti
140
+ Research Team Published December 3, 2020 / Updated October 3, 2023 Table of contents
141
+ Step 1: Assess whether the foreign entity provides comparable privacy safeguards
142
+ Step 2: Enter into a contract with the data recipient ensuring comparable privacy
143
+ safeguards Step 3: Take express authorisation of the concerned data subject Step
144
+ 4: Confirm whether the foreign entity or person is part of'
145
+ sentences:
146
+ - How can organizations automate compliance with Uganda's Data Protection and Privacy
147
+ Act 2019 for data subject requests?
148
+ - What information is the data controller required to provide to the data subject
149
+ under PDPL?
150
+ - What are the solutions and technologies offered by Securiti?
151
+ - source_sentence: View GCP View Azure View Oracle View US California CCPA View US
152
+ California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL
153
+ View Canada PIPEDA View Brazil's LGPD View \+ More View Privacy View Security
154
+ View Governance View Marketing View Resources Blog View Collateral View Knowledge
155
+ Center View Securiti Education View Company About Us View Partner Program View
156
+ Contact Us View News Coverage View Press Releases View Careers View Events Spotlight
157
+ Talks IDC Names Securiti a Worldwide Leader in Data Privacy View Events Spotlight
158
+ Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data
159
+ Command Center View Learn more Asset and Data Discovery Discover dark and native
160
+ data assets Learn more Data Access Intelligence & Governance Identify which users
161
+ have access to sensitive data and prevent unauthorized access Learn more Data
162
+ Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment
163
+ Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more
164
+ Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data
165
+ | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive
166
+ data sprawl through real-time streaming platforms Learn more Data Consent Automation
167
+ First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture
168
+ Management Secure sensitive data in hybrid multicloud and SaaS environments Learn
169
+ more Data Breach Impact Analysis & Response Analyze impact of a data breach and
170
+ coordinate response per global regulatory obligations Learn more Data Catalog
171
+ Automatically catalog datasets and enable users to find, understand, trust and
172
+ access data Learn more Data Lineage , GCP View Azure View Oracle View US California
173
+ CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View
174
+ China PIPL View Canada PIPEDA View Brazil's LGPD View \+ More View Privacy View
175
+ Security View Governance View Marketing View Resources Blog View Collateral View
176
+ Knowledge Center View Securiti Education View Company About Us View Partner Program
177
+ View Contact Us View News Coverage View Press Releases View Careers View Events
178
+ Spotlight Talks IDC Names Securiti a Worldwide Leader in Data Privacy View Events
179
+ Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By
180
+ Roles Data Command Center View Learn more Asset and Data Discovery Discover dark
181
+ and native data assets Learn more Data Access Intelligence & Governance Identify
182
+ which users have access to sensitive data and prevent unauthorized access Learn
183
+ more Data Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation
184
+ | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice
185
+ Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured
186
+ Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent
187
+ sensitive data sprawl through real-time streaming platforms Learn more Data Consent
188
+ Automation First Party Consent | Third Party & Cookie Consent Learn more Data
189
+ Security Posture Management Secure sensitive data in hybrid multicloud and SaaS
190
+ environments Learn more Data Breach Impact Analysis & Response Analyze impact
191
+ of a data breach and coordinate response per global regulatory obligations Learn
192
+ more Data Catalog Automatically catalog datasets and enable users to find, understand,
193
+ trust and access data Learn more Data Lineage Track changes
194
+ sentences:
195
+ - What is the name of the data protection law in Switzerland and how does it align
196
+ with GDPR?
197
+ - What products and solutions does Oracle offer for data privacy and security, and
198
+ how do they comply with regulations in different regions and countries?
199
+ - What are the key provisions and changes in the Personal Data Protection Bill 2021
200
+ in India, and how can Securiti assist with compliance?
