File size: 61,044 Bytes
873cb8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:900
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: 'ographics, analyst reports and more.


    Knowledge Center


    Learn about the data privacy, security and governance landscape.


    Securiti Education


    Courses and Certifications for data privacy, security and governance professionals.


    Company


    About Us


    Learn all about Securiti, our mission and history


    Partner Program


    Join our Partner Program


    Contact Us


    Contact us to learn more or schedule a demo


    News Coverage


    Read about Securiti in the news


    Press Releases


    Find our latest press releases


    Careers


    Join the talented Securiti team


    Knowledge Center » Data Privacy Automation


    # What is Irish Data Protection Act of 2018


    By Securiti Research Team


    Published February 2, 2021 / Updated September 28, 2023


    The Irish Data Protection Act, 2018 (Irish DPA) implements the General Data Protection
    Regulation (GDPR) and transposes the European Union Law Enforcement Directive
    in Ireland. Since it incorporates most of the provisions from the GDPR and the
    Law Enforcement Directive with limited additions and deletions as per the national
    law, it is considered to be the principal data protection legislation in Ireland.


    Table of contents


    Rights of Data Subjects


    Responsibilities of data controllers


    Irish DPC Cookie Consent Guidelines


    Automating Compliance


    ### Rights of Data Subjects


    The Irish DPA provides the same rights to data subjects with respect to their
    personal data as that of the GDPR. These rights give data subjects control over
    their data and may be processed under particular conditions and limitations.


    ## Right to be informed


    Data subjects have the right to be informed of when and how their data is being
    used and collected. This refers to the obligation of the data controller to inform
    and notify any relevant details to the data subjects for any important action
    taken on their data.


    ## Right to access


    On a request of the data subject, an organization must provide data subject access
    to his/her personal data and information about the ways personal data has been
    or may have been used, disclosed, or processed by the organization.


    ## Right to restriction of processing


    This right applies when the accuracy of data is contested by the data subject
    and when processing is unlawful and the data subject opposes the deletion of the
    data. Data subjects need to be informed before any such restriction is lifted.


    ## Right to data port'
  sentences:
  - What is the PDPA Act in Malaysia and how does it regulate the processing of personal
    data?
  - What is the purpose of the European Union GDPR?
  - What does the Irish Data Protection Act of 2018 implement in relation to the Law
    Enforcement Directive?
- source_sentence: '

    Learn all about Securiti, our mission and history


    Partner Program


    Join our Partner Program


    Contact Us


    Contact us to learn more or schedule a demo


    News Coverage


    Read about Securiti in the news


    Press Releases


    Find our latest press releases


    Careers


    Join the talented Securiti team


    Blog » Data Consent Automation


    # Irish Guidance on Consent & Cookies – Grace Period ends on 5 October


    By Securiti Research Team


    Published October 1, 2020 / Updated October 6, 2023


    On 6 April, the Data Protection Commission of Ireland (DPC) released a substantive
    Guidance Note on cookies (Guidance) and provided organizations a grace period
    of six months to ensure compliance. After the end of the six- month window, which
    is 5 October 2020, the Irish DPC may act to enforce the Guidance and can hold
    organizations liable for failing to obtain valid consent before the processing
    of cookies.


    This Guidance was issued based on the report released by the DPC on the findings
    of a “cookie sweep survey”. The survey was conducted on around 38 organizations
    operating within the territory of Ireland and around 35 of those companies were
    found to be significantly lacking in cookie compliance requirements. The DPC noticed
    the following non-compliance practices of organizations, among others:


    Dropping of non


    essential cookies on landing pages without obtaining user’s consent,


    The lifespans of most cookies that are dropped are not proportionate to the purposes
    of the cookies,


    Inadequate cookie banners,


    Frequent use of pre


    checked boxes for the processing of non


    essential cookies,


    A lack of stand


    alone cookie policies,


    Failure to fulfill the requirements of a valid consent as per the General Data
    Protection Regulation (GDPR) and the Irish e


    Privacy Regulations.


