Mukundhan32 commited on
Commit
7bd5bc4
·
verified ·
1 Parent(s): 04c0ae5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -3
README.md CHANGED
@@ -1,3 +1,65 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - text-classification
5
+ - tensorflow
6
+ - roberta
7
+ datasets:
8
+ - go_emotions
9
+ license: mit
10
+ ---
11
+
12
+ Contributors:
13
+ - Rohan Kamath [linkedin.com/in/rohanrkamath](https://www.linkedin.com/in/rohanrkamath/)
14
+ - Arpan Ghoshal [linkedin.com/in/arpanghoshal](https://www.linkedin.com/in/arpanghoshal)
15
+
16
+ ## What is GoEmotions
17
+
18
+ Dataset labelled 58000 Reddit comments with 28 emotions
19
+
20
+ - admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, surprise + neutral
21
+
22
+
23
+ ## What is RoBERTa
24
+
25
+ RoBERTa builds on BERT’s language masking strategy and modifies key hyperparameters in BERT, including removing BERT’s next-sentence pretraining objective, and training with much larger mini-batches and learning rates. RoBERTa was also trained on an order of magnitude more data than BERT, for a longer amount of time. This allows RoBERTa representations to generalize even better to downstream tasks compared to BERT.
26
+
27
+
28
+ ## Hyperparameters
29
+
30
+ | Parameter | |
31
+ | ----------------- | :---: |
32
+ | Learning rate | 5e-5 |
33
+ | Epochs | 10 |
34
+ | Max Seq Length | 50 |
35
+ | Batch size | 16 |
36
+ | Warmup Proportion | 0.1 |
37
+ | Epsilon | 1e-8 |
38
+
39
+
40
+ ## Results
41
+
42
+ Best Result of `Macro F1` - 49.30%
43
+
44
+ ## Usage
45
+
46
+ ```python
47
+
48
+ from transformers import RobertaTokenizerFast, TFRobertaForSequenceClassification, pipeline
49
+
50
+ tokenizer = RobertaTokenizerFast.from_pretrained("arpanghoshal/EmoRoBERTa")
51
+ model = TFRobertaForSequenceClassification.from_pretrained("arpanghoshal/EmoRoBERTa")
52
+
53
+ emotion = pipeline('sentiment-analysis',
54
+ model='arpanghoshal/EmoRoBERTa')
55
+
56
+ emotion_labels = emotion("Thanks for using it.")
57
+ print(emotion_labels)
58
+
59
+ ```
60
+ Output
61
+
62
+ ```
63
+ [{'label': 'gratitude', 'score': 0.9964383244514465}]
64
+ ```
65
+