201
+ pipeline_tag: sentence-similarity
202
+ model-index:
203
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
204
+ results:
205
+ - task:
206
+ type: information-retrieval
207
+ name: Information Retrieval
208
+ dataset:
209
+ name: dim 768
210
+ type: dim_768
211
+ metrics:
212
+ - type: cosine_accuracy@1
213
+ value: 0.1
214
+ name: Cosine Accuracy@1
215
+ - type: cosine_accuracy@3
216
+ value: 0.36
217
+ name: Cosine Accuracy@3
218
+ - type: cosine_accuracy@5
219
+ value: 0.52
220
+ name: Cosine Accuracy@5
221
+ - type: cosine_accuracy@10
222
+ value: 0.75
223
+ name: Cosine Accuracy@10
224
+ - type: cosine_precision@1
225
+ value: 0.1
226
+ name: Cosine Precision@1
227
+ - type: cosine_precision@3
228
+ value: 0.12000000000000002
229
+ name: Cosine Precision@3
230
+ - type: cosine_precision@5
231
+ value: 0.10399999999999998
232
+ name: Cosine Precision@5
233
+ - type: cosine_precision@10
234
+ value: 0.07499999999999998
235
+ name: Cosine Precision@10
236
+ - type: cosine_recall@1
237
+ value: 0.1
238
+ name: Cosine Recall@1
239
+ - type: cosine_recall@3
240
+ value: 0.36
241
+ name: Cosine Recall@3
242
+ - type: cosine_recall@5
243
+ value: 0.52
244
+ name: Cosine Recall@5
245
+ - type: cosine_recall@10
246
+ value: 0.75
247
+ name: Cosine Recall@10
248
+ - type: cosine_ndcg@10
249
+ value: 0.38525834974191675
250
+ name: Cosine Ndcg@10
251
+ - type: cosine_mrr@10
252
+ value: 0.2732420634920635
253
+ name: Cosine Mrr@10
254
+ - type: cosine_map@100
255
+ value: 0.2814101237233525
256
+ name: Cosine Map@100
257
+ - task:
258
+ type: information-retrieval
259
+ name: Information Retrieval
260
+ dataset:
261
+ name: dim 512
262
+ type: dim_512
263
+ metrics:
264
+ - type: cosine_accuracy@1
265
+ value: 0.09
266
+ name: Cosine Accuracy@1
267
+ - type: cosine_accuracy@3
268
+ value: 0.37
269
+ name: Cosine Accuracy@3
270
+ - type: cosine_accuracy@5
271
+ value: 0.51
272
+ name: Cosine Accuracy@5
273
+ - type: cosine_accuracy@10
274
+ value: 0.74
275
+ name: Cosine Accuracy@10
276
+ - type: cosine_precision@1
277
+ value: 0.09
278
+ name: Cosine Precision@1
279
+ - type: cosine_precision@3
280
+ value: 0.12333333333333334
281
+ name: Cosine Precision@3
282
+ - type: cosine_precision@5
283
+ value: 0.10199999999999998
284
+ name: Cosine Precision@5
285
+ - type: cosine_precision@10
286
+ value: 0.07399999999999998
287
+ name: Cosine Precision@10
288
+ - type: cosine_recall@1
289
+ value: 0.09
290
+ name: Cosine Recall@1
291
+ - type: cosine_recall@3
292
+ value: 0.37
293
+ name: Cosine Recall@3
294
+ - type: cosine_recall@5
295
+ value: 0.51
296
+ name: Cosine Recall@5
297
+ - type: cosine_recall@10
298
+ value: 0.74
299
+ name: Cosine Recall@10
300
+ - type: cosine_ndcg@10
301
+ value: 0.3758407177747965
302
+ name: Cosine Ndcg@10
303
+ - type: cosine_mrr@10
304
+ value: 0.2634761904761904
305
+ name: Cosine Mrr@10
306
+ - type: cosine_map@100
307
+ value: 0.27248653158220537
308
+ name: Cosine Map@100
309
+ - task:
310
+ type: information-retrieval
311
+ name: Information Retrieval
312
+ dataset:
313
+ name: dim 256
314
+ type: dim_256
315
+ metrics:
316
+ - type: cosine_accuracy@1
317
+ value: 0.1
318
+ name: Cosine Accuracy@1
319
+ - type: cosine_accuracy@3
320
+ value: 0.35
321
+ name: Cosine Accuracy@3
322
+ - type: cosine_accuracy@5
323
+ value: 0.47
324
+ name: Cosine Accuracy@5
325
+ - type: cosine_accuracy@10
326
+ value: 0.72
327
+ name: Cosine Accuracy@10
328
+ - type: cosine_precision@1
329
+ value: 0.1
330
+ name: Cosine Precision@1
331
+ - type: cosine_precision@3
332
+ value: 0.11666666666666668
333
+ name: Cosine Precision@3
334
+ - type: cosine_precision@5
335
+ value: 0.09399999999999999
336
+ name: Cosine Precision@5
337
+ - type: cosine_precision@10
338
+ value: 0.07199999999999998
339
+ name: Cosine Precision@10
340
+ - type: cosine_recall@1
341
+ value: 0.1
342
+ name: Cosine Recall@1
343
+ - type: cosine_recall@3
344
+ value: 0.35
345
+ name: Cosine Recall@3
346
+ - type: cosine_recall@5
347
+ value: 0.47
348
+ name: Cosine Recall@5
349
+ - type: cosine_recall@10
350
+ value: 0.72
351
+ name: Cosine Recall@10
352
+ - type: cosine_ndcg@10
353
+ value: 0.36999387575978315
354
+ name: Cosine Ndcg@10
355
+ - type: cosine_mrr@10
356