    Based on its identification of the above non-compliance areas, the Irish DPC released
    the comprehensive Guidance for organizations. The Guidance explains the purposes
    of cookies as well as it adheres to the requirements of the GDPR, e-Privacy Directive,
    and the Guidelines on Consent of the European Data Protection Board, released
    on 4 May 2020 that declared cookie walls invalid.


    _Read EDPB’s Updated Guidelines on Consent_


    The Guidance also complements the landmark decision by the Court of Justice of
    the'
  sentences:
  - What are the requirements for valid consent under the GDPR and Irish e-Privacy
    Regulations according to the Irish DPC's Guidance on cookies?
  - What are the CPPA's duties in enforcing CCPA and CPRA?
  - What legislative measures has Spain taken to protect citizens' personal information
    and data, and how does it compare to Saudi Arabia's data protection law?
- source_sentence: ' are:


    Regulation No. 20 of 2016 concerning Protection of Personal Data in Electronic
    Systems (MoCI Reg);


    Amended Law No. 11 of 2008 on Electronic Information and Transaction (EIT Law);


    Government Regulation No. 71 of 2019 on the Implementation of the Electronic System
    and Transaction (GR 71).


    There are also sectoral regulations that regulate the personal data in a specific
    sector e.g, banking sector, health sector, etc.


    ## Indonesia’s Incoming Personal Data Protection (PDP) Law


    Following delays due to COVID-19, Indonesia is now geared to pass its first Personal
    Data Protection Act (PDP Law). On January 24, 2020, the bill’s final draft was
    submitted to the Indonesian House of Representatives. The PDP law will address
    the much-needed reforms to the country’s data privacy protection rules. The law
    is built on the European Union’s General Data Protection Regulation (GDPR).


    In essence, Indonesia will soon follow the same data subject rights and personal
    data processing regulations set by the European Union in their GDPR.


    The PDP Law will have 72 articles across 15 chapters. These articles and chapters
    will extensively cover data ownership rights, prohibitions on data use, along
    with the collection, storage, processing, and transfer of personal data of Indonesian
    users.


    With Indonesia being an active part of the global economy and attracting millions
    of tourists annually, businesses should quickly align their business operations
    to comply with the upcoming PDP law.


    ## Who Needs to Comply with the PDP Law


    The PDP law will impact local businesses in Indonesia and will also have an impact
    on companies across the globe that deal with Indonesian consumers. . The PDP law
    will apply to any registered company dealing with Indonesian residents, irrespective
    of where they are registered.


    Whether an entity is public or private, local or international, the PDP Law will
    automatically apply to them if they deal with the personal data of Indonesian
    residents. The new PDP Law is expected to apply to all sectors, bringing forward
    comprehensive provisions on personal data protection, both electronically and
    non-electronically.


    ### Material Scope of the PDP Law


    The PDP law will regulate sensitive personal data as well as other personal data
    that may endanger or harm the privacy of the data subject.


    ### Territorial Scope of the Law


    The PDP Bill applies to companies both within and outside of the territory of
    Indonesia where'
  sentences:
  - What does Securiti offer businesses in terms of automating privacy and security
    processes, and why is it important for businesses to embrace robotic automation
    for compliance?
  - What companies will be impacted by Indonesia's Personal Data Protection Law?
  - What is the purpose of the Data Command Center in relation to the company's products
    and solutions?
- source_sentence: 'Contact us to learn more or schedule a demo


    News Coverage


    Read about Securiti in the news


    Press Releases


    Find our latest press releases


    Careers


    Join the talented Securiti team


    Knowledge Center » Data Privacy Automation


    # What is China’s Data Security Law?


    By Securiti Research Team


    Published August 9, 2021 / Updated October 2, 2023


    In China, the following are three main laws that cover the data privacy and data
    security regime:


    The Cybersecurity Law of the People’s Republic of China (the “CSL”), implemented
    on June 1, 2017.


