P1ayer-1 commited on
Commit
13f216a
·
1 Parent(s): 3f1b730

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ model-index:
7
+ - name: expert-min-pile-instruct-v1.1
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # expert-min-pile-instruct-v1.1
15
+
16
+ This model is a fine-tuned version of [P1ayer-1/pythia-deduped-1b-chat-base](https://huggingface.co/P1ayer-1/pythia-deduped-1b-chat-base) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Accuracy: 0.3842
19
+ - Loss: 4.9648
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0001
39
+ - train_batch_size: 12
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 8
44
+ - total_train_batch_size: 96
45
+ - total_eval_batch_size: 64
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - training_steps: 6000
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Accuracy | Validation Loss |
53
+ |:-------------:|:-----:|:----:|:--------:|:---------------:|
54
+ | 7.4574 | 0.1 | 200 | 0.1688 | 7.4961 |
55
+ | 7.0445 | 0.2 | 400 | 0.1997 | 7.0547 |
56
+ | 6.7483 | 0.3 | 600 | 0.2190 | 6.7930 |
57
+ | 6.4568 | 0.4 | 800 | 0.2376 | 6.5703 |
58
+ | 6.2865 | 0.5 | 1000 | 0.2552 | 6.375 |
59
+ | 6.1028 | 0.6 | 1200 | 0.2793 | 6.1484 |
60
+ | 5.8888 | 0.7 | 1400 | 0.2982 | 5.9570 |
61
+ | 5.7362 | 0.8 | 1600 | 0.3121 | 5.8008 |
62
+ | 5.6507 | 0.9 | 1800 | 0.3238 | 5.6797 |
63
+ | 5.565 | 1.0 | 2000 | 0.3318 | 5.5781 |
64
+ | 5.4688 | 1.1 | 2200 | 0.3392 | 5.4961 |
65
+ | 5.4044 | 1.2 | 2400 | 0.3456 | 5.4219 |
66
+ | 5.3323 | 1.3 | 2600 | 0.3516 | 5.3594 |
67
+ | 5.2598 | 1.4 | 2800 | 0.3562 | 5.3047 |
68
+ | 5.2159 | 1.5 | 3000 | 0.3596 | 5.2578 |
69
+ | 5.1992 | 1.6 | 3200 | 0.3638 | 5.2148 |
70
+ | 5.1429 | 1.69 | 3400 | 0.3672 | 5.1797 |
71
+ | 5.095 | 1.79 | 3600 | 0.3696 | 5.1445 |
72
+ | 5.0646 | 1.89 | 3800 | 0.3715 | 5.1172 |
73
+ | 5.059 | 1.99 | 4000 | 0.3742 | 5.0859 |
74
+ | 5.0152 | 2.09 | 4200 | 0.3756 | 5.0664 |
75
+ | 5.0251 | 2.19 | 4400 | 0.3769 | 5.0469 |
76
+ | 5.022 | 2.29 | 4600 | 0.3790 | 5.0273 |
77
+ | 4.9939 | 2.39 | 4800 | 0.3798 | 5.0156 |
78
+ | 4.924 | 2.49 | 5000 | 0.3811 | 5.0 |
79
+ | 4.9335 | 2.59 | 5200 | 0.3821 | 4.9883 |
80
+ | 4.9231 | 2.69 | 5400 | 0.3829 | 4.9805 |
81
+ | 4.8886 | 2.79 | 5600 | 0.3835 | 4.9727 |
82
+ | 4.9419 | 2.89 | 5800 | 0.3843 | 4.9648 |
83
+ | 4.9227 | 2.99 | 6000 | 0.3842 | 4.9648 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.28.1
89
+ - Pytorch 2.0.0+cu117
90
+ - Datasets 2.11.0
91
+ - Tokenizers 0.13.3