+ value: 0.2624880952380952
357
+ name: Cosine Mrr@10
358
+ - type: cosine_map@100
359
+ value: 0.2732550259916666
360
+ name: Cosine Map@100
361
+ - task:
362
+ type: information-retrieval
363
+ name: Information Retrieval
364
+ dataset:
365
+ name: dim 128
366
+ type: dim_128
367
+ metrics:
368
+ - type: cosine_accuracy@1
369
+ value: 0.07
370
+ name: Cosine Accuracy@1
371
+ - type: cosine_accuracy@3
372
+ value: 0.33
373
+ name: Cosine Accuracy@3
374
+ - type: cosine_accuracy@5
375
+ value: 0.48
376
+ name: Cosine Accuracy@5
377
+ - type: cosine_accuracy@10
378
+ value: 0.71
379
+ name: Cosine Accuracy@10
380
+ - type: cosine_precision@1
381
+ value: 0.07
382
+ name: Cosine Precision@1
383
+ - type: cosine_precision@3
384
+ value: 0.11000000000000001
385
+ name: Cosine Precision@3
386
+ - type: cosine_precision@5
387
+ value: 0.09599999999999997
388
+ name: Cosine Precision@5
389
+ - type: cosine_precision@10
390
+ value: 0.07099999999999998
391
+ name: Cosine Precision@10
392
+ - type: cosine_recall@1
393
+ value: 0.07
394
+ name: Cosine Recall@1
395
+ - type: cosine_recall@3
396
+ value: 0.33
397
+ name: Cosine Recall@3
398
+ - type: cosine_recall@5
399
+ value: 0.48
400
+ name: Cosine Recall@5
401
+ - type: cosine_recall@10
402
+ value: 0.71
403
+ name: Cosine Recall@10
404
+ - type: cosine_ndcg@10
405
+ value: 0.3526473529461716
406
+ name: Cosine Ndcg@10
407
+ - type: cosine_mrr@10
408
+ value: 0.24250396825396822
409
+ name: Cosine Mrr@10
410
+ - type: cosine_map@100
411
+ value: 0.25319653384818785
412
+ name: Cosine Map@100
413
+ - task:
414
+ type: information-retrieval
415
+ name: Information Retrieval
416
+ dataset:
417
+ name: dim 64
418
+ type: dim_64
419
+ metrics:
420
+ - type: cosine_accuracy@1
421
+ value: 0.06
422
+ name: Cosine Accuracy@1
423
+ - type: cosine_accuracy@3
424
+ value: 0.32
425
+ name: Cosine Accuracy@3
426
+ - type: cosine_accuracy@5
427
+ value: 0.46
428
+ name: Cosine Accuracy@5
429
+ - type: cosine_accuracy@10
430
+ value: 0.68
431
+ name: Cosine Accuracy@10
432
+ - type: cosine_precision@1
433
+ value: 0.06
434
+ name: Cosine Precision@1
435
+ - type: cosine_precision@3
436
+ value: 0.10666666666666667
437
+ name: Cosine Precision@3
438
+ - type: cosine_precision@5
439
+ value: 0.09199999999999997
440
+ name: Cosine Precision@5
441
+ - type: cosine_precision@10
442
+ value: 0.06799999999999998
443
+ name: Cosine Precision@10
444
+ - type: cosine_recall@1
445
+ value: 0.06
446
+ name: Cosine Recall@1
447
+ - type: cosine_recall@3
448
+ value: 0.32
449
+ name: Cosine Recall@3
450
+ - type: cosine_recall@5
451
+ value: 0.46
452
+ name: Cosine Recall@5
453
+ - type: cosine_recall@10
454
+ value: 0.68
455
+ name: Cosine Recall@10
456
+ - type: cosine_ndcg@10
457
+ value: 0.33933653623127435
458
+ name: Cosine Ndcg@10
459
+ - type: cosine_mrr@10
460
+ value: 0.23408730158730165
461
+ name: Cosine Mrr@10
462
+ - type: cosine_map@100
463
+ value: 0.24510801120449394
464
+ name: Cosine Map@100
465
+ ---
466
+
467
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
468
+
469
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
470
+
471
+ ## Model Details
472
+
473
+ ### Model Description
474
+ - **Model Type:** Sentence Transformer
475
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
476
+ - **Maximum Sequence Length:** 512 tokens
477
+ - **Output Dimensionality:** 768 tokens
478
+ - **Similarity Function:** Cosine Similarity
479
+ <!-- - **Training Dataset:** Unknown -->
480
+ - **Language:** en
481
+ - **License:** apache-2.0
482
+
483
+ ### Model Sources
484
+
485
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
486
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
487
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
488
+
489
+ ### Full Model Architecture
490
+
491
+ ```
492
+ SentenceTransformer(
493
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
494
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
495
+ (2): Normalize()
496
+ )
497
+ ```
498
+
499
+ ## Usage
500
+
501
+ ### Direct Usage (Sentence Transformers)
502
+
503
+ First install the Sentence Transformers library:
504
+
505
+ ```bash
506
+ pip install -U sentence-transformers
507
+ ```
508
+
509
+ Then you can load this model and run inference.