    The Personal Information Protection Law of the People’s Republic of China (the
    “PIPL”), effective from November 1, 2021.


    The Data Security Law (the “DSL”), will be implemented from September 1, 2021.


    The focus of this article is on the DSL that was promulgated to standardize data
    processing activities, ensure data security, promote data development and utilization,
    and protect the legitimate rights and interests of individuals and organizations.


    Table of contents


    Scope of Application and Extraterritorial Effect of DSL


    Penalties for Non


    Compliance


    How Securiti Can Help


    ## Scope of Application and Extraterritorial Effect of DSL


    The DSL applies to and regulates data processing activities by organizations and
    individuals, and security supervision of such activities within the territory
    of China. The DSL also regulates data processing activities conducted outside
    of China that harm China’s national security or the public interest, or the legal
    interests of citizens and organizations in China. It would be right to state that
    DSL has extensive and extra-territorial application. It imposes a number of obligations
    on organizations and individuals even those that are not based in China regarding
    data categorization and classification, data risk controls and risk assessments,
    cross-border data transfers, and data export controls.


    The DSL applies to data recorded in electronic and other forms including digital
    and cyber information, and information recorded in other forms such as paper records.
    Data processing activities regulated by DSL include, without limitation, the collection,
    storage, use, processing, transmission, provision, or disclosure of data.


    Organizations and individuals need to understand and fulfill the following requirements
    of the DSL in order to avoid unnecessary compliance risks and penalties:


    ##'
  sentences:
  - What can organizations do to manage vendor risk in relation to data protection
    and compliance, considering Kenya's Data Protection Act 2019?
  - What are the time limits for organizations to respond to a request under the NZ
    Privacy Act 2020, and what are the requirements for transferring personal information
    outside NZ?
  - How does the Data Security Law in China contribute to data standardization, security
    protection, and development?
- source_sentence: "\n\nOblige with Data Localization Requirements:\n\nOblige with\
    \ Product Safety and Certifications Requirements:\n\nFulfill Content Monitoring\
    \ Requirements:\n\nChina’s Cybersecurity Law (the “CSL”), which went into effect\
    \ on June 1st, 2017, applies to the construction, operation, maintenance, and\
    \ use of information networks, and the supervision and administration of cybersecurity\
    \ in China. The CSL provides guidelines on cybersecurity requirements for safeguarding\
    \ Chinese cyberspace. The law protects the legal interests and rights of organizations\
    \ as well as individuals in China. It also promotes the secure development of\
    \ technology and the digitization of the economy in China. Following entities\
    \ come under the application scope of the CSL:\n\n**Network Operators:\n\n** It\
    \ refers to the owners and administrators of networks and network service providers,\
    \ and could be interpreted to include any companies providing services, or running\
    \ their business through a computer network in China.\n\n**Critical Information\
    \ Infrastructure Operators (CIIOs):\n\n** It refers to operators of critical information\
    \ infrastructure in important industries and sectors (such as information service,\
    \ public service, and e\n\ngovernment) and other information infrastructure that,\
    \ if leaked, may severely threaten the national security, national economy, people’s\
    \ livelihood, and public interests.\n\n**Network Products and Services Providers:\n\
    \n** Organizations that provide information through networks or provide services\
    \ to obtain information, including users, network services providers which provide\
    \ network tools, devices, media, etc.\n\nCompliance with the CSL is not straightforward\
    \ since CSL has several ambiguities and complicated obligations for network operators\
    \ and CIIOs. Additional laws and guidelines will also be considered concerning\
    \ the CSL compliance, including guidelines concerning the security assessment\
    \ of cross- border transfers of personal information and important data, Data\
    \ Security Law (DSL), and recently promulgated Personal Information Protection\
    \ Law (PIPL).\n\nWe have prepared the following compliance checklist for the covered\
    \ entities to ensure compliance with the CSL. Please note that this is not an\
    \ exhaustive compliance list. For a detailed overview of the CSL, please refer\
    \ to our article on What is China’s Cybersecurity Law?\n\n## 1\\. Fulfill Network\
    \ Operations Security Requirements:\n\n## A. Requirements for network operators:\n\
    \nNetwork operators must adopt the following security measures to prevent network\
    \ interference, damage, or unauthorized access, and prevent network data from\
    \ leakage, theft, or alteration:\n\nEstablish internal, \n## 5\\. Oblige with\
    \ Product Safety and Certifications Requirements:\n\n## A. Requirements for Network\
    \ Products and Services Providers:\n\nCybersecurity product manufacturers, security\
    \ service suppliers, and other organizations that provide services through networks\
    \ should oblige with the following requirements:\n\nNetwork products and services\
    \ providers must not set up malicious programs.\n\nUpon discovering a security\
    \ flaw, vulnerability, or another risk in their product or service, they must\
    \ take remedial action immediately, inform users and report the issue to the relevant\
    \ departments.\n\nNetwork product and service providers are required to conduct\
    \ security maintenance for their products and services.\n\n## B. Requirements\
    \ for CIIOs:\n\nCIIOs must, when procuring network products and services that\
    \ may impact national security, submit the products and services to CAC and the\
    \ State Council departments for a review for national security purposes. Critical\
    \ network equipment and special cybersecurity products can only be sold or provided\
    \ after being certified by a qualified establishment, and are in compliance with\
    \ national standards.\n\n## 6\\. Fulfill Content Monitoring Requirements:\n\n\
    According to Article 47 of the CSL, network operators are required to monitor\
    \ the information released by their users for information that is “prohibited\
    \ from being published or transmitted by laws or administrative regulations. If\
    \ such information is discovered, network operators must cease the transmission\
    \ of information, remove the information, keep records, and report any unlawful\
    \ content to relevant authorities. Securiti helps organizations automate their\
    \ privacy management operations using artificial intelligence and robotic automation.\
    \ Request a demo and start your CSL compliance process today.\n\n## Join Our Newsletter\n\
    \nGet all the latest information, law updates and more delivered to your inbox\n\
    \n### Share\n\nCopy\n\n55\n\n### More Stories that May Interest You\n\nView More\n\
    \nSeptember 11, 2023\n\n## Securiti named a Leader in the IDC MarketScape for\
    \ Data Privacy Compliance Software\n\nSecuriti has just been recognized as a Leader\
    \ in the “IDC MarketScape: Worldwide Data Privacy Compliance Software 2023 Vendor\
    \ Assessment” report. This makes us...\n\nView More\n\nMay 10, 2023\n\n## Privacy\n\
