update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: expert-min-pile-instruct-v1.1
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# expert-min-pile-instruct-v1.1
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [P1ayer-1/pythia-deduped-1b-chat-base](https://huggingface.co/P1ayer-1/pythia-deduped-1b-chat-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Accuracy: 0.3842
|
19 |
+
- Loss: 4.9648
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0001
|
39 |
+
- train_batch_size: 12
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 8
|
44 |
+
- total_train_batch_size: 96
|
45 |
+
- total_eval_batch_size: 64
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- training_steps: 6000
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
53 |
+
|:-------------:|:-----:|:----:|:--------:|:---------------:|
|
54 |
+
| 7.4574 | 0.1 | 200 | 0.1688 | 7.4961 |
|
55 |
+
| 7.0445 | 0.2 | 400 | 0.1997 | 7.0547 |
|
56 |
+
| 6.7483 | 0.3 | 600 | 0.2190 | 6.7930 |
|
57 |
+
| 6.4568 | 0.4 | 800 | 0.2376 | 6.5703 |
|
58 |
+
| 6.2865 | 0.5 | 1000 | 0.2552 | 6.375 |
|
59 |
+
| 6.1028 | 0.6 | 1200 | 0.2793 | 6.1484 |
|
60 |
+
| 5.8888 | 0.7 | 1400 | 0.2982 | 5.9570 |
|
61 |
+
| 5.7362 | 0.8 | 1600 | 0.3121 | 5.8008 |
|
62 |
+
| 5.6507 | 0.9 | 1800 | 0.3238 | 5.6797 |
|
63 |
+
| 5.565 | 1.0 | 2000 | 0.3318 | 5.5781 |
|
64 |
+
| 5.4688 | 1.1 | 2200 | 0.3392 | 5.4961 |
|
65 |
+
| 5.4044 | 1.2 | 2400 | 0.3456 | 5.4219 |
|
66 |
+
| 5.3323 | 1.3 | 2600 | 0.3516 | 5.3594 |
|
67 |
+
| 5.2598 | 1.4 | 2800 | 0.3562 | 5.3047 |
|
68 |
+
| 5.2159 | 1.5 | 3000 | 0.3596 | 5.2578 |
|
69 |
+
| 5.1992 | 1.6 | 3200 | 0.3638 | 5.2148 |
|
70 |
+
| 5.1429 | 1.69 | 3400 | 0.3672 | 5.1797 |
|
71 |
+
| 5.095 | 1.79 | 3600 | 0.3696 | 5.1445 |
|
72 |
+
| 5.0646 | 1.89 | 3800 | 0.3715 | 5.1172 |
|
73 |
+
| 5.059 | 1.99 | 4000 | 0.3742 | 5.0859 |
|
74 |
+
| 5.0152 | 2.09 | 4200 | 0.3756 | 5.0664 |
|
75 |
+
| 5.0251 | 2.19 | 4400 | 0.3769 | 5.0469 |
|
76 |
+
| 5.022 | 2.29 | 4600 | 0.3790 | 5.0273 |
|
77 |
+
| 4.9939 | 2.39 | 4800 | 0.3798 | 5.0156 |
|
78 |
+
| 4.924 | 2.49 | 5000 | 0.3811 | 5.0 |
|
79 |
+
| 4.9335 | 2.59 | 5200 | 0.3821 | 4.9883 |
|
80 |
+
| 4.9231 | 2.69 | 5400 | 0.3829 | 4.9805 |
|
81 |
+
| 4.8886 | 2.79 | 5600 | 0.3835 | 4.9727 |
|
82 |
+
| 4.9419 | 2.89 | 5800 | 0.3843 | 4.9648 |
|
83 |
+
| 4.9227 | 2.99 | 6000 | 0.3842 | 4.9648 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.28.1
|
89 |
+
- Pytorch 2.0.0+cu117
|
90 |
+
- Datasets 2.11.0
|
91 |
+
- Tokenizers 0.13.3
|