510
+ ```python
511
+ from sentence_transformers import SentenceTransformer
512
+
513
+ # Download from the 🤗 Hub
514
+ model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v11")
515
+ # Run inference
516
+ sentences = [
517
+ "View GCP View Azure View Oracle View US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \\+ More View Privacy View Security View Governance View Marketing View Resources Blog View Collateral View Knowledge Center View Securiti Education View Company About Us View Partner Program View Contact Us View News Coverage View Press Releases View Careers View Events Spotlight Talks IDC Names Securiti a Worldwide Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage , GCP View Azure View Oracle View US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \\+ More View Privacy View Security View Governance View Marketing View Resources Blog View Collateral View Knowledge Center View Securiti Education View Company About Us View Partner Program View Contact Us View News Coverage View Press Releases View Careers View Events Spotlight Talks IDC Names Securiti a Worldwide Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes",
518
+ 'What products and solutions does Oracle offer for data privacy and security, and how do they comply with regulations in different regions and countries?',
519
+ 'What are the key provisions and changes in the Personal Data Protection Bill 2021 in India, and how can Securiti assist with compliance?',
520
+ ]
521
+ embeddings = model.encode(sentences)
522
+ print(embeddings.shape)
523
+ # [3, 768]
524
+
525
+ # Get the similarity scores for the embeddings
526
+ similarities = model.similarity(embeddings, embeddings)
527
+ print(similarities.shape)
528
+ # [3, 3]
529
+ ```
530
+
531
+ <!--
532
+ ### Direct Usage (Transformers)
533
+
534
+ <details><summary>Click to see the direct usage in Transformers</summary>
535
+
536
+ </details>
537
+ -->
538
+
539
+ <!--
540
+ ### Downstream Usage (Sentence Transformers)
541
+
542
+ You can finetune this model on your own dataset.
543
+
544
+ <details><summary>Click to expand</summary>
545
+
546
+ </details>
547
+ -->
548
+
549
+ <!--
550
+ ### Out-of-Scope Use
551
+
552
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
553
+ -->
554
+
555
+ ## Evaluation
556
+
557
+ ### Metrics
558
+
559
+ #### Information Retrieval
560
+ * Dataset: `dim_768`
561
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
562
+
563
+ | Metric | Value |
564
+ |:--------------------|:-----------|
565
+ | cosine_accuracy@1 | 0.1 |
566
+ | cosine_accuracy@3 | 0.36 |
567
+ | cosine_accuracy@5 | 0.52 |
568
+ | cosine_accuracy@10 | 0.75 |
569
+ | cosine_precision@1 | 0.1 |
570
+ | cosine_precision@3 | 0.12 |
571
+ | cosine_precision@5 | 0.104 |
572
+ | cosine_precision@10 | 0.075 |
573
+ | cosine_recall@1 | 0.1 |
574
+ | cosine_recall@3 | 0.36 |
575
+ | cosine_recall@5 | 0.52 |
576
+ | cosine_recall@10 | 0.75 |
577
+ | cosine_ndcg@10 | 0.3853 |
578
+ | cosine_mrr@10 | 0.2732 |
579
+ | **cosine_map@100** | **0.2814** |
580
+
581
+ #### Information Retrieval
582
+ * Dataset: `dim_512`
583
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
584
+
585
+ | Metric | Value |
586
+ |:--------------------|:-----------|
587
+ | cosine_accuracy@1 | 0.09 |
588
+ | cosine_accuracy@3 | 0.37 |
589
+ | cosine_accuracy@5 | 0.51 |
590
+ | cosine_accuracy@10 | 0.74 |
591
+ | cosine_precision@1 | 0.09 |
592
+ | cosine_precision@3 | 0.1233 |
593
+ | cosine_precision@5 | 0.102 |
594
+ | cosine_precision@10 | 0.074 |
595
+ | cosine_recall@1 | 0.09 |
596
+ | cosine_recall@3 | 0.37 |
597
+ | cosine_recall@5 | 0.51 |
598
+ | cosine_recall@10 | 0.74 |
599
+ | cosine_ndcg@10 | 0.3758 |
600
+ | cosine_mrr@10 | 0.2635 |
601
+ | **cosine_map@100** | **0.2725** |
602
+
603
+ #### Information Retrieval
604
+ * Dataset: `dim_256`
605
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
606
+
607
+ | Metric | Value |
608
+ |:--------------------|:-----------|
609
+ | cosine_accuracy@1 | 0.1 |
610
+ | cosine_accuracy@3 | 0.35 |
611
+ | cosine_accuracy@5 | 0.47 |
612
+ | cosine_accuracy@10 | 0.72 |
613
+ | cosine_precision@1 | 0.1 |
614
+ | cosine_precision@3 | 0.1167 |
615
+ | cosine_precision@5 | 0.094 |
616
+ | cosine_precision@10 | 0.072 |
617
+ | cosine_recall@1 | 0.1 |
618
+ | cosine_recall@3 | 0.35 |
619
+ | cosine_recall@5 | 0.47 |
620
+ | cosine_recall@10 | 0.72 |
621
+ | cosine_ndcg@10 | 0.37 |
622
+ | cosine_mrr@10 | 0.2625 |
623
+ | **cosine_map@100** | **0.2733** |
624
+
625
+ #### Information Retrieval
626
+ * Dataset: `dim_128`
627