    \nby\n\nDesign and Privacy\n\nby\n\nDefault\n\nPrivacy-by-design and privacy-by-default\
    \ are two cornerstone concepts of data protection regulatory frameworks. Thus,\
    \ compliance thereof is an essential legal prerequisite for any entity which...\n\
    \nView More\n\nApril 5,"
  sentences:
  - What are the 13 IPPs of New Zealand's Privacy Act 2020 that apply to all organizations,
    including those outside of New Zealand, offering goods/services to individuals
    in New Zealand or collecting information about individuals in New Zealand?
  - What security measures must network operators adopt to fulfill content monitoring
    requirements under China's Cybersecurity Law, and what obligations do network
    products and services providers and CIIOs have in relation to product safety and
    certifications?
  - How does the PDPA in Malaysia protect personal data in commercial transactions
    and who does it apply to?
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.08
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.27
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.45
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.67
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.08
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.08999999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06699999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.08
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.27
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.45
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.67
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.33828063637415534
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.23589682539682535
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.24406326043435023
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.06
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.25
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.39
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.66
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.06
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.08333333333333331
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.07800000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06599999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.06
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.25
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.39
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.66
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.31695711820935435
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.2123928571428571
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.22150012925090945
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.05
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.24
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.38
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.05
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.08
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.07600000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05999999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.05
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.24
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.38
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2931065726305541
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.19853174603174606
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.21132630111968292
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.05
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.28
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.36
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.55
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.05
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09333333333333334
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.07200000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05499999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.05
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.28
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.36
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.55
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.278284909333787
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.19384126984126987
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.20776022518923803
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.04
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.21
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.53
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.04
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.07
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06000000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05299999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.04
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.21
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.53
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.25162020276083924
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.16670634920634916
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.177182977653562
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v7")
# Run inference
sentences = [
