P1ayer-1 commited on
Commit
260e217
·
1 Parent(s): 2582c3d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ model-index:
7
+ - name: expert-min-pile-instruct
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # expert-min-pile-instruct
15
+
16
+ This model is a fine-tuned version of [P1ayer-1/pythia-deduped-1b-chat-base](https://huggingface.co/P1ayer-1/pythia-deduped-1b-chat-base) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 6.9437
19
+ - Accuracy: 0.2099
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0001
39
+ - train_batch_size: 1
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 8
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 64
46
+ - total_eval_batch_size: 64
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - training_steps: 1000
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 7.6017 | 0.02 | 200 | 7.5928 | 0.1605 |
56
+ | 7.1871 | 0.03 | 400 | 7.2690 | 0.1847 |
57
+ | 7.0356 | 0.05 | 600 | 7.0897 | 0.1980 |
58
+ | 6.93 | 0.07 | 800 | 6.9870 | 0.2064 |
59
+ | 6.9089 | 0.08 | 1000 | 6.9437 | 0.2099 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.28.1
65
+ - Pytorch 2.0.0+cu117
66
+ - Datasets 2.11.0
67
+ - Tokenizers 0.13.3