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
628
+
629
+ | Metric | Value |
630
+ |:--------------------|:-----------|
631
+ | cosine_accuracy@1 | 0.07 |
632
+ | cosine_accuracy@3 | 0.33 |
633
+ | cosine_accuracy@5 | 0.48 |
634
+ | cosine_accuracy@10 | 0.71 |
635
+ | cosine_precision@1 | 0.07 |
636
+ | cosine_precision@3 | 0.11 |
637
+ | cosine_precision@5 | 0.096 |
638
+ | cosine_precision@10 | 0.071 |
639
+ | cosine_recall@1 | 0.07 |
640
+ | cosine_recall@3 | 0.33 |
641
+ | cosine_recall@5 | 0.48 |
642
+ | cosine_recall@10 | 0.71 |
643
+ | cosine_ndcg@10 | 0.3526 |
644
+ | cosine_mrr@10 | 0.2425 |
645
+ | **cosine_map@100** | **0.2532** |
646
+
647
+ #### Information Retrieval
648
+ * Dataset: `dim_64`
649
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
650
+
651
+ | Metric | Value |
652
+ |:--------------------|:-----------|
653
+ | cosine_accuracy@1 | 0.06 |
654
+ | cosine_accuracy@3 | 0.32 |
655
+ | cosine_accuracy@5 | 0.46 |
656
+ | cosine_accuracy@10 | 0.68 |
657
+ | cosine_precision@1 | 0.06 |
658
+ | cosine_precision@3 | 0.1067 |
659
+ | cosine_precision@5 | 0.092 |
660
+ | cosine_precision@10 | 0.068 |
661
+ | cosine_recall@1 | 0.06 |
662
+ | cosine_recall@3 | 0.32 |
663
+ | cosine_recall@5 | 0.46 |
664
+ | cosine_recall@10 | 0.68 |
665
+ | cosine_ndcg@10 | 0.3393 |
666
+ | cosine_mrr@10 | 0.2341 |
667
+ | **cosine_map@100** | **0.2451** |
668
+
669
+ <!--
670
+ ## Bias, Risks and Limitations
671
+
672
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
673
+ -->
674
+
675
+ <!--
676
+ ### Recommendations
677
+
678
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
679
+ -->
680
+
681
+ ## Training Details
682
+
683
+ ### Training Dataset
684
+
685
+ #### Unnamed Dataset
686
+
687
+
688
+ * Size: 900 training samples
689
+ * Columns: <code>positive</code> and <code>anchor</code>
690
+ * Approximate statistics based on the first 1000 samples:
691
+ | | positive | anchor |
692
+ |:--------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
693
+ | type | string | string |
694
+ | details | <ul><li>min: 159 tokens</li><li>mean: 444.92 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 21.97 tokens</li><li>max: 82 tokens</li></ul> |
695
+ * Samples:
696
+ | positive | anchor |
697
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|
698
+ | <code>Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of data throughout its lifecycle Data Controls Orchestrator View Data Command Center View Sensitive Data Intelligence View Asset Discovery Data Discovery & Classification Sensitive Data Catalog People Data Graph Learn more Privacy Automate compliance with global privacy regulations Data Mapping Automation View Data Subject Request Automation View People Data Graph View Assessment Automation View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach Management View Privacy Policy Management View Privacy Center View Learn more Security Identify data risk and enable protection & control Data Security Posture Management View Data Access Intelligence & Governance View Data Risk Management View Data Breach Analysis View Learn more Governance Optimize Data Governance with granular insights into your data Data Catalog View Data Lineage View Data Quality View Data Controls Orchestrator View Solutions Technologies Covering you everywhere with 1000+ integrations across data systems. Snowflake View AWS View Microsoft 365 View Salesforce View Workday View GCP View Azure View Oracle View Learn more Regulations Automate compliance with global privacy regulations. US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada, Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of data throughout its lifecycle Data Controls Orchestrator View Data Command Center View Sensitive Data Intelligence View Asset Discovery Data Discovery & Classification Sensitive Data Catalog People Data Graph Learn more Privacy Automate compliance with global privacy regulations Data Mapping Automation View Data Subject Request Automation View People Data Graph View Assessment Automation View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach Management View Privacy Policy Management View Privacy Center View Learn more Security Identify data risk and enable protection & control Data Security Posture Management View Data Access Intelligence & Governance View Data Risk Management View Data Breach Analysis View Learn more Governance Optimize Data Governance with granular insights into your data Data Catalog View Data Lineage View Data Quality View Data Controls Orchestrator View Solutions Technologies Covering you everywhere with 1000+ integrations across data systems. Snowflake View AWS View Microsoft 365 View Salesforce View Workday View GCP View Azure View Oracle View Learn more Regulations Automate compliance with global privacy regulations. US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada</code> | <code>What enables users to find and access datasets in the Data Catalog?</code> |