    '\n\nOblige with Data Localization Requirements:\n\nOblige with Product Safety and Certifications Requirements:\n\nFulfill Content Monitoring Requirements:\n\nChina’s Cybersecurity Law (the “CSL”), which went into effect on June 1st, 2017, applies to the construction, operation, maintenance, and use of information networks, and the supervision and administration of cybersecurity in China. The CSL provides guidelines on cybersecurity requirements for safeguarding Chinese cyberspace. The law protects the legal interests and rights of organizations as well as individuals in China. It also promotes the secure development of technology and the digitization of the economy in China. Following entities come under the application scope of the CSL:\n\n**Network Operators:\n\n** It refers to the owners and administrators of networks and network service providers, and could be interpreted to include any companies providing services, or running their business through a computer network in China.\n\n**Critical Information Infrastructure Operators (CIIOs):\n\n** It refers to operators of critical information infrastructure in important industries and sectors (such as information service, public service, and e\n\ngovernment) and other information infrastructure that, if leaked, may severely threaten the national security, national economy, people’s livelihood, and public interests.\n\n**Network Products and Services Providers:\n\n** Organizations that provide information through networks or provide services to obtain information, including users, network services providers which provide network tools, devices, media, etc.\n\nCompliance with the CSL is not straightforward since CSL has several ambiguities and complicated obligations for network operators and CIIOs. Additional laws and guidelines will also be considered concerning the CSL compliance, including guidelines concerning the security assessment of cross- border transfers of personal information and important data, Data Security Law (DSL), and recently promulgated Personal Information Protection Law (PIPL).\n\nWe have prepared the following compliance checklist for the covered entities to ensure compliance with the CSL. Please note that this is not an exhaustive compliance list. For a detailed overview of the CSL, please refer to our article on What is China’s Cybersecurity Law?\n\n## 1\\. Fulfill Network Operations Security Requirements:\n\n## A. Requirements for network operators:\n\nNetwork operators must adopt the following security measures to prevent network interference, damage, or unauthorized access, and prevent network data from leakage, theft, or alteration:\n\nEstablish internal, \n## 5\\. Oblige with Product Safety and Certifications Requirements:\n\n## A. Requirements for Network Products and Services Providers:\n\nCybersecurity product manufacturers, security service suppliers, and other organizations that provide services through networks should oblige with the following requirements:\n\nNetwork products and services providers must not set up malicious programs.\n\nUpon discovering a security flaw, vulnerability, or another risk in their product or service, they must take remedial action immediately, inform users and report the issue to the relevant departments.\n\nNetwork product and service providers are required to conduct security maintenance for their products and services.\n\n## B. Requirements for CIIOs:\n\nCIIOs must, when procuring network products and services that may impact national security, submit the products and services to CAC and the State Council departments for a review for national security purposes. Critical network equipment and special cybersecurity products can only be sold or provided after being certified by a qualified establishment, and are in compliance with national standards.\n\n## 6\\. Fulfill Content Monitoring Requirements:\n\nAccording to Article 47 of the CSL, network operators are required to monitor the information released by their users for information that is “prohibited from being published or transmitted by laws or administrative regulations. If such information is discovered, network operators must cease the transmission of information, remove the information, keep records, and report any unlawful content to relevant authorities. Securiti helps organizations automate their privacy management operations using artificial intelligence and robotic automation. Request a demo and start your CSL compliance process today.\n\n## Join Our Newsletter\n\nGet all the latest information, law updates and more delivered to your inbox\n\n### Share\n\nCopy\n\n55\n\n### More Stories that May Interest You\n\nView More\n\nSeptember 11, 2023\n\n## Securiti named a Leader in the IDC MarketScape for Data Privacy Compliance Software\n\nSecuriti has just been recognized as a Leader in the “IDC MarketScape: Worldwide Data Privacy Compliance Software 2023 Vendor Assessment” report. This makes us...\n\nView More\n\nMay 10, 2023\n\n## Privacy\n\nby\n\nDesign and Privacy\n\nby\n\nDefault\n\nPrivacy-by-design and privacy-by-default are two cornerstone concepts of data protection regulatory frameworks. Thus, compliance thereof is an essential legal prerequisite for any entity which...\n\nView More\n\nApril 5,',
    "What security measures must network operators adopt to fulfill content monitoring requirements under China's Cybersecurity Law, and what obligations do network products and services providers and CIIOs have in relation to product safety and certifications?",
    'How does the PDPA in Malaysia protect personal data in commercial transactions and who does it apply to?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.08       |
| cosine_accuracy@3   | 0.27       |
| cosine_accuracy@5   | 0.45       |
| cosine_accuracy@10  | 0.67       |
| cosine_precision@1  | 0.08       |
| cosine_precision@3  | 0.09       |
| cosine_precision@5  | 0.09       |
| cosine_precision@10 | 0.067      |
| cosine_recall@1     | 0.08       |
| cosine_recall@3     | 0.27       |
| cosine_recall@5     | 0.45       |
| cosine_recall@10    | 0.67       |
| cosine_ndcg@10      | 0.3383     |
| cosine_mrr@10       | 0.2359     |
| **cosine_map@100**  | **0.2441** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.06       |
| cosine_accuracy@3   | 0.25       |
| cosine_accuracy@5   | 0.39       |
| cosine_accuracy@10  | 0.66       |
| cosine_precision@1  | 0.06       |
| cosine_precision@3  | 0.0833     |
| cosine_precision@5  | 0.078      |
| cosine_precision@10 | 0.066      |
| cosine_recall@1     | 0.06       |
| cosine_recall@3     | 0.25       |
| cosine_recall@5     | 0.39       |
| cosine_recall@10    | 0.66       |
| cosine_ndcg@10      | 0.317      |
| cosine_mrr@10       | 0.2124     |
| **cosine_map@100**  | **0.2215** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.05       |
| cosine_accuracy@3   | 0.24       |
| cosine_accuracy@5   | 0.38       |
| cosine_accuracy@10  | 0.6        |
| cosine_precision@1  | 0.05       |
| cosine_precision@3  | 0.08       |
| cosine_precision@5  | 0.076      |
| cosine_precision@10 | 0.06       |
| cosine_recall@1     | 0.05       |
| cosine_recall@3     | 0.24       |
| cosine_recall@5     | 0.38       |
| cosine_recall@10    | 0.6        |
| cosine_ndcg@10      | 0.2931     |
| cosine_mrr@10       | 0.1985     |
| **cosine_map@100**  | **0.2113** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.05       |
| cosine_accuracy@3   | 0.28       |
| cosine_accuracy@5   | 0.36       |
| cosine_accuracy@10  | 0.55       |
| cosine_precision@1  | 0.05       |
| cosine_precision@3  | 0.0933     |
| cosine_precision@5  | 0.072      |
| cosine_precision@10 | 0.055      |
| cosine_recall@1     | 0.05       |
| cosine_recall@3     | 0.28       |
| cosine_recall@5     | 0.36       |
| cosine_recall@10    | 0.55       |
| cosine_ndcg@10      | 0.2783     |
| cosine_mrr@10       | 0.1938     |
| **cosine_map@100**  | **0.2078** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.04       |
| cosine_accuracy@3   | 0.21       |
| cosine_accuracy@5   | 0.3        |
| cosine_accuracy@10  | 0.53       |
| cosine_precision@1  | 0.04       |
| cosine_precision@3  | 0.07       |
| cosine_precision@5  | 0.06       |
| cosine_precision@10 | 0.053      |
| cosine_recall@1     | 0.04       |
| cosine_recall@3     | 0.21       |
| cosine_recall@5     | 0.3        |
| cosine_recall@10    | 0.53       |
| cosine_ndcg@10      | 0.2516     |
| cosine_mrr@10       | 0.1667     |
| **cosine_map@100**  | **0.1772** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 900 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                              | anchor                                                                            |
  |:--------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                                | string                                                                            |
  | details | <ul><li>min: 159 tokens</li><li>mean: 446.78 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 22.04 tokens</li><li>max: 82 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | anchor                                                                                                                                     |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------|
  | <code> issues related to the organization's privacy officers, exemption from consent requirements, biometric information registration, and breach reports. The next two stages will come into effect in September 2023 and September 2024, respectively.<br><br>### Hong Kong<br><br>#### Hong Kong Personal Data (Privacy) Ordinance (PDPO)<br><br>**Effective Date** : Since 1995 **Region** : APAC (Asia-Pacific)<br><br>The PDPO is the primary legislation in Hong Kong which was enacted to protect the privacy of individuals’ personal data, and regulate the collection, holding, processing, disclosure, or use of personal data by the organizations. The PDPO applies to private and public sector organizations that process, use, hold, or collect personal data. It covers any organization that deals with the collection and processing of personal data irrespective of the location of processing, provided that the personal data is controlled by the data user based in Hong Kong.<br><br>Resources*<br><br>:<br><br>Hong Kong PDPO Overview<br><br>### Ireland<br><br>#### Irish Data Protection Act (DPA)<br><br>**Effective Date** : May 24, 2018 **Region** : EMEA (Europe, the Middle East and Africa)<br><br>The Irish DPA implements the GDPR into the national law by incorporating most of the provisions of the GDPR with limited additions and deletions. It contains several provisions restricting data subjects’ rights that they generally have under the GDPR, for example, where restrictions are necessary for the enforcement of civil law claims.<br><br>Resources*<br><br>:<br><br>Irish DPA Overview<br><br>Irish Cookie Guidance<br><br>### Japan<br><br>#### Japan’s Act on the Protection of Personal Information (APPI)<br><br>**Effective Date (Amended APPI)** : April 01, 2022 **Region** : APAC (Asia-Pacific)<br><br>Japan’s APPI regulates personal related information and applies to any Personal Information Controller (the “PIC''), that is a person or entity providing personal related information for use in business in Japan. The APPI also applies to the foreign PICs which handle personal information of data subjects (“principals”) in Japan for the purpose of supplying goods or services to those persons.The act ensures the individual’s rights to privacy and also the legal use of personal data for economic development.<br><br>Resources*<br><br>:<br><br>Japan APPI Overview<br><br>### New Zealand<br><br>#### New Zealand</code>                                                                                                                                                                                                | <code>What are the regulations regarding breach reports in New Zealand?</code>                                                             |
  | <code> data. Finally, as previously mentioned, consumers can opt-out of the collection of their sensitive personal data.<br><br>**Means to submit DSR request:<br><br>** A consumer may exercise a right by submitting an authenticated request to a controller, by means prescribed by the controller, specifying the right the consumer intends to exercise. In the instance of processing personal data concerning a child, the parent or legal guardian of the child can exercise a right on the child's behalf. In the case of processing personal data concerning a consumer subject to guardianship, conservatorship, or other protective arrangements under Title 75, Chapter 5, Protection of Persons Under Disability and Their Property, the guardian or the conservator of the consumer shall exercise a right on the consumer's behalf.<br><br>**Time period to fulfill DSR request<br><br>** : A controller shall comply with a consumer's request to exercise a right within 45 days after the day on which a controller had received that particular request. The controller then shall take action on the consumer's request; and inform the consumer of any action taken on the consumer's request.<br><br>**Extension in the time period:<br><br>** An additional 45 days can be granted if it is reasonably necessary to comply with the request, keeping in mind the complexity of the request or the volume of the requests received by the controller. In such cases, the controller is to inform the consumer of the extension and provide reasons for the extension.<br><br>**Charges:<br><br>** Controllers are not allowed to charge a fee for responding to a request under the law apart from certain situations. If the request is a consumer's second or subsequent request within the same 12<br><br>month period, a controller may charge a reasonable fee. A controller may also charge a reasonable fee to cover the administrative costs of complying with a request or refuse to act on a request if:<br><br>the request is excessive, repetitive, technically infeasible as per the law; or<br><br>the controller considers that the primary goal for the submitted request was something other than exercising a right; or<br><br>the request disrupts or imposes an undue burden on the resources of the controller’s business.<br><br>**Appeal against refusal:<br><br>** The data controller may choose to not to take action on a consumer’s DSR request. It must provide the consumer the reasons for which it did not take the action within the 45 days time period of receiving the DSR request. The data controller may also choose to not honor the request</code> | <code>What is the time frame for a controller to fulfill a consumer's request to exercise a right, and what can extend this period?</code> |
  | <code> or use of personal data. This is the same as the term 'data controller.'<br><br>## Data Processor<br><br>Data Processor is a person or entity who processes personal data on behalf of another person or entity (a data user) instead of for his/her purpose(s).<br><br>## Consent<br><br>Consent is not a prerequisite for collecting personal data unless the personal data is used for a new purpose or for direct marketing purposes. Where consent is required, consent means to express and voluntary consent.<br><br>## Data Subjects' Rights under the PDPO:<br><br>The PDPO prescribes the following rights for the data subjects;<br><br>DPP 6 provides data subjects with the right to request access to and correction of their personal data. A data user should give reasons when refusing a data subject’s request to access or correction of his/her personal data.<br><br>Data subjects have the right to be informed by data user(s) regarding the holding of their personal data.<br><br>There is no explicit right to erasure available under the PDPO, however, data subjects can request the data user to delete his/her personal data that is no longer necessary for the processing. Also, data users are not allowed to retain personal data longer than necessary.<br><br>Under the PDPO, there is no right to object to processing (including profiling) available, but data subjects may opt<br><br>out from direct marketing activities.<br><br>## **Who needs to comply with the PDPO**?<br><br>The PDPO applies to private and public sector organizations that process, use, hold, or collect personal data. It covers any organization that deals with the collection and processing of personal data irrespective of the location of processing provided that the personal data is controlled by the data user based in Hong Kong.<br><br>The PDPO provides the following exemptions for the processing of personal data in Part VIII;<br><br>specified public or judicial interests<br><br>domestic or recreational purposes, or for<br><br>employment purposes.<br><br>The PDPO does not directly regulate data processors; therefore, they do not directly come under the application scope of the PDPO. However, data users are required to, by contractual or other means, ensure that their data processors meet the applicable requirements of the PDPO.<br><br>## **Organizations' obligations under the PDPO:**<br><br>PDPO does not explicitly state accountability principles and other privacy management related measures; however, the PCPD recommends</code>                                                                                                | <code>What rights do data subjects have under the PDPO regarding the right to object to processing, and what are the limitations?</code>   |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 2
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch     | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:---------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.6897    | 10     | 8.029         | -                      | -                      | -                      | -                     | -                      |
| 0.9655    | 14     | -             | 0.2004                 | 0.2241                 | 0.2170                 | 0.1726                | 0.2279                 |
| 1.3793    | 20     | 5.6389        | -                      | -                      | -                      | -                     | -                      |
| **1.931** | **28** | **-**         | **0.2078**             | **0.2113**             | **0.2215**             | **0.1772**            | **0.2441**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->