699
+ | <code>PA View China PIPL View Canada PIPEDA View Brazil's LGPD View \+ More View Privacy View Security View Governance View Marketing View Resources Blog View Collateral View Knowledge Center View Securiti Education View Company About Us View Partner Program View Contact Us View News Coverage View Press Releases View Careers View Events Spotlight Talks IDC Names Securiti a Worldwide Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of data throughout its lifecycle Data Controls Orchestrator View Data Command Center View Sensitive Data Intelligence View Asset Discovery Data Discovery & Classification Sensitive Data Catalog People Data</code> | <code>What is Brazil's LGPD?</code> |
700
+ | <code>MoTC is responsible for the enforcement of the DPL. . 4 The MoTC can also impose fines of up to QAR 5 million (US$1.4 million) for violations of certain provisions of the DPL. 5 There is currently no obligation for organizations in Qatar to appoint a data protection officer under the DPL. ### Forrester Names Securiti a Leader in the Privacy Management Wave Q4, 2021 Read the Report ### Securiti named a Leader in the IDC MarketScape for Data Privacy Compliance Software Read the Report At Securiti, our mission is to enable enterprises to safely harness the incredible power of data and the cloud by controlling the complex security, privacy and compliance risks. Copyright (C) 2023 Securiti Sitemap XML Sitemap #### Newsletter #### Company About Us Careers Contact Us Partner Program News Coverage Press Releases #### Resources Blog Collateral Knowledge Center Securiti Education Privacy Center Free Do Not Sell Tool What is DSPM #### Terms Terms & Policies Security & Compliance Manage cookie preferences My Privacy Center #### Get in touch email protected 300 Santana Row Suite 450. San Jose, CA 95128 Contact Us Schedule a Demo Products By Role Data Command Center Sensitive Data Intelligence Privacy Security Governance Data Controls Orchestrator By Use Cases Back Asset Discovery Asset Discovery Data Discovery & Classification Data Discovery & Classification Sensitive Data Catalog Sensitive Data Catalog People Data Graph People Data Graph Data Mapping Automation View Data Subject Request Automation View People Data Graph View Assessment Automation View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach Management View Privacy Policy Management View Privacy Center View Data Security Posture Management View Data Access Intelligence & Governance View Data Risk Management , . 5 Infringement of the provisions of the DPA may be penalized by not more than KES 5 million or 1% of the previous fiscal year’s annual turnover. ### Forrester Names Securiti a Leader in the Privacy Management Wave Q4, 2021 Read the Report ### Securiti named a Leader in the IDC MarketScape for Data Privacy Compliance Software Read the Report At Securiti, our mission is to enable enterprises to safely harness the incredible power of data and the cloud by controlling the complex security, privacy and compliance risks. Copyright (C) 2023 Securiti Sitemap XML Sitemap #### Newsletter #### Company About Us Careers Contact Us Partner Program News Coverage Press Releases #### Resources Blog Collateral Knowledge Center Securiti Education Privacy Center Free Do Not Sell Tool What is DSPM #### Terms Terms & Policies Security & Compliance Manage cookie preferences My Privacy Center #### Get in touch email protected 300 Santana Row Suite 450. San Jose, CA 95128 Contact Us Schedule a Demo Products By Role Data Command Center Sensitive Data Intelligence Privacy Security Governance Data Controls Orchestrator By Use Cases Back Asset Discovery Asset Discovery Data Discovery & Classification Data Discovery & Classification Sensitive Data Catalog Sensitive Data Catalog People Data Graph People Data Graph Data Mapping Automation View Data Subject Request Automation View People Data Graph View Assessment Automation View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach Management View Privacy Policy Management View Privacy Center View Data Security Posture Management View Data Access Intelligence & Governance View Data Risk Management View Data Breach Analysis View Data Catalog View Data Lineage View Data Quality View</code> | <code>What does Securiti aim to achieve in terms of data security, privacy, and compliance risks?</code> |
701
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
702
+ ```json
703
+ {
704
+ "loss": "MultipleNegativesRankingLoss",
705
+ "matryoshka_dims": [
706
+ 768,
707
+ 512,
708
+ 256,
709
+ 128,
710
+ 64
711
+ ],
712
+ "matryoshka_weights": [
713
+ 1,
714
+ 1,
715
+ 1,
716
+ 1,
717
+ 1
718
+ ],
719
+ "n_dims_per_step": -1
720
+ }
721
+ ```
722
+
723
+ ### Training Hyperparameters
724
+ #### Non-Default Hyperparameters
725
+
726
+ - `eval_strategy`: epoch
727
+ - `per_device_train_batch_size`: 32
728
+ - `per_device_eval_batch_size`: 16
729
+ - `learning_rate`: 2e-05
730
+ - `num_train_epochs`: 10
731
+ - `lr_scheduler_type`: cosine
732
+ - `warmup_ratio`: 0.1
733
+ - `bf16`: True
734
+ - `tf32`: True
735
+ - `load_best_model_at_end`: True
736
+ - `optim`: adamw_torch_fused
737
+ - `batch_sampler`: no_duplicates
738
+
739
+ #### All Hyperparameters
740
+ <details><summary>Click to expand</summary>
741
+
742
+ - `overwrite_output_dir`: False
743
+ - `do_predict`: False
744
+ - `eval_strategy`: epoch
745
+ - `prediction_loss_only`: True
746
+ - `per_device_train_batch_size`: 32
747
+ - `per_device_eval_batch_size`: 16
748
+ - `per_gpu_train_batch_size`: None
749
+ - `per_gpu_eval_batch_size`: None
750
+ - `gradient_accumulation_steps`: 1
751
+ - `eval_accumulation_steps`: None
752
+ - `learning_rate`: 2e-05
753
+ - `weight_decay`: 0.0
754
+ - `adam_beta1`: 0.9
755
+ - `adam_beta2`: 0.999
756
+ - `adam_epsilon`: 1e-08
757
+ - `max_grad_norm`: 1.0
758
+ - `num_train_epochs`: 10
759
+ - `max_steps`: -1
760
+ - `lr_scheduler_type`: cosine
761
+ - `lr_scheduler_kwargs`: {}
762
+ - `warmup_ratio`: 0.1
763
+ - `warmup_steps`: 0
764
+ - `log_level`: passive
765
+ - `log_level_replica`: warning
766
+ - `log_on_each_node`: True
767
+ - `logging_nan_inf_filter`: True
768
+ - `save_safetensors`: True
769
+ - `save_on_each_node`: False
770
+ - `save_only_model`: False
771
+ - `restore_callback_states_from_checkpoint`: False
772
+ - `no_cuda`: False
773
+ - `use_cpu`: False
774
+ - `use_mps_device`: False
775
+ - `seed`: 42
776
+ - `data_seed`: None
777
+ - `jit_mode_eval`: False
778
+ - `use_ipex`: False
779
+ - `bf16`: True
780
+ - `fp16`: False
781
+ - `fp16_opt_level`: O1
782
+ - `half_precision_backend`: auto
783
+ - `bf16_full_eval`: False
784
+ - `fp16_full_eval`: False
785
+ - `tf32`: True
786
+ - `local_rank`: 0
787
+ - `ddp_backend`: None
788
+ - `tpu_num_cores`: None
789
+ - `tpu_metrics_debug`: False
790
+ - `debug`: []
791
+ - `dataloader_drop_last`: False
792
+ - `dataloader_num_workers`: 0
793
+ - `dataloader_prefetch_factor`: None
794
+ - `past_index`: -1
795
+ - `disable_tqdm`: False
796
+ - `remove_unused_columns`: True
797
+ - `label_names`: None
798
+ - `load_best_model_at_end`: True
799
+ - `ignore_data_skip`: False
800
+ - `fsdp`: []
801
+ - `fsdp_min_num_params`: 0
802
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
803
+ - `fsdp_transformer_layer_cls_to_wrap`: None
804
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
805
+ - `deepspeed`: None
806
+ - `label_smoothing_factor`: 0.0
807
+ - `optim`: adamw_torch_fused
808
+ - `optim_args`: None
809
+ - `adafactor`: False
810
+ - `group_by_length`: False
811
+ - `length_column_name`: length
812
+ - `ddp_find_unused_parameters`: None
813
+ - `ddp_bucket_cap_mb`: None
814
+ - `ddp_broadcast_buffers`: False
815
+ - `dataloader_pin_memory`: True
816
+ - `dataloader_persistent_workers`: False
817
+ - `skip_memory_metrics`: True
818
+ - `use_legacy_prediction_loop`: False
819
+ - `push_to_hub`: False
820
+ - `resume_from_checkpoint`: None
821
+ - `hub_model_id`: None
822
+ - `hub_strategy`: every_save
823
+ - `hub_private_repo`: False
824
+ - `hub_always_push`: False
825
+ - `gradient_checkpointing`: False
826
+ - `gradient_checkpointing_kwargs`: None
827
+ - `include_inputs_for_metrics`: False
828
+ - `eval_do_concat_batches`: True
829
+ - `fp16_backend`: auto
830
+ - `push_to_hub_model_id`: None
831
+ - `push_to_hub_organization`: None
832
+ - `mp_parameters`:
833
+ - `auto_find_batch_size`: False
834
+ - `full_determinism`: False
835
+ - `torchdynamo`: None
836
+ - `ray_scope`: last
837
+ - `ddp_timeout`: 1800
838
+ - `torch_compile`: False
839
+ - `torch_compile_backend`: None
840
+ - `torch_compile_mode`: None
841
+ - `dispatch_batches`: None
842
+ - `split_batches`: None
843
+ - `include_tokens_per_second`: False
844
+ - `include_num_input_tokens_seen`: False
845
+ - `neftune_noise_alpha`: None
846
+ - `optim_target_modules`: None
847
+ - `batch_eval_metrics`: False
848
+ - `batch_sampler`: no_duplicates
849
+ - `multi_dataset_batch_sampler`: proportional
850
+
851
+ </details>
852
+
853
+ ### Training Logs
854
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
855
+ |:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
856
+ | 0.3448 | 10 | 9.0172 | - | - | - | - | - |
857
+ | 0.6897 | 20 | 7.8791 | - | - | - | - | - |
858
+ | 1.0 | 29 | - | 0.2696 | 0.2535 | 0.2642 | 0.2317 | 0.2805 |
859
+ | 1.0345 | 30 | 6.1959 | - | - | - | - | - |
860
+ | 1.3793 | 40 | 5.1573 | - | - | - | - | - |
861
+ | 1.7241 | 50 | 3.9165 | - | - | - | - | - |
862
+ | 2.0 | 58 | - | 0.2545 | 0.2678 | 0.2693 | 0.2320 | 0.2609 |
863
+ | 2.0690 | 60 | 3.6232 | - | - | - | - | - |
864
+ | 2.4138 | 70 | 3.0077 | - | - | - | - | - |
865
+ | 2.7586 | 80 | 2.951 | - | - | - | - | - |
866
+ | 3.0 | 87 | - | 0.2663 | 0.2909 | 0.2663 | 0.2438 | 0.2677 |
867
+ | 3.1034 | 90 | 2.3699 | - | - | - | - | - |
868
+ | 3.4483 | 100 | 2.404 | - | - | - | - | - |
869
+ | 3.7931 | 110 | 1.818 | - | - | - | - | - |
870
+ | **4.0** | **116** | **-** | **0.2752** | **0.279** | **0.2888** | **0.2447** | **0.2938** |
871
+ | 4.1379 | 120 | 1.4625 | - | - | - | - | - |
872
+ | 4.4828 | 130 | 1.9295 | - | - | - | - | - |
873
+ | 4.8276 | 140 | 1.5043 | - | - | - | - | - |
874
+ | 5.0 | 145 | - | 0.2633 | 0.2684 | 0.2771 | 0.2442 | 0.2841 |
875
+ | 5.1724 | 150 | 1.0966 | - | - | - | - | - |
876
+ | 5.5172 | 160 | 1.3741 | - | - | - | - | - |
877
+ | 5.8621 | 170 | 1.132 | - | - | - | - | - |
878
+ | 6.0 | 174 | - | 0.2635 | 0.2649 | 0.2861 | 0.2399 | 0.2760 |
879
+ | 6.2069 | 180 | 0.8199 | - | - | - | - | - |
880
+ | 6.5517 | 190 | 1.0209 | - | - | - | - | - |
881
+ | 6.8966 | 200 | 1.0516 | - | - | - | - | - |
882
+ | 7.0 | 203 | - | 0.2619 | 0.2738 | 0.2654 | 0.2474 | 0.2770 |
883
+ | 7.2414 | 210 | 0.7749 | - | - | - | - | - |
884
+ | 7.5862 | 220 | 1.0583 | - | - | - | - | - |
885
+ | 7.9310 | 230 | 0.832 | - | - | - | - | - |
886
+ | 8.0 | 232 | - | 0.2652 | 0.2739 | 0.2675 | 0.2441 | 0.2725 |
887
+ | 8.2759 | 240 | 0.7005 | - | - | - | - | - |
888
+ | 8.6207 | 250 | 0.8967 | - | - | - | - | - |
889
+ | 8.9655 | 260 | 0.8263 | - | - | - | - | - |
890
+ | 9.0 | 261 | - | 0.2609 | 0.2682 | 0.2656 | 0.2401 | 0.2817 |
891
+ | 9.3103 | 270 | 0.6493 | - | - | - | - | - |
892
+ | 9.6552 | 280 | 0.7889 | - | - | - | - | - |
893
+ | 10.0 | 290 | 0.7407 | 0.2532 | 0.2733 | 0.2725 | 0.2451 | 0.2814 |
894
+
895
+ * The bold row denotes the saved checkpoint.
896
+
897
+ ### Framework Versions
898
+ - Python: 3.10.14
899
+ - Sentence Transformers: 3.0.1
900
+ - Transformers: 4.41.2
901
+ - PyTorch: 2.1.2+cu121
902
+ - Accelerate: 0.31.0
903
+ - Datasets: 2.19.1
904
+ - Tokenizers: 0.19.1
905
+
906
+ ## Citation
907
+
908
+ ### BibTeX
909
+
910
+ #### Sentence Transformers
911
+ ```bibtex
912
+ @inproceedings{reimers-2019-sentence-bert,
913
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
914
+ author = "Reimers, Nils and Gurevych, Iryna",
915
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
916
+ month = "11",
917
+ year = "2019",
918
+ publisher = "Association for Computational Linguistics",
919
+ url = "https://arxiv.org/abs/1908.10084",
920
+ }
921
+ ```
922
+
923
+ #### MatryoshkaLoss
924
+ ```bibtex
925
+ @misc{kusupati2024matryoshka,
926
+ title={Matryoshka Representation Learning},
927
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
928
+ year={2024},
929
+ eprint={2205.13147},
930
+ archivePrefix={arXiv},
931
+ primaryClass={cs.LG}
932
+ }
933
+ ```
934
+
935
+ #### MultipleNegativesRankingLoss
936
+ ```bibtex
937
+ @misc{henderson2017efficient,
938
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
939
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
940
+ year={2017},
941
+ eprint={1705.00652},
942
+ archivePrefix={arXiv},
943
+ primaryClass={cs.CL}
944
+ }
945
+ ```
946
+
947
+ <!--
948
+ ## Glossary
949
+
950
+ *Clearly define terms in order to be accessible across audiences.*
951
+ -->
952
+
953
+ <!--
954
+ ## Model Card Authors
955
+
956
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
957
+ -->
958
+
959
+ <!--
960
+ ## Model Card Contact
961
+
962
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
963
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21447ab7410b9b388c63df984b4e230dfa0fd93ef46d5419bbb218e7d805bc5d
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff