P1ayer-1 commited on
Commit
54373ff
·
1 Parent(s): bffa706

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - /pfs/lustrep4/scratch/project_462000259/shared_datasets/modified_200/modified_200/
6
+ model-index:
7
+ - name: layer_16,17,18,19,20
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # layer_16,17,18,19,20
15
+
16
+ This model is a fine-tuned version of [/pfs/lustrep4/scratch/project_462000259/shared_models/pythia-2.8b-deduped-base/pythia-2.8b-deduped](https://huggingface.co//pfs/lustrep4/scratch/project_462000259/shared_models/pythia-2.8b-deduped-base/pythia-2.8b-deduped) on the /pfs/lustrep4/scratch/project_462000259/shared_datasets/modified_200/modified_200/ dataset.
17
+
18
+ ## Model description
19
+
20
+ More information needed
21
+
22
+ ## Intended uses & limitations
23
+
24
+ More information needed
25
+
26
+ ## Training and evaluation data
27
+
28
+ More information needed
29
+
30
+ ## Training procedure
31
+
32
+ ### Training hyperparameters
33
+
34
+ The following hyperparameters were used during training:
35
+ - learning_rate: 5e-05
36
+ - train_batch_size: 2
37
+ - eval_batch_size: 2
38
+ - seed: 42
39
+ - distributed_type: multi-GPU
40
+ - num_devices: 64
41
+ - total_train_batch_size: 128
42
+ - total_eval_batch_size: 128
43
+ - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 4
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+
51
+
52
+ ### Framework versions
53
+
54
+ - Transformers 4.28.1
55
+ - Pytorch 2.0.1+rocm5.4.2
56
+ - Datasets 2.11.0
57
+ - Tokenizers 0.13.3
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 4.0,
3
+ "train_loss": 0.11551530145209522,
4
+ "train_runtime": 3653.4642,
5
+ "train_samples": 463392,
6
+ "train_samples_per_second": 507.345,
7
+ "train_steps_per_second": 3.964
8
+ }
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/pfs/lustrep4/scratch/project_462000259/shared_models/pythia-2.8b-deduped-base/pythia-2.8b-deduped",
3
+ "architectures": [
4
+ "GPTNeoXForCausalLM"
5
+ ],
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 0,
8
+ "hidden_act": "gelu",
9
+ "hidden_size": 2560,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 10240,
12
+ "layer_norm_eps": 1e-05,
13
+ "max_position_embeddings": 2048,
14
+ "model_type": "gpt_neox",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "rotary_emb_base": 10000,
18
+ "rotary_pct": 0.25,
19
+ "tie_word_embeddings": false,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.28.1",
22
+ "use_cache": true,
23
+ "use_parallel_residual": true,
24
+ "vocab_size": 50304
25
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 0,
5
+ "transformers_version": "4.28.1"
6
+ }
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7434d7b62c40a53d2ae799370e967ca5c1d593ffc6e6c3f8d9bddc53ecd9cc4
3
+ size 10086521429
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b74dbf36afa36107d077372846e6ba5c6e1743414d0ca5616821d2f5ad29120c
3
+ size 1148707683
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 11117614464.0
4
+ },
5
+ "weight_map": {
6
+ "embed_out.weight": "pytorch_model-00002-of-00002.bin",
7
+ "gpt_neox.embed_in.weight": "pytorch_model-00001-of-00002.bin",
8
+ "gpt_neox.final_layer_norm.bias": "pytorch_model-00002-of-00002.bin",
9
+ "gpt_neox.final_layer_norm.weight": "pytorch_model-00002-of-00002.bin",
10
+ "gpt_neox.layers.0.attention.bias": "pytorch_model-00001-of-00002.bin",
11
+ "gpt_neox.layers.0.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
12
+ "gpt_neox.layers.0.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
13
+ "gpt_neox.layers.0.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
14
+ "gpt_neox.layers.0.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
15
+ "gpt_neox.layers.0.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
16
+ "gpt_neox.layers.0.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
17
+ "gpt_neox.layers.0.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
18
+ "gpt_neox.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
19
+ "gpt_neox.layers.0.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
20
+ "gpt_neox.layers.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
21
+ "gpt_neox.layers.0.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
22
+ "gpt_neox.layers.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
23
+ "gpt_neox.layers.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
24
+ "gpt_neox.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
25
+ "gpt_neox.layers.1.attention.bias": "pytorch_model-00001-of-00002.bin",
26
+ "gpt_neox.layers.1.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
27
+ "gpt_neox.layers.1.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
28
+ "gpt_neox.layers.1.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
29
+ "gpt_neox.layers.1.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
30
+ "gpt_neox.layers.1.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
31
+ "gpt_neox.layers.1.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
32
+ "gpt_neox.layers.1.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
33
+ "gpt_neox.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
34
+ "gpt_neox.layers.1.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
35
+ "gpt_neox.layers.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
36
+ "gpt_neox.layers.1.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
37
+ "gpt_neox.layers.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
38
+ "gpt_neox.layers.1.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
39
+ "gpt_neox.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
40
+ "gpt_neox.layers.10.attention.bias": "pytorch_model-00001-of-00002.bin",
41
+ "gpt_neox.layers.10.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
42
+ "gpt_neox.layers.10.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
43
+ "gpt_neox.layers.10.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
44
+ "gpt_neox.layers.10.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
45
+ "gpt_neox.layers.10.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
46
+ "gpt_neox.layers.10.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
47
+ "gpt_neox.layers.10.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
48
+ "gpt_neox.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "gpt_neox.layers.10.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
50
+ "gpt_neox.layers.10.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
51
+ "gpt_neox.layers.10.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
52
+ "gpt_neox.layers.10.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
53
+ "gpt_neox.layers.10.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
54
+ "gpt_neox.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
55
+ "gpt_neox.layers.11.attention.bias": "pytorch_model-00001-of-00002.bin",
56
+ "gpt_neox.layers.11.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
57
+ "gpt_neox.layers.11.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
58
+ "gpt_neox.layers.11.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
59
+ "gpt_neox.layers.11.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
60
+ "gpt_neox.layers.11.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
61
+ "gpt_neox.layers.11.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
62
+ "gpt_neox.layers.11.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
63
+ "gpt_neox.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
64
+ "gpt_neox.layers.11.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
65
+ "gpt_neox.layers.11.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
66
+ "gpt_neox.layers.11.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
67
+ "gpt_neox.layers.11.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
68
+ "gpt_neox.layers.11.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
69
+ "gpt_neox.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
70
+ "gpt_neox.layers.12.attention.bias": "pytorch_model-00001-of-00002.bin",
71
+ "gpt_neox.layers.12.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
72
+ "gpt_neox.layers.12.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
73
+ "gpt_neox.layers.12.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
74
+ "gpt_neox.layers.12.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
75
+ "gpt_neox.layers.12.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
76
+ "gpt_neox.layers.12.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
77
+ "gpt_neox.layers.12.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
78
+ "gpt_neox.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
79
+ "gpt_neox.layers.12.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
80
+ "gpt_neox.layers.12.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
81
+ "gpt_neox.layers.12.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
82
+ "gpt_neox.layers.12.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
83
+ "gpt_neox.layers.12.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
84
+ "gpt_neox.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
85
+ "gpt_neox.layers.13.attention.bias": "pytorch_model-00001-of-00002.bin",
86
+ "gpt_neox.layers.13.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
87
+ "gpt_neox.layers.13.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
88
+ "gpt_neox.layers.13.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
89
+ "gpt_neox.layers.13.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
90
+ "gpt_neox.layers.13.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
91
+ "gpt_neox.layers.13.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
92
+ "gpt_neox.layers.13.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
93
+ "gpt_neox.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
94
+ "gpt_neox.layers.13.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
95
+ "gpt_neox.layers.13.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
96
+ "gpt_neox.layers.13.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
97
+ "gpt_neox.layers.13.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
98
+ "gpt_neox.layers.13.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
99
+ "gpt_neox.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
100
+ "gpt_neox.layers.14.attention.bias": "pytorch_model-00001-of-00002.bin",
101
+ "gpt_neox.layers.14.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
102
+ "gpt_neox.layers.14.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
103
+ "gpt_neox.layers.14.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
104
+ "gpt_neox.layers.14.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
105
+ "gpt_neox.layers.14.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
106
+ "gpt_neox.layers.14.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
107
+ "gpt_neox.layers.14.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
108
+ "gpt_neox.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
109
+ "gpt_neox.layers.14.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
110
+ "gpt_neox.layers.14.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
111
+ "gpt_neox.layers.14.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
112
+ "gpt_neox.layers.14.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
113
+ "gpt_neox.layers.14.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
114
+ "gpt_neox.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
115
+ "gpt_neox.layers.15.attention.bias": "pytorch_model-00001-of-00002.bin",
116
+ "gpt_neox.layers.15.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
117
+ "gpt_neox.layers.15.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
118
+ "gpt_neox.layers.15.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
119
+ "gpt_neox.layers.15.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
120
+ "gpt_neox.layers.15.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
121
+ "gpt_neox.layers.15.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
122
+ "gpt_neox.layers.15.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
123
+ "gpt_neox.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
124
+ "gpt_neox.layers.15.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
125
+ "gpt_neox.layers.15.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
126
+ "gpt_neox.layers.15.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
127
+ "gpt_neox.layers.15.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
128
+ "gpt_neox.layers.15.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
129
+ "gpt_neox.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
130
+ "gpt_neox.layers.16.attention.bias": "pytorch_model-00001-of-00002.bin",
131
+ "gpt_neox.layers.16.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
132
+ "gpt_neox.layers.16.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
133
+ "gpt_neox.layers.16.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
134
+ "gpt_neox.layers.16.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
135
+ "gpt_neox.layers.16.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
136
+ "gpt_neox.layers.16.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
137
+ "gpt_neox.layers.16.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
138
+ "gpt_neox.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "gpt_neox.layers.16.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
140
+ "gpt_neox.layers.16.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
141
+ "gpt_neox.layers.16.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
142
+ "gpt_neox.layers.16.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
143
+ "gpt_neox.layers.16.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
144
+ "gpt_neox.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
145
+ "gpt_neox.layers.17.attention.bias": "pytorch_model-00001-of-00002.bin",
146
+ "gpt_neox.layers.17.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
147
+ "gpt_neox.layers.17.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
148
+ "gpt_neox.layers.17.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
149
+ "gpt_neox.layers.17.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
150
+ "gpt_neox.layers.17.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
151
+ "gpt_neox.layers.17.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
152
+ "gpt_neox.layers.17.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
153
+ "gpt_neox.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
154
+ "gpt_neox.layers.17.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
155
+ "gpt_neox.layers.17.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
156
+ "gpt_neox.layers.17.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
157
+ "gpt_neox.layers.17.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
158
+ "gpt_neox.layers.17.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
159
+ "gpt_neox.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
160
+ "gpt_neox.layers.18.attention.bias": "pytorch_model-00001-of-00002.bin",
161
+ "gpt_neox.layers.18.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
162
+ "gpt_neox.layers.18.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
163
+ "gpt_neox.layers.18.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
164
+ "gpt_neox.layers.18.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
165
+ "gpt_neox.layers.18.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
166
+ "gpt_neox.layers.18.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
167
+ "gpt_neox.layers.18.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
168
+ "gpt_neox.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
169
+ "gpt_neox.layers.18.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
170
+ "gpt_neox.layers.18.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
171
+ "gpt_neox.layers.18.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
172
+ "gpt_neox.layers.18.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
173
+ "gpt_neox.layers.18.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
174
+ "gpt_neox.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
175
+ "gpt_neox.layers.19.attention.bias": "pytorch_model-00001-of-00002.bin",
176
+ "gpt_neox.layers.19.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
177
+ "gpt_neox.layers.19.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
178
+ "gpt_neox.layers.19.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
179
+ "gpt_neox.layers.19.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
180
+ "gpt_neox.layers.19.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
181
+ "gpt_neox.layers.19.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
182
+ "gpt_neox.layers.19.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
183
+ "gpt_neox.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
184
+ "gpt_neox.layers.19.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
185
+ "gpt_neox.layers.19.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
186
+ "gpt_neox.layers.19.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
187
+ "gpt_neox.layers.19.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
188
+ "gpt_neox.layers.19.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
189
+ "gpt_neox.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
190
+ "gpt_neox.layers.2.attention.bias": "pytorch_model-00001-of-00002.bin",
191
+ "gpt_neox.layers.2.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
192
+ "gpt_neox.layers.2.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
193
+ "gpt_neox.layers.2.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
194
+ "gpt_neox.layers.2.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
195
+ "gpt_neox.layers.2.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
196
+ "gpt_neox.layers.2.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
197
+ "gpt_neox.layers.2.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
198
+ "gpt_neox.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
199
+ "gpt_neox.layers.2.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
200
+ "gpt_neox.layers.2.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
201
+ "gpt_neox.layers.2.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
202
+ "gpt_neox.layers.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
203
+ "gpt_neox.layers.2.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
204
+ "gpt_neox.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
205
+ "gpt_neox.layers.20.attention.bias": "pytorch_model-00001-of-00002.bin",
206
+ "gpt_neox.layers.20.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
207
+ "gpt_neox.layers.20.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
208
+ "gpt_neox.layers.20.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
209
+ "gpt_neox.layers.20.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
210
+ "gpt_neox.layers.20.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
211
+ "gpt_neox.layers.20.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
212
+ "gpt_neox.layers.20.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
213
+ "gpt_neox.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
214
+ "gpt_neox.layers.20.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
215
+ "gpt_neox.layers.20.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
216
+ "gpt_neox.layers.20.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
217
+ "gpt_neox.layers.20.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
218
+ "gpt_neox.layers.20.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
219
+ "gpt_neox.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
220
+ "gpt_neox.layers.21.attention.bias": "pytorch_model-00001-of-00002.bin",
221
+ "gpt_neox.layers.21.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
222
+ "gpt_neox.layers.21.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
223
+ "gpt_neox.layers.21.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
224
+ "gpt_neox.layers.21.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
225
+ "gpt_neox.layers.21.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
226
+ "gpt_neox.layers.21.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
227
+ "gpt_neox.layers.21.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
228
+ "gpt_neox.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
229
+ "gpt_neox.layers.21.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
230
+ "gpt_neox.layers.21.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
231
+ "gpt_neox.layers.21.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
232
+ "gpt_neox.layers.21.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
233
+ "gpt_neox.layers.21.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
234
+ "gpt_neox.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
235
+ "gpt_neox.layers.22.attention.bias": "pytorch_model-00001-of-00002.bin",
236
+ "gpt_neox.layers.22.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
237
+ "gpt_neox.layers.22.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
238
+ "gpt_neox.layers.22.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
239
+ "gpt_neox.layers.22.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
240
+ "gpt_neox.layers.22.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
241
+ "gpt_neox.layers.22.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
242
+ "gpt_neox.layers.22.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
243
+ "gpt_neox.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
244
+ "gpt_neox.layers.22.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
245
+ "gpt_neox.layers.22.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
246
+ "gpt_neox.layers.22.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
247
+ "gpt_neox.layers.22.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
248
+ "gpt_neox.layers.22.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
249
+ "gpt_neox.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
250
+ "gpt_neox.layers.23.attention.bias": "pytorch_model-00001-of-00002.bin",
251
+ "gpt_neox.layers.23.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
252
+ "gpt_neox.layers.23.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
253
+ "gpt_neox.layers.23.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
254
+ "gpt_neox.layers.23.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
255
+ "gpt_neox.layers.23.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
256
+ "gpt_neox.layers.23.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
257
+ "gpt_neox.layers.23.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
258
+ "gpt_neox.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
259
+ "gpt_neox.layers.23.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
260
+ "gpt_neox.layers.23.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
261
+ "gpt_neox.layers.23.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
262
+ "gpt_neox.layers.23.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
263
+ "gpt_neox.layers.23.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
264
+ "gpt_neox.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
265
+ "gpt_neox.layers.24.attention.bias": "pytorch_model-00001-of-00002.bin",
266
+ "gpt_neox.layers.24.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
267
+ "gpt_neox.layers.24.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
268
+ "gpt_neox.layers.24.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
269
+ "gpt_neox.layers.24.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
270
+ "gpt_neox.layers.24.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
271
+ "gpt_neox.layers.24.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
272
+ "gpt_neox.layers.24.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
273
+ "gpt_neox.layers.24.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
274
+ "gpt_neox.layers.24.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
275
+ "gpt_neox.layers.24.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
276
+ "gpt_neox.layers.24.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
277
+ "gpt_neox.layers.24.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
278
+ "gpt_neox.layers.24.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
279
+ "gpt_neox.layers.24.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
280
+ "gpt_neox.layers.25.attention.bias": "pytorch_model-00001-of-00002.bin",
281
+ "gpt_neox.layers.25.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
282
+ "gpt_neox.layers.25.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
283
+ "gpt_neox.layers.25.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
284
+ "gpt_neox.layers.25.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
285
+ "gpt_neox.layers.25.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
286
+ "gpt_neox.layers.25.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
287
+ "gpt_neox.layers.25.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
288
+ "gpt_neox.layers.25.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
289
+ "gpt_neox.layers.25.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
290
+ "gpt_neox.layers.25.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
291
+ "gpt_neox.layers.25.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
292
+ "gpt_neox.layers.25.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
293
+ "gpt_neox.layers.25.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
294
+ "gpt_neox.layers.25.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
295
+ "gpt_neox.layers.26.attention.bias": "pytorch_model-00001-of-00002.bin",
296
+ "gpt_neox.layers.26.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
297
+ "gpt_neox.layers.26.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
298
+ "gpt_neox.layers.26.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
299
+ "gpt_neox.layers.26.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
300
+ "gpt_neox.layers.26.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
301
+ "gpt_neox.layers.26.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
302
+ "gpt_neox.layers.26.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
303
+ "gpt_neox.layers.26.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
304
+ "gpt_neox.layers.26.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
305
+ "gpt_neox.layers.26.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
306
+ "gpt_neox.layers.26.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
307
+ "gpt_neox.layers.26.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
308
+ "gpt_neox.layers.26.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
309
+ "gpt_neox.layers.26.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
310
+ "gpt_neox.layers.27.attention.bias": "pytorch_model-00001-of-00002.bin",
311
+ "gpt_neox.layers.27.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
312
+ "gpt_neox.layers.27.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
313
+ "gpt_neox.layers.27.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
314
+ "gpt_neox.layers.27.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
315
+ "gpt_neox.layers.27.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
316
+ "gpt_neox.layers.27.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
317
+ "gpt_neox.layers.27.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
318
+ "gpt_neox.layers.27.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
319
+ "gpt_neox.layers.27.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
320
+ "gpt_neox.layers.27.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
321
+ "gpt_neox.layers.27.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
322
+ "gpt_neox.layers.27.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
323
+ "gpt_neox.layers.27.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
324
+ "gpt_neox.layers.27.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
325
+ "gpt_neox.layers.28.attention.bias": "pytorch_model-00001-of-00002.bin",
326
+ "gpt_neox.layers.28.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
327
+ "gpt_neox.layers.28.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
328
+ "gpt_neox.layers.28.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
329
+ "gpt_neox.layers.28.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
330
+ "gpt_neox.layers.28.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
331
+ "gpt_neox.layers.28.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
332
+ "gpt_neox.layers.28.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
333
+ "gpt_neox.layers.28.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
334
+ "gpt_neox.layers.28.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
335
+ "gpt_neox.layers.28.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
336
+ "gpt_neox.layers.28.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
337
+ "gpt_neox.layers.28.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
338
+ "gpt_neox.layers.28.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
339
+ "gpt_neox.layers.28.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
340
+ "gpt_neox.layers.29.attention.bias": "pytorch_model-00001-of-00002.bin",
341
+ "gpt_neox.layers.29.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
342
+ "gpt_neox.layers.29.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
343
+ "gpt_neox.layers.29.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
344
+ "gpt_neox.layers.29.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
345
+ "gpt_neox.layers.29.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
346
+ "gpt_neox.layers.29.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
347
+ "gpt_neox.layers.29.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
348
+ "gpt_neox.layers.29.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
349
+ "gpt_neox.layers.29.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
350
+ "gpt_neox.layers.29.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
351
+ "gpt_neox.layers.29.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
352
+ "gpt_neox.layers.29.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
353
+ "gpt_neox.layers.29.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
354
+ "gpt_neox.layers.29.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
355
+ "gpt_neox.layers.3.attention.bias": "pytorch_model-00001-of-00002.bin",
356
+ "gpt_neox.layers.3.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
357
+ "gpt_neox.layers.3.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
358
+ "gpt_neox.layers.3.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
359
+ "gpt_neox.layers.3.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
360
+ "gpt_neox.layers.3.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
361
+ "gpt_neox.layers.3.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
362
+ "gpt_neox.layers.3.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
363
+ "gpt_neox.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
364
+ "gpt_neox.layers.3.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
365
+ "gpt_neox.layers.3.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
366
+ "gpt_neox.layers.3.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
367
+ "gpt_neox.layers.3.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
368
+ "gpt_neox.layers.3.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
369
+ "gpt_neox.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
370
+ "gpt_neox.layers.30.attention.bias": "pytorch_model-00001-of-00002.bin",
371
+ "gpt_neox.layers.30.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
372
+ "gpt_neox.layers.30.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
373
+ "gpt_neox.layers.30.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
374
+ "gpt_neox.layers.30.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
375
+ "gpt_neox.layers.30.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
376
+ "gpt_neox.layers.30.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
377
+ "gpt_neox.layers.30.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
378
+ "gpt_neox.layers.30.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
379
+ "gpt_neox.layers.30.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
380
+ "gpt_neox.layers.30.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
381
+ "gpt_neox.layers.30.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
382
+ "gpt_neox.layers.30.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
383
+ "gpt_neox.layers.30.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
384
+ "gpt_neox.layers.30.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
385
+ "gpt_neox.layers.31.attention.bias": "pytorch_model-00002-of-00002.bin",
386
+ "gpt_neox.layers.31.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
387
+ "gpt_neox.layers.31.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
388
+ "gpt_neox.layers.31.attention.masked_bias": "pytorch_model-00002-of-00002.bin",
389
+ "gpt_neox.layers.31.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
390
+ "gpt_neox.layers.31.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
391
+ "gpt_neox.layers.31.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
392
+ "gpt_neox.layers.31.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
393
+ "gpt_neox.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
394
+ "gpt_neox.layers.31.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
395
+ "gpt_neox.layers.31.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
396
+ "gpt_neox.layers.31.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
397
+ "gpt_neox.layers.31.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
398
+ "gpt_neox.layers.31.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
399
+ "gpt_neox.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
400
+ "gpt_neox.layers.4.attention.bias": "pytorch_model-00001-of-00002.bin",
401
+ "gpt_neox.layers.4.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
402
+ "gpt_neox.layers.4.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
403
+ "gpt_neox.layers.4.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
404
+ "gpt_neox.layers.4.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
405
+ "gpt_neox.layers.4.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
406
+ "gpt_neox.layers.4.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
407
+ "gpt_neox.layers.4.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
408
+ "gpt_neox.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
409
+ "gpt_neox.layers.4.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
410
+ "gpt_neox.layers.4.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
411
+ "gpt_neox.layers.4.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
412
+ "gpt_neox.layers.4.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
413
+ "gpt_neox.layers.4.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
414
+ "gpt_neox.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
415
+ "gpt_neox.layers.5.attention.bias": "pytorch_model-00001-of-00002.bin",
416
+ "gpt_neox.layers.5.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
417
+ "gpt_neox.layers.5.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
418
+ "gpt_neox.layers.5.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
419
+ "gpt_neox.layers.5.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
420
+ "gpt_neox.layers.5.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
421
+ "gpt_neox.layers.5.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
422
+ "gpt_neox.layers.5.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
423
+ "gpt_neox.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
424
+ "gpt_neox.layers.5.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
425
+ "gpt_neox.layers.5.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
426
+ "gpt_neox.layers.5.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
427
+ "gpt_neox.layers.5.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
428
+ "gpt_neox.layers.5.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
429
+ "gpt_neox.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
430
+ "gpt_neox.layers.6.attention.bias": "pytorch_model-00001-of-00002.bin",
431
+ "gpt_neox.layers.6.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
432
+ "gpt_neox.layers.6.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
433
+ "gpt_neox.layers.6.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
434
+ "gpt_neox.layers.6.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
435
+ "gpt_neox.layers.6.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
436
+ "gpt_neox.layers.6.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
437
+ "gpt_neox.layers.6.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
438
+ "gpt_neox.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
439
+ "gpt_neox.layers.6.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
440
+ "gpt_neox.layers.6.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
441
+ "gpt_neox.layers.6.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
442
+ "gpt_neox.layers.6.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
443
+ "gpt_neox.layers.6.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
444
+ "gpt_neox.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
445
+ "gpt_neox.layers.7.attention.bias": "pytorch_model-00001-of-00002.bin",
446
+ "gpt_neox.layers.7.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
447
+ "gpt_neox.layers.7.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
448
+ "gpt_neox.layers.7.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
449
+ "gpt_neox.layers.7.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
450
+ "gpt_neox.layers.7.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
451
+ "gpt_neox.layers.7.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
452
+ "gpt_neox.layers.7.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
453
+ "gpt_neox.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
454
+ "gpt_neox.layers.7.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
455
+ "gpt_neox.layers.7.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
456
+ "gpt_neox.layers.7.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
457
+ "gpt_neox.layers.7.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
458
+ "gpt_neox.layers.7.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
459
+ "gpt_neox.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
460
+ "gpt_neox.layers.8.attention.bias": "pytorch_model-00001-of-00002.bin",
461
+ "gpt_neox.layers.8.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
462
+ "gpt_neox.layers.8.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
463
+ "gpt_neox.layers.8.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
464
+ "gpt_neox.layers.8.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
465
+ "gpt_neox.layers.8.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
466
+ "gpt_neox.layers.8.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
467
+ "gpt_neox.layers.8.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
468
+ "gpt_neox.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
469
+ "gpt_neox.layers.8.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
470
+ "gpt_neox.layers.8.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
471
+ "gpt_neox.layers.8.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
472
+ "gpt_neox.layers.8.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
473
+ "gpt_neox.layers.8.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
474
+ "gpt_neox.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
475
+ "gpt_neox.layers.9.attention.bias": "pytorch_model-00001-of-00002.bin",
476
+ "gpt_neox.layers.9.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
477
+ "gpt_neox.layers.9.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
478
+ "gpt_neox.layers.9.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
479
+ "gpt_neox.layers.9.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
480
+ "gpt_neox.layers.9.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
481
+ "gpt_neox.layers.9.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
482
+ "gpt_neox.layers.9.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
483
+ "gpt_neox.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
484
+ "gpt_neox.layers.9.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
485
+ "gpt_neox.layers.9.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
486
+ "gpt_neox.layers.9.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
487
+ "gpt_neox.layers.9.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
488
+ "gpt_neox.layers.9.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
489
+ "gpt_neox.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin"
490
+ }
491
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "unk_token": "<|endoftext|>"
5
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<|endoftext|>",
4
+ "clean_up_tokenization_spaces": true,
5
+ "eos_token": "<|endoftext|>",
6
+ "model_max_length": 1000000000000000019884624838656,
7
+ "tokenizer_class": "GPTNeoXTokenizer",
8
+ "unk_token": "<|endoftext|>"
9
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 4.0,
3
+ "train_loss": 0.11551530145209522,
4
+ "train_runtime": 3653.4642,
5
+ "train_samples": 463392,
6
+ "train_samples_per_second": 507.345,
7
+ "train_steps_per_second": 3.964
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,4441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.0,
5
+ "global_step": 14484,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.01,
12
+ "learning_rate": 4.993093922651934e-05,
13
+ "loss": 1.6286,
14
+ "step": 20
15
+ },
16
+ {
17
+ "epoch": 0.01,
18
+ "learning_rate": 4.986187845303867e-05,
19
+ "loss": 1.572,
20
+ "step": 40
21
+ },
22
+ {
23
+ "epoch": 0.02,
24
+ "learning_rate": 4.9792817679558015e-05,
25
+ "loss": 1.5466,
26
+ "step": 60
27
+ },
28
+ {
29
+ "epoch": 0.02,
30
+ "learning_rate": 4.972375690607735e-05,
31
+ "loss": 1.5356,
32
+ "step": 80
33
+ },
34
+ {
35
+ "epoch": 0.03,
36
+ "learning_rate": 4.965469613259669e-05,
37
+ "loss": 1.5218,
38
+ "step": 100
39
+ },
40
+ {
41
+ "epoch": 0.03,
42
+ "learning_rate": 4.958563535911602e-05,
43
+ "loss": 1.509,
44
+ "step": 120
45
+ },
46
+ {
47
+ "epoch": 0.04,
48
+ "learning_rate": 4.951657458563536e-05,
49
+ "loss": 1.5031,
50
+ "step": 140
51
+ },
52
+ {
53
+ "epoch": 0.04,
54
+ "learning_rate": 4.94475138121547e-05,
55
+ "loss": 1.4833,
56
+ "step": 160
57
+ },
58
+ {
59
+ "epoch": 0.05,
60
+ "learning_rate": 4.937845303867403e-05,
61
+ "loss": 1.4731,
62
+ "step": 180
63
+ },
64
+ {
65
+ "epoch": 0.06,
66
+ "learning_rate": 4.930939226519337e-05,
67
+ "loss": 1.4706,
68
+ "step": 200
69
+ },
70
+ {
71
+ "epoch": 0.06,
72
+ "learning_rate": 4.924033149171271e-05,
73
+ "loss": 1.4689,
74
+ "step": 220
75
+ },
76
+ {
77
+ "epoch": 0.07,
78
+ "learning_rate": 4.9171270718232046e-05,
79
+ "loss": 1.4577,
80
+ "step": 240
81
+ },
82
+ {
83
+ "epoch": 0.07,
84
+ "learning_rate": 4.910220994475138e-05,
85
+ "loss": 1.4482,
86
+ "step": 260
87
+ },
88
+ {
89
+ "epoch": 0.08,
90
+ "learning_rate": 4.903314917127072e-05,
91
+ "loss": 1.4498,
92
+ "step": 280
93
+ },
94
+ {
95
+ "epoch": 0.08,
96
+ "learning_rate": 4.896408839779006e-05,
97
+ "loss": 1.4366,
98
+ "step": 300
99
+ },
100
+ {
101
+ "epoch": 0.09,
102
+ "learning_rate": 4.8895027624309394e-05,
103
+ "loss": 1.4364,
104
+ "step": 320
105
+ },
106
+ {
107
+ "epoch": 0.09,
108
+ "learning_rate": 4.882596685082873e-05,
109
+ "loss": 1.4343,
110
+ "step": 340
111
+ },
112
+ {
113
+ "epoch": 0.1,
114
+ "learning_rate": 4.875690607734807e-05,
115
+ "loss": 1.4291,
116
+ "step": 360
117
+ },
118
+ {
119
+ "epoch": 0.1,
120
+ "learning_rate": 4.8687845303867406e-05,
121
+ "loss": 1.4243,
122
+ "step": 380
123
+ },
124
+ {
125
+ "epoch": 0.11,
126
+ "learning_rate": 4.861878453038674e-05,
127
+ "loss": 1.4105,
128
+ "step": 400
129
+ },
130
+ {
131
+ "epoch": 0.12,
132
+ "learning_rate": 4.854972375690608e-05,
133
+ "loss": 1.4164,
134
+ "step": 420
135
+ },
136
+ {
137
+ "epoch": 0.12,
138
+ "learning_rate": 4.848066298342542e-05,
139
+ "loss": 1.4194,
140
+ "step": 440
141
+ },
142
+ {
143
+ "epoch": 0.13,
144
+ "learning_rate": 4.8411602209944754e-05,
145
+ "loss": 1.409,
146
+ "step": 460
147
+ },
148
+ {
149
+ "epoch": 0.13,
150
+ "learning_rate": 4.834254143646409e-05,
151
+ "loss": 1.4026,
152
+ "step": 480
153
+ },
154
+ {
155
+ "epoch": 0.14,
156
+ "learning_rate": 4.8273480662983425e-05,
157
+ "loss": 1.402,
158
+ "step": 500
159
+ },
160
+ {
161
+ "epoch": 0.14,
162
+ "learning_rate": 4.820441988950277e-05,
163
+ "loss": 1.389,
164
+ "step": 520
165
+ },
166
+ {
167
+ "epoch": 0.15,
168
+ "learning_rate": 4.81353591160221e-05,
169
+ "loss": 1.3875,
170
+ "step": 540
171
+ },
172
+ {
173
+ "epoch": 0.15,
174
+ "learning_rate": 4.806629834254144e-05,
175
+ "loss": 1.3841,
176
+ "step": 560
177
+ },
178
+ {
179
+ "epoch": 0.16,
180
+ "learning_rate": 4.799723756906078e-05,
181
+ "loss": 1.3848,
182
+ "step": 580
183
+ },
184
+ {
185
+ "epoch": 0.17,
186
+ "learning_rate": 4.7928176795580114e-05,
187
+ "loss": 1.3783,
188
+ "step": 600
189
+ },
190
+ {
191
+ "epoch": 0.17,
192
+ "learning_rate": 4.785911602209945e-05,
193
+ "loss": 1.3799,
194
+ "step": 620
195
+ },
196
+ {
197
+ "epoch": 0.18,
198
+ "learning_rate": 4.7790055248618785e-05,
199
+ "loss": 1.3861,
200
+ "step": 640
201
+ },
202
+ {
203
+ "epoch": 0.18,
204
+ "learning_rate": 4.772099447513813e-05,
205
+ "loss": 1.3769,
206
+ "step": 660
207
+ },
208
+ {
209
+ "epoch": 0.19,
210
+ "learning_rate": 4.7651933701657456e-05,
211
+ "loss": 1.3692,
212
+ "step": 680
213
+ },
214
+ {
215
+ "epoch": 0.19,
216
+ "learning_rate": 4.75828729281768e-05,
217
+ "loss": 1.3654,
218
+ "step": 700
219
+ },
220
+ {
221
+ "epoch": 0.2,
222
+ "learning_rate": 4.751381215469613e-05,
223
+ "loss": 1.3571,
224
+ "step": 720
225
+ },
226
+ {
227
+ "epoch": 0.2,
228
+ "learning_rate": 4.7444751381215475e-05,
229
+ "loss": 1.3712,
230
+ "step": 740
231
+ },
232
+ {
233
+ "epoch": 0.21,
234
+ "learning_rate": 4.737569060773481e-05,
235
+ "loss": 1.366,
236
+ "step": 760
237
+ },
238
+ {
239
+ "epoch": 0.22,
240
+ "learning_rate": 4.7306629834254145e-05,
241
+ "loss": 1.364,
242
+ "step": 780
243
+ },
244
+ {
245
+ "epoch": 0.22,
246
+ "learning_rate": 4.723756906077349e-05,
247
+ "loss": 1.3624,
248
+ "step": 800
249
+ },
250
+ {
251
+ "epoch": 0.23,
252
+ "learning_rate": 4.7168508287292816e-05,
253
+ "loss": 1.3595,
254
+ "step": 820
255
+ },
256
+ {
257
+ "epoch": 0.23,
258
+ "learning_rate": 4.709944751381216e-05,
259
+ "loss": 1.353,
260
+ "step": 840
261
+ },
262
+ {
263
+ "epoch": 0.24,
264
+ "learning_rate": 4.703038674033149e-05,
265
+ "loss": 1.3629,
266
+ "step": 860
267
+ },
268
+ {
269
+ "epoch": 0.24,
270
+ "learning_rate": 4.6961325966850835e-05,
271
+ "loss": 1.3558,
272
+ "step": 880
273
+ },
274
+ {
275
+ "epoch": 0.25,
276
+ "learning_rate": 4.6892265193370164e-05,
277
+ "loss": 1.3502,
278
+ "step": 900
279
+ },
280
+ {
281
+ "epoch": 0.25,
282
+ "learning_rate": 4.6823204419889506e-05,
283
+ "loss": 1.3427,
284
+ "step": 920
285
+ },
286
+ {
287
+ "epoch": 0.26,
288
+ "learning_rate": 4.675414364640884e-05,
289
+ "loss": 1.3498,
290
+ "step": 940
291
+ },
292
+ {
293
+ "epoch": 0.27,
294
+ "learning_rate": 4.6685082872928176e-05,
295
+ "loss": 1.349,
296
+ "step": 960
297
+ },
298
+ {
299
+ "epoch": 0.27,
300
+ "learning_rate": 4.661602209944751e-05,
301
+ "loss": 1.3479,
302
+ "step": 980
303
+ },
304
+ {
305
+ "epoch": 0.28,
306
+ "learning_rate": 4.6546961325966854e-05,
307
+ "loss": 1.3461,
308
+ "step": 1000
309
+ },
310
+ {
311
+ "epoch": 0.28,
312
+ "learning_rate": 4.647790055248619e-05,
313
+ "loss": 1.3465,
314
+ "step": 1020
315
+ },
316
+ {
317
+ "epoch": 0.29,
318
+ "learning_rate": 4.6408839779005524e-05,
319
+ "loss": 1.3351,
320
+ "step": 1040
321
+ },
322
+ {
323
+ "epoch": 0.29,
324
+ "learning_rate": 4.6339779005524866e-05,
325
+ "loss": 1.3473,
326
+ "step": 1060
327
+ },
328
+ {
329
+ "epoch": 0.3,
330
+ "learning_rate": 4.62707182320442e-05,
331
+ "loss": 1.3362,
332
+ "step": 1080
333
+ },
334
+ {
335
+ "epoch": 0.3,
336
+ "learning_rate": 4.6201657458563544e-05,
337
+ "loss": 1.3402,
338
+ "step": 1100
339
+ },
340
+ {
341
+ "epoch": 0.31,
342
+ "learning_rate": 4.613259668508287e-05,
343
+ "loss": 1.3186,
344
+ "step": 1120
345
+ },
346
+ {
347
+ "epoch": 0.31,
348
+ "learning_rate": 4.6063535911602214e-05,
349
+ "loss": 1.3262,
350
+ "step": 1140
351
+ },
352
+ {
353
+ "epoch": 0.32,
354
+ "learning_rate": 4.599447513812155e-05,
355
+ "loss": 1.3295,
356
+ "step": 1160
357
+ },
358
+ {
359
+ "epoch": 0.33,
360
+ "learning_rate": 4.5925414364640885e-05,
361
+ "loss": 1.3291,
362
+ "step": 1180
363
+ },
364
+ {
365
+ "epoch": 0.33,
366
+ "learning_rate": 4.585635359116022e-05,
367
+ "loss": 1.3247,
368
+ "step": 1200
369
+ },
370
+ {
371
+ "epoch": 0.34,
372
+ "learning_rate": 4.578729281767956e-05,
373
+ "loss": 1.322,
374
+ "step": 1220
375
+ },
376
+ {
377
+ "epoch": 0.34,
378
+ "learning_rate": 4.57182320441989e-05,
379
+ "loss": 1.3239,
380
+ "step": 1240
381
+ },
382
+ {
383
+ "epoch": 0.35,
384
+ "learning_rate": 4.564917127071823e-05,
385
+ "loss": 1.3207,
386
+ "step": 1260
387
+ },
388
+ {
389
+ "epoch": 0.35,
390
+ "learning_rate": 4.5580110497237574e-05,
391
+ "loss": 1.3191,
392
+ "step": 1280
393
+ },
394
+ {
395
+ "epoch": 0.36,
396
+ "learning_rate": 4.551104972375691e-05,
397
+ "loss": 1.3187,
398
+ "step": 1300
399
+ },
400
+ {
401
+ "epoch": 0.36,
402
+ "learning_rate": 4.5441988950276245e-05,
403
+ "loss": 1.3204,
404
+ "step": 1320
405
+ },
406
+ {
407
+ "epoch": 0.37,
408
+ "learning_rate": 4.537292817679558e-05,
409
+ "loss": 1.3124,
410
+ "step": 1340
411
+ },
412
+ {
413
+ "epoch": 0.38,
414
+ "learning_rate": 4.530386740331492e-05,
415
+ "loss": 1.3156,
416
+ "step": 1360
417
+ },
418
+ {
419
+ "epoch": 0.38,
420
+ "learning_rate": 4.523480662983426e-05,
421
+ "loss": 1.317,
422
+ "step": 1380
423
+ },
424
+ {
425
+ "epoch": 0.39,
426
+ "learning_rate": 4.516574585635359e-05,
427
+ "loss": 1.31,
428
+ "step": 1400
429
+ },
430
+ {
431
+ "epoch": 0.39,
432
+ "learning_rate": 4.509668508287293e-05,
433
+ "loss": 1.3061,
434
+ "step": 1420
435
+ },
436
+ {
437
+ "epoch": 0.4,
438
+ "learning_rate": 4.502762430939227e-05,
439
+ "loss": 1.3165,
440
+ "step": 1440
441
+ },
442
+ {
443
+ "epoch": 0.4,
444
+ "learning_rate": 4.4958563535911605e-05,
445
+ "loss": 1.311,
446
+ "step": 1460
447
+ },
448
+ {
449
+ "epoch": 0.41,
450
+ "learning_rate": 4.488950276243094e-05,
451
+ "loss": 1.3079,
452
+ "step": 1480
453
+ },
454
+ {
455
+ "epoch": 0.41,
456
+ "learning_rate": 4.4820441988950276e-05,
457
+ "loss": 1.3107,
458
+ "step": 1500
459
+ },
460
+ {
461
+ "epoch": 0.41,
462
+ "eval_validation_accuracy": 0.05525197850512946,
463
+ "eval_validation_loss": 1.3119829893112183,
464
+ "eval_validation_runtime": 3780.1869,
465
+ "eval_validation_samples_per_second": 0.661,
466
+ "eval_validation_steps_per_second": 0.021,
467
+ "step": 1500
468
+ },
469
+ {
470
+ "epoch": 0.42,
471
+ "learning_rate": 4.475138121546962e-05,
472
+ "loss": 1.3129,
473
+ "step": 1520
474
+ },
475
+ {
476
+ "epoch": 0.43,
477
+ "learning_rate": 4.468232044198895e-05,
478
+ "loss": 1.3044,
479
+ "step": 1540
480
+ },
481
+ {
482
+ "epoch": 0.43,
483
+ "learning_rate": 4.461325966850829e-05,
484
+ "loss": 1.2942,
485
+ "step": 1560
486
+ },
487
+ {
488
+ "epoch": 0.44,
489
+ "learning_rate": 4.454419889502763e-05,
490
+ "loss": 1.3053,
491
+ "step": 1580
492
+ },
493
+ {
494
+ "epoch": 0.44,
495
+ "learning_rate": 4.447513812154696e-05,
496
+ "loss": 1.2971,
497
+ "step": 1600
498
+ },
499
+ {
500
+ "epoch": 0.45,
501
+ "learning_rate": 4.44060773480663e-05,
502
+ "loss": 1.3038,
503
+ "step": 1620
504
+ },
505
+ {
506
+ "epoch": 0.45,
507
+ "learning_rate": 4.4337016574585636e-05,
508
+ "loss": 1.2996,
509
+ "step": 1640
510
+ },
511
+ {
512
+ "epoch": 0.46,
513
+ "learning_rate": 4.426795580110498e-05,
514
+ "loss": 1.3082,
515
+ "step": 1660
516
+ },
517
+ {
518
+ "epoch": 0.46,
519
+ "learning_rate": 4.419889502762431e-05,
520
+ "loss": 1.3103,
521
+ "step": 1680
522
+ },
523
+ {
524
+ "epoch": 0.47,
525
+ "learning_rate": 4.412983425414365e-05,
526
+ "loss": 1.2928,
527
+ "step": 1700
528
+ },
529
+ {
530
+ "epoch": 0.48,
531
+ "learning_rate": 4.4060773480662984e-05,
532
+ "loss": 1.2934,
533
+ "step": 1720
534
+ },
535
+ {
536
+ "epoch": 0.48,
537
+ "learning_rate": 4.399171270718232e-05,
538
+ "loss": 1.2965,
539
+ "step": 1740
540
+ },
541
+ {
542
+ "epoch": 0.49,
543
+ "learning_rate": 4.392265193370166e-05,
544
+ "loss": 1.2982,
545
+ "step": 1760
546
+ },
547
+ {
548
+ "epoch": 0.49,
549
+ "learning_rate": 4.3853591160221e-05,
550
+ "loss": 1.3003,
551
+ "step": 1780
552
+ },
553
+ {
554
+ "epoch": 0.5,
555
+ "learning_rate": 4.378453038674034e-05,
556
+ "loss": 1.2953,
557
+ "step": 1800
558
+ },
559
+ {
560
+ "epoch": 0.5,
561
+ "learning_rate": 4.371546961325967e-05,
562
+ "loss": 1.2859,
563
+ "step": 1820
564
+ },
565
+ {
566
+ "epoch": 0.51,
567
+ "learning_rate": 4.364640883977901e-05,
568
+ "loss": 1.2955,
569
+ "step": 1840
570
+ },
571
+ {
572
+ "epoch": 0.51,
573
+ "learning_rate": 4.3577348066298344e-05,
574
+ "loss": 1.2882,
575
+ "step": 1860
576
+ },
577
+ {
578
+ "epoch": 0.52,
579
+ "learning_rate": 4.3508287292817687e-05,
580
+ "loss": 1.2887,
581
+ "step": 1880
582
+ },
583
+ {
584
+ "epoch": 0.52,
585
+ "learning_rate": 4.3439226519337015e-05,
586
+ "loss": 1.2954,
587
+ "step": 1900
588
+ },
589
+ {
590
+ "epoch": 0.53,
591
+ "learning_rate": 4.337016574585636e-05,
592
+ "loss": 1.288,
593
+ "step": 1920
594
+ },
595
+ {
596
+ "epoch": 0.54,
597
+ "learning_rate": 4.330110497237569e-05,
598
+ "loss": 1.2837,
599
+ "step": 1940
600
+ },
601
+ {
602
+ "epoch": 0.54,
603
+ "learning_rate": 4.323204419889503e-05,
604
+ "loss": 1.292,
605
+ "step": 1960
606
+ },
607
+ {
608
+ "epoch": 0.55,
609
+ "learning_rate": 4.316298342541436e-05,
610
+ "loss": 1.2881,
611
+ "step": 1980
612
+ },
613
+ {
614
+ "epoch": 0.55,
615
+ "learning_rate": 4.3093922651933705e-05,
616
+ "loss": 1.28,
617
+ "step": 2000
618
+ },
619
+ {
620
+ "epoch": 0.56,
621
+ "learning_rate": 4.302486187845304e-05,
622
+ "loss": 1.281,
623
+ "step": 2020
624
+ },
625
+ {
626
+ "epoch": 0.56,
627
+ "learning_rate": 4.2955801104972375e-05,
628
+ "loss": 1.2828,
629
+ "step": 2040
630
+ },
631
+ {
632
+ "epoch": 0.57,
633
+ "learning_rate": 4.288674033149172e-05,
634
+ "loss": 1.2713,
635
+ "step": 2060
636
+ },
637
+ {
638
+ "epoch": 0.57,
639
+ "learning_rate": 4.281767955801105e-05,
640
+ "loss": 1.2842,
641
+ "step": 2080
642
+ },
643
+ {
644
+ "epoch": 0.58,
645
+ "learning_rate": 4.274861878453039e-05,
646
+ "loss": 1.2824,
647
+ "step": 2100
648
+ },
649
+ {
650
+ "epoch": 0.59,
651
+ "learning_rate": 4.267955801104972e-05,
652
+ "loss": 1.2718,
653
+ "step": 2120
654
+ },
655
+ {
656
+ "epoch": 0.59,
657
+ "learning_rate": 4.2610497237569065e-05,
658
+ "loss": 1.2842,
659
+ "step": 2140
660
+ },
661
+ {
662
+ "epoch": 0.6,
663
+ "learning_rate": 4.25414364640884e-05,
664
+ "loss": 1.2747,
665
+ "step": 2160
666
+ },
667
+ {
668
+ "epoch": 0.6,
669
+ "learning_rate": 4.2472375690607736e-05,
670
+ "loss": 1.2799,
671
+ "step": 2180
672
+ },
673
+ {
674
+ "epoch": 0.61,
675
+ "learning_rate": 4.240331491712707e-05,
676
+ "loss": 1.2883,
677
+ "step": 2200
678
+ },
679
+ {
680
+ "epoch": 0.61,
681
+ "learning_rate": 4.233425414364641e-05,
682
+ "loss": 1.2746,
683
+ "step": 2220
684
+ },
685
+ {
686
+ "epoch": 0.62,
687
+ "learning_rate": 4.226519337016575e-05,
688
+ "loss": 1.2774,
689
+ "step": 2240
690
+ },
691
+ {
692
+ "epoch": 0.62,
693
+ "learning_rate": 4.2196132596685084e-05,
694
+ "loss": 1.287,
695
+ "step": 2260
696
+ },
697
+ {
698
+ "epoch": 0.63,
699
+ "learning_rate": 4.2127071823204426e-05,
700
+ "loss": 1.2745,
701
+ "step": 2280
702
+ },
703
+ {
704
+ "epoch": 0.64,
705
+ "learning_rate": 4.205801104972376e-05,
706
+ "loss": 1.2845,
707
+ "step": 2300
708
+ },
709
+ {
710
+ "epoch": 0.64,
711
+ "learning_rate": 4.1988950276243096e-05,
712
+ "loss": 1.2748,
713
+ "step": 2320
714
+ },
715
+ {
716
+ "epoch": 0.65,
717
+ "learning_rate": 4.191988950276243e-05,
718
+ "loss": 1.2711,
719
+ "step": 2340
720
+ },
721
+ {
722
+ "epoch": 0.65,
723
+ "learning_rate": 4.1850828729281773e-05,
724
+ "loss": 1.2691,
725
+ "step": 2360
726
+ },
727
+ {
728
+ "epoch": 0.66,
729
+ "learning_rate": 4.17817679558011e-05,
730
+ "loss": 1.268,
731
+ "step": 2380
732
+ },
733
+ {
734
+ "epoch": 0.66,
735
+ "learning_rate": 4.1712707182320444e-05,
736
+ "loss": 1.2763,
737
+ "step": 2400
738
+ },
739
+ {
740
+ "epoch": 0.67,
741
+ "learning_rate": 4.164364640883978e-05,
742
+ "loss": 1.2769,
743
+ "step": 2420
744
+ },
745
+ {
746
+ "epoch": 0.67,
747
+ "learning_rate": 4.157458563535912e-05,
748
+ "loss": 1.2665,
749
+ "step": 2440
750
+ },
751
+ {
752
+ "epoch": 0.68,
753
+ "learning_rate": 4.150552486187845e-05,
754
+ "loss": 1.2725,
755
+ "step": 2460
756
+ },
757
+ {
758
+ "epoch": 0.69,
759
+ "learning_rate": 4.143646408839779e-05,
760
+ "loss": 1.2749,
761
+ "step": 2480
762
+ },
763
+ {
764
+ "epoch": 0.69,
765
+ "learning_rate": 4.136740331491713e-05,
766
+ "loss": 1.2704,
767
+ "step": 2500
768
+ },
769
+ {
770
+ "epoch": 0.7,
771
+ "learning_rate": 4.129834254143646e-05,
772
+ "loss": 1.2669,
773
+ "step": 2520
774
+ },
775
+ {
776
+ "epoch": 0.7,
777
+ "learning_rate": 4.1229281767955804e-05,
778
+ "loss": 1.2752,
779
+ "step": 2540
780
+ },
781
+ {
782
+ "epoch": 0.71,
783
+ "learning_rate": 4.116022099447514e-05,
784
+ "loss": 1.2743,
785
+ "step": 2560
786
+ },
787
+ {
788
+ "epoch": 0.71,
789
+ "learning_rate": 4.109116022099448e-05,
790
+ "loss": 1.2689,
791
+ "step": 2580
792
+ },
793
+ {
794
+ "epoch": 0.72,
795
+ "learning_rate": 4.102209944751381e-05,
796
+ "loss": 1.2614,
797
+ "step": 2600
798
+ },
799
+ {
800
+ "epoch": 0.72,
801
+ "learning_rate": 4.095303867403315e-05,
802
+ "loss": 1.2592,
803
+ "step": 2620
804
+ },
805
+ {
806
+ "epoch": 0.73,
807
+ "learning_rate": 4.088397790055249e-05,
808
+ "loss": 1.2824,
809
+ "step": 2640
810
+ },
811
+ {
812
+ "epoch": 0.73,
813
+ "learning_rate": 4.081491712707183e-05,
814
+ "loss": 1.2602,
815
+ "step": 2660
816
+ },
817
+ {
818
+ "epoch": 0.74,
819
+ "learning_rate": 4.074585635359116e-05,
820
+ "loss": 1.2661,
821
+ "step": 2680
822
+ },
823
+ {
824
+ "epoch": 0.75,
825
+ "learning_rate": 4.06767955801105e-05,
826
+ "loss": 1.2769,
827
+ "step": 2700
828
+ },
829
+ {
830
+ "epoch": 0.75,
831
+ "learning_rate": 4.0607734806629835e-05,
832
+ "loss": 1.267,
833
+ "step": 2720
834
+ },
835
+ {
836
+ "epoch": 0.76,
837
+ "learning_rate": 4.053867403314917e-05,
838
+ "loss": 1.2535,
839
+ "step": 2740
840
+ },
841
+ {
842
+ "epoch": 0.76,
843
+ "learning_rate": 4.046961325966851e-05,
844
+ "loss": 1.2607,
845
+ "step": 2760
846
+ },
847
+ {
848
+ "epoch": 0.77,
849
+ "learning_rate": 4.040055248618785e-05,
850
+ "loss": 1.2744,
851
+ "step": 2780
852
+ },
853
+ {
854
+ "epoch": 0.77,
855
+ "learning_rate": 4.033149171270719e-05,
856
+ "loss": 1.2683,
857
+ "step": 2800
858
+ },
859
+ {
860
+ "epoch": 0.78,
861
+ "learning_rate": 4.026243093922652e-05,
862
+ "loss": 1.2698,
863
+ "step": 2820
864
+ },
865
+ {
866
+ "epoch": 0.78,
867
+ "learning_rate": 4.019337016574586e-05,
868
+ "loss": 1.265,
869
+ "step": 2840
870
+ },
871
+ {
872
+ "epoch": 0.79,
873
+ "learning_rate": 4.0124309392265196e-05,
874
+ "loss": 1.2629,
875
+ "step": 2860
876
+ },
877
+ {
878
+ "epoch": 0.8,
879
+ "learning_rate": 4.005524861878453e-05,
880
+ "loss": 1.263,
881
+ "step": 2880
882
+ },
883
+ {
884
+ "epoch": 0.8,
885
+ "learning_rate": 3.9986187845303866e-05,
886
+ "loss": 1.2647,
887
+ "step": 2900
888
+ },
889
+ {
890
+ "epoch": 0.81,
891
+ "learning_rate": 3.991712707182321e-05,
892
+ "loss": 1.2611,
893
+ "step": 2920
894
+ },
895
+ {
896
+ "epoch": 0.81,
897
+ "learning_rate": 3.9848066298342544e-05,
898
+ "loss": 1.2563,
899
+ "step": 2940
900
+ },
901
+ {
902
+ "epoch": 0.82,
903
+ "learning_rate": 3.977900552486188e-05,
904
+ "loss": 1.2645,
905
+ "step": 2960
906
+ },
907
+ {
908
+ "epoch": 0.82,
909
+ "learning_rate": 3.9709944751381214e-05,
910
+ "loss": 1.2573,
911
+ "step": 2980
912
+ },
913
+ {
914
+ "epoch": 0.83,
915
+ "learning_rate": 3.9640883977900556e-05,
916
+ "loss": 1.2556,
917
+ "step": 3000
918
+ },
919
+ {
920
+ "epoch": 0.83,
921
+ "eval_validation_accuracy": 0.055986907669760624,
922
+ "eval_validation_loss": 1.253327488899231,
923
+ "eval_validation_runtime": 3780.1229,
924
+ "eval_validation_samples_per_second": 0.661,
925
+ "eval_validation_steps_per_second": 0.021,
926
+ "step": 3000
927
+ },
928
+ {
929
+ "epoch": 0.83,
930
+ "learning_rate": 3.957182320441989e-05,
931
+ "loss": 1.2525,
932
+ "step": 3020
933
+ },
934
+ {
935
+ "epoch": 0.84,
936
+ "learning_rate": 3.950276243093923e-05,
937
+ "loss": 1.2495,
938
+ "step": 3040
939
+ },
940
+ {
941
+ "epoch": 0.85,
942
+ "learning_rate": 3.943370165745857e-05,
943
+ "loss": 1.2644,
944
+ "step": 3060
945
+ },
946
+ {
947
+ "epoch": 0.85,
948
+ "learning_rate": 3.9364640883977904e-05,
949
+ "loss": 1.2484,
950
+ "step": 3080
951
+ },
952
+ {
953
+ "epoch": 0.86,
954
+ "learning_rate": 3.929558011049724e-05,
955
+ "loss": 1.2495,
956
+ "step": 3100
957
+ },
958
+ {
959
+ "epoch": 0.86,
960
+ "learning_rate": 3.9226519337016574e-05,
961
+ "loss": 1.2556,
962
+ "step": 3120
963
+ },
964
+ {
965
+ "epoch": 0.87,
966
+ "learning_rate": 3.9157458563535917e-05,
967
+ "loss": 1.245,
968
+ "step": 3140
969
+ },
970
+ {
971
+ "epoch": 0.87,
972
+ "learning_rate": 3.9088397790055245e-05,
973
+ "loss": 1.2492,
974
+ "step": 3160
975
+ },
976
+ {
977
+ "epoch": 0.88,
978
+ "learning_rate": 3.901933701657459e-05,
979
+ "loss": 1.2577,
980
+ "step": 3180
981
+ },
982
+ {
983
+ "epoch": 0.88,
984
+ "learning_rate": 3.895027624309392e-05,
985
+ "loss": 1.2465,
986
+ "step": 3200
987
+ },
988
+ {
989
+ "epoch": 0.89,
990
+ "learning_rate": 3.8881215469613264e-05,
991
+ "loss": 1.2557,
992
+ "step": 3220
993
+ },
994
+ {
995
+ "epoch": 0.89,
996
+ "learning_rate": 3.88121546961326e-05,
997
+ "loss": 1.2489,
998
+ "step": 3240
999
+ },
1000
+ {
1001
+ "epoch": 0.9,
1002
+ "learning_rate": 3.8743093922651935e-05,
1003
+ "loss": 1.2469,
1004
+ "step": 3260
1005
+ },
1006
+ {
1007
+ "epoch": 0.91,
1008
+ "learning_rate": 3.867403314917128e-05,
1009
+ "loss": 1.2528,
1010
+ "step": 3280
1011
+ },
1012
+ {
1013
+ "epoch": 0.91,
1014
+ "learning_rate": 3.860497237569061e-05,
1015
+ "loss": 1.2473,
1016
+ "step": 3300
1017
+ },
1018
+ {
1019
+ "epoch": 0.92,
1020
+ "learning_rate": 3.853591160220995e-05,
1021
+ "loss": 1.2441,
1022
+ "step": 3320
1023
+ },
1024
+ {
1025
+ "epoch": 0.92,
1026
+ "learning_rate": 3.846685082872928e-05,
1027
+ "loss": 1.2528,
1028
+ "step": 3340
1029
+ },
1030
+ {
1031
+ "epoch": 0.93,
1032
+ "learning_rate": 3.8397790055248625e-05,
1033
+ "loss": 1.2469,
1034
+ "step": 3360
1035
+ },
1036
+ {
1037
+ "epoch": 0.93,
1038
+ "learning_rate": 3.832872928176795e-05,
1039
+ "loss": 1.2475,
1040
+ "step": 3380
1041
+ },
1042
+ {
1043
+ "epoch": 0.94,
1044
+ "learning_rate": 3.8259668508287295e-05,
1045
+ "loss": 1.2375,
1046
+ "step": 3400
1047
+ },
1048
+ {
1049
+ "epoch": 0.94,
1050
+ "learning_rate": 3.819060773480663e-05,
1051
+ "loss": 1.2488,
1052
+ "step": 3420
1053
+ },
1054
+ {
1055
+ "epoch": 0.95,
1056
+ "learning_rate": 3.812154696132597e-05,
1057
+ "loss": 1.2446,
1058
+ "step": 3440
1059
+ },
1060
+ {
1061
+ "epoch": 0.96,
1062
+ "learning_rate": 3.80524861878453e-05,
1063
+ "loss": 1.2467,
1064
+ "step": 3460
1065
+ },
1066
+ {
1067
+ "epoch": 0.96,
1068
+ "learning_rate": 3.798342541436464e-05,
1069
+ "loss": 1.2435,
1070
+ "step": 3480
1071
+ },
1072
+ {
1073
+ "epoch": 0.97,
1074
+ "learning_rate": 3.791436464088398e-05,
1075
+ "loss": 1.2501,
1076
+ "step": 3500
1077
+ },
1078
+ {
1079
+ "epoch": 0.97,
1080
+ "learning_rate": 3.7845303867403314e-05,
1081
+ "loss": 1.242,
1082
+ "step": 3520
1083
+ },
1084
+ {
1085
+ "epoch": 0.98,
1086
+ "learning_rate": 3.7776243093922656e-05,
1087
+ "loss": 1.2479,
1088
+ "step": 3540
1089
+ },
1090
+ {
1091
+ "epoch": 0.98,
1092
+ "learning_rate": 3.770718232044199e-05,
1093
+ "loss": 1.2417,
1094
+ "step": 3560
1095
+ },
1096
+ {
1097
+ "epoch": 0.99,
1098
+ "learning_rate": 3.763812154696133e-05,
1099
+ "loss": 1.242,
1100
+ "step": 3580
1101
+ },
1102
+ {
1103
+ "epoch": 0.99,
1104
+ "learning_rate": 3.756906077348066e-05,
1105
+ "loss": 1.2353,
1106
+ "step": 3600
1107
+ },
1108
+ {
1109
+ "epoch": 1.0,
1110
+ "learning_rate": 3.7500000000000003e-05,
1111
+ "loss": 1.2334,
1112
+ "step": 3620
1113
+ },
1114
+ {
1115
+ "epoch": 1.01,
1116
+ "learning_rate": 3.743093922651934e-05,
1117
+ "loss": 1.2161,
1118
+ "step": 3640
1119
+ },
1120
+ {
1121
+ "epoch": 1.01,
1122
+ "learning_rate": 3.7361878453038674e-05,
1123
+ "loss": 1.2262,
1124
+ "step": 3660
1125
+ },
1126
+ {
1127
+ "epoch": 1.02,
1128
+ "learning_rate": 3.729281767955801e-05,
1129
+ "loss": 1.2179,
1130
+ "step": 3680
1131
+ },
1132
+ {
1133
+ "epoch": 1.02,
1134
+ "learning_rate": 3.722375690607735e-05,
1135
+ "loss": 1.2216,
1136
+ "step": 3700
1137
+ },
1138
+ {
1139
+ "epoch": 1.03,
1140
+ "learning_rate": 3.7154696132596687e-05,
1141
+ "loss": 1.2183,
1142
+ "step": 3720
1143
+ },
1144
+ {
1145
+ "epoch": 1.03,
1146
+ "learning_rate": 3.708563535911602e-05,
1147
+ "loss": 1.217,
1148
+ "step": 3740
1149
+ },
1150
+ {
1151
+ "epoch": 1.04,
1152
+ "learning_rate": 3.7016574585635364e-05,
1153
+ "loss": 1.224,
1154
+ "step": 3760
1155
+ },
1156
+ {
1157
+ "epoch": 1.04,
1158
+ "learning_rate": 3.69475138121547e-05,
1159
+ "loss": 1.2182,
1160
+ "step": 3780
1161
+ },
1162
+ {
1163
+ "epoch": 1.05,
1164
+ "learning_rate": 3.6878453038674034e-05,
1165
+ "loss": 1.2123,
1166
+ "step": 3800
1167
+ },
1168
+ {
1169
+ "epoch": 1.06,
1170
+ "learning_rate": 3.680939226519337e-05,
1171
+ "loss": 1.2197,
1172
+ "step": 3820
1173
+ },
1174
+ {
1175
+ "epoch": 1.06,
1176
+ "learning_rate": 3.674033149171271e-05,
1177
+ "loss": 1.2207,
1178
+ "step": 3840
1179
+ },
1180
+ {
1181
+ "epoch": 1.07,
1182
+ "learning_rate": 3.667127071823205e-05,
1183
+ "loss": 1.2152,
1184
+ "step": 3860
1185
+ },
1186
+ {
1187
+ "epoch": 1.07,
1188
+ "learning_rate": 3.660220994475138e-05,
1189
+ "loss": 1.2238,
1190
+ "step": 3880
1191
+ },
1192
+ {
1193
+ "epoch": 1.08,
1194
+ "learning_rate": 3.653314917127072e-05,
1195
+ "loss": 1.2162,
1196
+ "step": 3900
1197
+ },
1198
+ {
1199
+ "epoch": 1.08,
1200
+ "learning_rate": 3.646408839779006e-05,
1201
+ "loss": 1.2287,
1202
+ "step": 3920
1203
+ },
1204
+ {
1205
+ "epoch": 1.09,
1206
+ "learning_rate": 3.639502762430939e-05,
1207
+ "loss": 1.2152,
1208
+ "step": 3940
1209
+ },
1210
+ {
1211
+ "epoch": 1.09,
1212
+ "learning_rate": 3.632596685082873e-05,
1213
+ "loss": 1.211,
1214
+ "step": 3960
1215
+ },
1216
+ {
1217
+ "epoch": 1.1,
1218
+ "learning_rate": 3.6256906077348065e-05,
1219
+ "loss": 1.2093,
1220
+ "step": 3980
1221
+ },
1222
+ {
1223
+ "epoch": 1.1,
1224
+ "learning_rate": 3.618784530386741e-05,
1225
+ "loss": 1.2094,
1226
+ "step": 4000
1227
+ },
1228
+ {
1229
+ "epoch": 1.11,
1230
+ "learning_rate": 3.611878453038674e-05,
1231
+ "loss": 1.217,
1232
+ "step": 4020
1233
+ },
1234
+ {
1235
+ "epoch": 1.12,
1236
+ "learning_rate": 3.604972375690608e-05,
1237
+ "loss": 1.2176,
1238
+ "step": 4040
1239
+ },
1240
+ {
1241
+ "epoch": 1.12,
1242
+ "learning_rate": 3.598066298342542e-05,
1243
+ "loss": 1.2196,
1244
+ "step": 4060
1245
+ },
1246
+ {
1247
+ "epoch": 1.13,
1248
+ "learning_rate": 3.5911602209944755e-05,
1249
+ "loss": 1.2137,
1250
+ "step": 4080
1251
+ },
1252
+ {
1253
+ "epoch": 1.13,
1254
+ "learning_rate": 3.584254143646409e-05,
1255
+ "loss": 1.2122,
1256
+ "step": 4100
1257
+ },
1258
+ {
1259
+ "epoch": 1.14,
1260
+ "learning_rate": 3.5773480662983426e-05,
1261
+ "loss": 1.2145,
1262
+ "step": 4120
1263
+ },
1264
+ {
1265
+ "epoch": 1.14,
1266
+ "learning_rate": 3.570441988950277e-05,
1267
+ "loss": 1.2162,
1268
+ "step": 4140
1269
+ },
1270
+ {
1271
+ "epoch": 1.15,
1272
+ "learning_rate": 3.5635359116022096e-05,
1273
+ "loss": 1.2118,
1274
+ "step": 4160
1275
+ },
1276
+ {
1277
+ "epoch": 1.15,
1278
+ "learning_rate": 3.556629834254144e-05,
1279
+ "loss": 1.2215,
1280
+ "step": 4180
1281
+ },
1282
+ {
1283
+ "epoch": 1.16,
1284
+ "learning_rate": 3.5497237569060774e-05,
1285
+ "loss": 1.208,
1286
+ "step": 4200
1287
+ },
1288
+ {
1289
+ "epoch": 1.17,
1290
+ "learning_rate": 3.5428176795580116e-05,
1291
+ "loss": 1.2134,
1292
+ "step": 4220
1293
+ },
1294
+ {
1295
+ "epoch": 1.17,
1296
+ "learning_rate": 3.535911602209945e-05,
1297
+ "loss": 1.2083,
1298
+ "step": 4240
1299
+ },
1300
+ {
1301
+ "epoch": 1.18,
1302
+ "learning_rate": 3.5290055248618786e-05,
1303
+ "loss": 1.2196,
1304
+ "step": 4260
1305
+ },
1306
+ {
1307
+ "epoch": 1.18,
1308
+ "learning_rate": 3.522099447513813e-05,
1309
+ "loss": 1.2215,
1310
+ "step": 4280
1311
+ },
1312
+ {
1313
+ "epoch": 1.19,
1314
+ "learning_rate": 3.515193370165746e-05,
1315
+ "loss": 1.2124,
1316
+ "step": 4300
1317
+ },
1318
+ {
1319
+ "epoch": 1.19,
1320
+ "learning_rate": 3.50828729281768e-05,
1321
+ "loss": 1.2111,
1322
+ "step": 4320
1323
+ },
1324
+ {
1325
+ "epoch": 1.2,
1326
+ "learning_rate": 3.5013812154696134e-05,
1327
+ "loss": 1.2192,
1328
+ "step": 4340
1329
+ },
1330
+ {
1331
+ "epoch": 1.2,
1332
+ "learning_rate": 3.4944751381215476e-05,
1333
+ "loss": 1.2142,
1334
+ "step": 4360
1335
+ },
1336
+ {
1337
+ "epoch": 1.21,
1338
+ "learning_rate": 3.4875690607734804e-05,
1339
+ "loss": 1.2157,
1340
+ "step": 4380
1341
+ },
1342
+ {
1343
+ "epoch": 1.22,
1344
+ "learning_rate": 3.4806629834254147e-05,
1345
+ "loss": 1.2193,
1346
+ "step": 4400
1347
+ },
1348
+ {
1349
+ "epoch": 1.22,
1350
+ "learning_rate": 3.473756906077348e-05,
1351
+ "loss": 1.2172,
1352
+ "step": 4420
1353
+ },
1354
+ {
1355
+ "epoch": 1.23,
1356
+ "learning_rate": 3.466850828729282e-05,
1357
+ "loss": 1.2117,
1358
+ "step": 4440
1359
+ },
1360
+ {
1361
+ "epoch": 1.23,
1362
+ "learning_rate": 3.459944751381215e-05,
1363
+ "loss": 1.208,
1364
+ "step": 4460
1365
+ },
1366
+ {
1367
+ "epoch": 1.24,
1368
+ "learning_rate": 3.4530386740331494e-05,
1369
+ "loss": 1.2115,
1370
+ "step": 4480
1371
+ },
1372
+ {
1373
+ "epoch": 1.24,
1374
+ "learning_rate": 3.446132596685083e-05,
1375
+ "loss": 1.2119,
1376
+ "step": 4500
1377
+ },
1378
+ {
1379
+ "epoch": 1.24,
1380
+ "eval_validation_accuracy": 0.05641172447484123,
1381
+ "eval_validation_loss": 1.2233214378356934,
1382
+ "eval_validation_runtime": 3856.0588,
1383
+ "eval_validation_samples_per_second": 0.648,
1384
+ "eval_validation_steps_per_second": 0.02,
1385
+ "step": 4500
1386
+ },
1387
+ {
1388
+ "epoch": 1.25,
1389
+ "learning_rate": 3.4392265193370165e-05,
1390
+ "loss": 1.2095,
1391
+ "step": 4520
1392
+ },
1393
+ {
1394
+ "epoch": 1.25,
1395
+ "learning_rate": 3.432320441988951e-05,
1396
+ "loss": 1.2017,
1397
+ "step": 4540
1398
+ },
1399
+ {
1400
+ "epoch": 1.26,
1401
+ "learning_rate": 3.425414364640884e-05,
1402
+ "loss": 1.2074,
1403
+ "step": 4560
1404
+ },
1405
+ {
1406
+ "epoch": 1.27,
1407
+ "learning_rate": 3.418508287292818e-05,
1408
+ "loss": 1.2135,
1409
+ "step": 4580
1410
+ },
1411
+ {
1412
+ "epoch": 1.27,
1413
+ "learning_rate": 3.411602209944751e-05,
1414
+ "loss": 1.2094,
1415
+ "step": 4600
1416
+ },
1417
+ {
1418
+ "epoch": 1.28,
1419
+ "learning_rate": 3.4046961325966855e-05,
1420
+ "loss": 1.2164,
1421
+ "step": 4620
1422
+ },
1423
+ {
1424
+ "epoch": 1.28,
1425
+ "learning_rate": 3.397790055248619e-05,
1426
+ "loss": 1.2172,
1427
+ "step": 4640
1428
+ },
1429
+ {
1430
+ "epoch": 1.29,
1431
+ "learning_rate": 3.3908839779005525e-05,
1432
+ "loss": 1.2053,
1433
+ "step": 4660
1434
+ },
1435
+ {
1436
+ "epoch": 1.29,
1437
+ "learning_rate": 3.383977900552486e-05,
1438
+ "loss": 1.21,
1439
+ "step": 4680
1440
+ },
1441
+ {
1442
+ "epoch": 1.3,
1443
+ "learning_rate": 3.37707182320442e-05,
1444
+ "loss": 1.2026,
1445
+ "step": 4700
1446
+ },
1447
+ {
1448
+ "epoch": 1.3,
1449
+ "learning_rate": 3.370165745856354e-05,
1450
+ "loss": 1.2163,
1451
+ "step": 4720
1452
+ },
1453
+ {
1454
+ "epoch": 1.31,
1455
+ "learning_rate": 3.363259668508287e-05,
1456
+ "loss": 1.2049,
1457
+ "step": 4740
1458
+ },
1459
+ {
1460
+ "epoch": 1.31,
1461
+ "learning_rate": 3.3563535911602215e-05,
1462
+ "loss": 1.1979,
1463
+ "step": 4760
1464
+ },
1465
+ {
1466
+ "epoch": 1.32,
1467
+ "learning_rate": 3.349447513812155e-05,
1468
+ "loss": 1.21,
1469
+ "step": 4780
1470
+ },
1471
+ {
1472
+ "epoch": 1.33,
1473
+ "learning_rate": 3.3425414364640886e-05,
1474
+ "loss": 1.2098,
1475
+ "step": 4800
1476
+ },
1477
+ {
1478
+ "epoch": 1.33,
1479
+ "learning_rate": 3.335635359116022e-05,
1480
+ "loss": 1.2078,
1481
+ "step": 4820
1482
+ },
1483
+ {
1484
+ "epoch": 1.34,
1485
+ "learning_rate": 3.328729281767956e-05,
1486
+ "loss": 1.1995,
1487
+ "step": 4840
1488
+ },
1489
+ {
1490
+ "epoch": 1.34,
1491
+ "learning_rate": 3.32182320441989e-05,
1492
+ "loss": 1.2005,
1493
+ "step": 4860
1494
+ },
1495
+ {
1496
+ "epoch": 1.35,
1497
+ "learning_rate": 3.3149171270718233e-05,
1498
+ "loss": 1.2011,
1499
+ "step": 4880
1500
+ },
1501
+ {
1502
+ "epoch": 1.35,
1503
+ "learning_rate": 3.308011049723757e-05,
1504
+ "loss": 1.1911,
1505
+ "step": 4900
1506
+ },
1507
+ {
1508
+ "epoch": 1.36,
1509
+ "learning_rate": 3.301104972375691e-05,
1510
+ "loss": 1.2037,
1511
+ "step": 4920
1512
+ },
1513
+ {
1514
+ "epoch": 1.36,
1515
+ "learning_rate": 3.294198895027624e-05,
1516
+ "loss": 1.2029,
1517
+ "step": 4940
1518
+ },
1519
+ {
1520
+ "epoch": 1.37,
1521
+ "learning_rate": 3.287292817679558e-05,
1522
+ "loss": 1.2084,
1523
+ "step": 4960
1524
+ },
1525
+ {
1526
+ "epoch": 1.38,
1527
+ "learning_rate": 3.2803867403314917e-05,
1528
+ "loss": 1.2004,
1529
+ "step": 4980
1530
+ },
1531
+ {
1532
+ "epoch": 1.38,
1533
+ "learning_rate": 3.273480662983426e-05,
1534
+ "loss": 1.1973,
1535
+ "step": 5000
1536
+ },
1537
+ {
1538
+ "epoch": 1.39,
1539
+ "learning_rate": 3.2665745856353594e-05,
1540
+ "loss": 1.2009,
1541
+ "step": 5020
1542
+ },
1543
+ {
1544
+ "epoch": 1.39,
1545
+ "learning_rate": 3.259668508287293e-05,
1546
+ "loss": 1.1993,
1547
+ "step": 5040
1548
+ },
1549
+ {
1550
+ "epoch": 1.4,
1551
+ "learning_rate": 3.252762430939227e-05,
1552
+ "loss": 1.2096,
1553
+ "step": 5060
1554
+ },
1555
+ {
1556
+ "epoch": 1.4,
1557
+ "learning_rate": 3.24585635359116e-05,
1558
+ "loss": 1.2046,
1559
+ "step": 5080
1560
+ },
1561
+ {
1562
+ "epoch": 1.41,
1563
+ "learning_rate": 3.238950276243094e-05,
1564
+ "loss": 1.2098,
1565
+ "step": 5100
1566
+ },
1567
+ {
1568
+ "epoch": 1.41,
1569
+ "learning_rate": 3.232044198895028e-05,
1570
+ "loss": 1.1993,
1571
+ "step": 5120
1572
+ },
1573
+ {
1574
+ "epoch": 1.42,
1575
+ "learning_rate": 3.225138121546962e-05,
1576
+ "loss": 1.2049,
1577
+ "step": 5140
1578
+ },
1579
+ {
1580
+ "epoch": 1.43,
1581
+ "learning_rate": 3.218232044198895e-05,
1582
+ "loss": 1.2031,
1583
+ "step": 5160
1584
+ },
1585
+ {
1586
+ "epoch": 1.43,
1587
+ "learning_rate": 3.211325966850829e-05,
1588
+ "loss": 1.2015,
1589
+ "step": 5180
1590
+ },
1591
+ {
1592
+ "epoch": 1.44,
1593
+ "learning_rate": 3.2044198895027625e-05,
1594
+ "loss": 1.2065,
1595
+ "step": 5200
1596
+ },
1597
+ {
1598
+ "epoch": 1.44,
1599
+ "learning_rate": 3.197513812154696e-05,
1600
+ "loss": 1.2032,
1601
+ "step": 5220
1602
+ },
1603
+ {
1604
+ "epoch": 1.45,
1605
+ "learning_rate": 3.19060773480663e-05,
1606
+ "loss": 1.2011,
1607
+ "step": 5240
1608
+ },
1609
+ {
1610
+ "epoch": 1.45,
1611
+ "learning_rate": 3.183701657458564e-05,
1612
+ "loss": 1.2005,
1613
+ "step": 5260
1614
+ },
1615
+ {
1616
+ "epoch": 1.46,
1617
+ "learning_rate": 3.176795580110498e-05,
1618
+ "loss": 1.1961,
1619
+ "step": 5280
1620
+ },
1621
+ {
1622
+ "epoch": 1.46,
1623
+ "learning_rate": 3.169889502762431e-05,
1624
+ "loss": 1.2032,
1625
+ "step": 5300
1626
+ },
1627
+ {
1628
+ "epoch": 1.47,
1629
+ "learning_rate": 3.162983425414365e-05,
1630
+ "loss": 1.206,
1631
+ "step": 5320
1632
+ },
1633
+ {
1634
+ "epoch": 1.48,
1635
+ "learning_rate": 3.1560773480662985e-05,
1636
+ "loss": 1.2145,
1637
+ "step": 5340
1638
+ },
1639
+ {
1640
+ "epoch": 1.48,
1641
+ "learning_rate": 3.149171270718232e-05,
1642
+ "loss": 1.2015,
1643
+ "step": 5360
1644
+ },
1645
+ {
1646
+ "epoch": 1.49,
1647
+ "learning_rate": 3.1422651933701656e-05,
1648
+ "loss": 1.1948,
1649
+ "step": 5380
1650
+ },
1651
+ {
1652
+ "epoch": 1.49,
1653
+ "learning_rate": 3.1353591160221e-05,
1654
+ "loss": 1.2013,
1655
+ "step": 5400
1656
+ },
1657
+ {
1658
+ "epoch": 1.5,
1659
+ "learning_rate": 3.128453038674033e-05,
1660
+ "loss": 1.1922,
1661
+ "step": 5420
1662
+ },
1663
+ {
1664
+ "epoch": 1.5,
1665
+ "learning_rate": 3.121546961325967e-05,
1666
+ "loss": 1.2024,
1667
+ "step": 5440
1668
+ },
1669
+ {
1670
+ "epoch": 1.51,
1671
+ "learning_rate": 3.1146408839779004e-05,
1672
+ "loss": 1.1992,
1673
+ "step": 5460
1674
+ },
1675
+ {
1676
+ "epoch": 1.51,
1677
+ "learning_rate": 3.1077348066298346e-05,
1678
+ "loss": 1.1949,
1679
+ "step": 5480
1680
+ },
1681
+ {
1682
+ "epoch": 1.52,
1683
+ "learning_rate": 3.100828729281768e-05,
1684
+ "loss": 1.1939,
1685
+ "step": 5500
1686
+ },
1687
+ {
1688
+ "epoch": 1.52,
1689
+ "learning_rate": 3.0939226519337016e-05,
1690
+ "loss": 1.1998,
1691
+ "step": 5520
1692
+ },
1693
+ {
1694
+ "epoch": 1.53,
1695
+ "learning_rate": 3.087016574585636e-05,
1696
+ "loss": 1.199,
1697
+ "step": 5540
1698
+ },
1699
+ {
1700
+ "epoch": 1.54,
1701
+ "learning_rate": 3.0801104972375693e-05,
1702
+ "loss": 1.2133,
1703
+ "step": 5560
1704
+ },
1705
+ {
1706
+ "epoch": 1.54,
1707
+ "learning_rate": 3.073204419889503e-05,
1708
+ "loss": 1.21,
1709
+ "step": 5580
1710
+ },
1711
+ {
1712
+ "epoch": 1.55,
1713
+ "learning_rate": 3.0662983425414364e-05,
1714
+ "loss": 1.2024,
1715
+ "step": 5600
1716
+ },
1717
+ {
1718
+ "epoch": 1.55,
1719
+ "learning_rate": 3.0593922651933706e-05,
1720
+ "loss": 1.1914,
1721
+ "step": 5620
1722
+ },
1723
+ {
1724
+ "epoch": 1.56,
1725
+ "learning_rate": 3.052486187845304e-05,
1726
+ "loss": 1.1936,
1727
+ "step": 5640
1728
+ },
1729
+ {
1730
+ "epoch": 1.56,
1731
+ "learning_rate": 3.0455801104972377e-05,
1732
+ "loss": 1.2003,
1733
+ "step": 5660
1734
+ },
1735
+ {
1736
+ "epoch": 1.57,
1737
+ "learning_rate": 3.0386740331491715e-05,
1738
+ "loss": 1.1875,
1739
+ "step": 5680
1740
+ },
1741
+ {
1742
+ "epoch": 1.57,
1743
+ "learning_rate": 3.0317679558011054e-05,
1744
+ "loss": 1.1873,
1745
+ "step": 5700
1746
+ },
1747
+ {
1748
+ "epoch": 1.58,
1749
+ "learning_rate": 3.0248618784530386e-05,
1750
+ "loss": 1.1945,
1751
+ "step": 5720
1752
+ },
1753
+ {
1754
+ "epoch": 1.59,
1755
+ "learning_rate": 3.0179558011049724e-05,
1756
+ "loss": 1.1955,
1757
+ "step": 5740
1758
+ },
1759
+ {
1760
+ "epoch": 1.59,
1761
+ "learning_rate": 3.0110497237569063e-05,
1762
+ "loss": 1.2036,
1763
+ "step": 5760
1764
+ },
1765
+ {
1766
+ "epoch": 1.6,
1767
+ "learning_rate": 3.00414364640884e-05,
1768
+ "loss": 1.2039,
1769
+ "step": 5780
1770
+ },
1771
+ {
1772
+ "epoch": 1.6,
1773
+ "learning_rate": 2.9972375690607734e-05,
1774
+ "loss": 1.2,
1775
+ "step": 5800
1776
+ },
1777
+ {
1778
+ "epoch": 1.61,
1779
+ "learning_rate": 2.9903314917127072e-05,
1780
+ "loss": 1.203,
1781
+ "step": 5820
1782
+ },
1783
+ {
1784
+ "epoch": 1.61,
1785
+ "learning_rate": 2.983425414364641e-05,
1786
+ "loss": 1.1998,
1787
+ "step": 5840
1788
+ },
1789
+ {
1790
+ "epoch": 1.62,
1791
+ "learning_rate": 2.9765193370165746e-05,
1792
+ "loss": 1.1991,
1793
+ "step": 5860
1794
+ },
1795
+ {
1796
+ "epoch": 1.62,
1797
+ "learning_rate": 2.9696132596685085e-05,
1798
+ "loss": 1.1915,
1799
+ "step": 5880
1800
+ },
1801
+ {
1802
+ "epoch": 1.63,
1803
+ "learning_rate": 2.9627071823204423e-05,
1804
+ "loss": 1.1987,
1805
+ "step": 5900
1806
+ },
1807
+ {
1808
+ "epoch": 1.64,
1809
+ "learning_rate": 2.9558011049723762e-05,
1810
+ "loss": 1.1969,
1811
+ "step": 5920
1812
+ },
1813
+ {
1814
+ "epoch": 1.64,
1815
+ "learning_rate": 2.9488950276243094e-05,
1816
+ "loss": 1.1976,
1817
+ "step": 5940
1818
+ },
1819
+ {
1820
+ "epoch": 1.65,
1821
+ "learning_rate": 2.9419889502762433e-05,
1822
+ "loss": 1.1999,
1823
+ "step": 5960
1824
+ },
1825
+ {
1826
+ "epoch": 1.65,
1827
+ "learning_rate": 2.935082872928177e-05,
1828
+ "loss": 1.1921,
1829
+ "step": 5980
1830
+ },
1831
+ {
1832
+ "epoch": 1.66,
1833
+ "learning_rate": 2.9281767955801103e-05,
1834
+ "loss": 1.1876,
1835
+ "step": 6000
1836
+ },
1837
+ {
1838
+ "epoch": 1.66,
1839
+ "eval_validation_accuracy": 0.05660693698094773,
1840
+ "eval_validation_loss": 1.2047861814498901,
1841
+ "eval_validation_runtime": 3828.1304,
1842
+ "eval_validation_samples_per_second": 0.653,
1843
+ "eval_validation_steps_per_second": 0.021,
1844
+ "step": 6000
1845
+ },
1846
+ {
1847
+ "epoch": 1.66,
1848
+ "learning_rate": 2.9212707182320442e-05,
1849
+ "loss": 1.2027,
1850
+ "step": 6020
1851
+ },
1852
+ {
1853
+ "epoch": 1.67,
1854
+ "learning_rate": 2.914364640883978e-05,
1855
+ "loss": 1.1934,
1856
+ "step": 6040
1857
+ },
1858
+ {
1859
+ "epoch": 1.67,
1860
+ "learning_rate": 2.907458563535912e-05,
1861
+ "loss": 1.1842,
1862
+ "step": 6060
1863
+ },
1864
+ {
1865
+ "epoch": 1.68,
1866
+ "learning_rate": 2.900552486187845e-05,
1867
+ "loss": 1.1984,
1868
+ "step": 6080
1869
+ },
1870
+ {
1871
+ "epoch": 1.68,
1872
+ "learning_rate": 2.893646408839779e-05,
1873
+ "loss": 1.1872,
1874
+ "step": 6100
1875
+ },
1876
+ {
1877
+ "epoch": 1.69,
1878
+ "learning_rate": 2.8867403314917128e-05,
1879
+ "loss": 1.2003,
1880
+ "step": 6120
1881
+ },
1882
+ {
1883
+ "epoch": 1.7,
1884
+ "learning_rate": 2.8798342541436463e-05,
1885
+ "loss": 1.1861,
1886
+ "step": 6140
1887
+ },
1888
+ {
1889
+ "epoch": 1.7,
1890
+ "learning_rate": 2.8729281767955802e-05,
1891
+ "loss": 1.2005,
1892
+ "step": 6160
1893
+ },
1894
+ {
1895
+ "epoch": 1.71,
1896
+ "learning_rate": 2.866022099447514e-05,
1897
+ "loss": 1.1966,
1898
+ "step": 6180
1899
+ },
1900
+ {
1901
+ "epoch": 1.71,
1902
+ "learning_rate": 2.859116022099448e-05,
1903
+ "loss": 1.1858,
1904
+ "step": 6200
1905
+ },
1906
+ {
1907
+ "epoch": 1.72,
1908
+ "learning_rate": 2.852209944751381e-05,
1909
+ "loss": 1.1919,
1910
+ "step": 6220
1911
+ },
1912
+ {
1913
+ "epoch": 1.72,
1914
+ "learning_rate": 2.845303867403315e-05,
1915
+ "loss": 1.1892,
1916
+ "step": 6240
1917
+ },
1918
+ {
1919
+ "epoch": 1.73,
1920
+ "learning_rate": 2.838397790055249e-05,
1921
+ "loss": 1.197,
1922
+ "step": 6260
1923
+ },
1924
+ {
1925
+ "epoch": 1.73,
1926
+ "learning_rate": 2.8314917127071827e-05,
1927
+ "loss": 1.1915,
1928
+ "step": 6280
1929
+ },
1930
+ {
1931
+ "epoch": 1.74,
1932
+ "learning_rate": 2.824585635359116e-05,
1933
+ "loss": 1.1971,
1934
+ "step": 6300
1935
+ },
1936
+ {
1937
+ "epoch": 1.75,
1938
+ "learning_rate": 2.8176795580110498e-05,
1939
+ "loss": 1.194,
1940
+ "step": 6320
1941
+ },
1942
+ {
1943
+ "epoch": 1.75,
1944
+ "learning_rate": 2.8107734806629836e-05,
1945
+ "loss": 1.1912,
1946
+ "step": 6340
1947
+ },
1948
+ {
1949
+ "epoch": 1.76,
1950
+ "learning_rate": 2.8038674033149172e-05,
1951
+ "loss": 1.1908,
1952
+ "step": 6360
1953
+ },
1954
+ {
1955
+ "epoch": 1.76,
1956
+ "learning_rate": 2.796961325966851e-05,
1957
+ "loss": 1.1834,
1958
+ "step": 6380
1959
+ },
1960
+ {
1961
+ "epoch": 1.77,
1962
+ "learning_rate": 2.790055248618785e-05,
1963
+ "loss": 1.1931,
1964
+ "step": 6400
1965
+ },
1966
+ {
1967
+ "epoch": 1.77,
1968
+ "learning_rate": 2.7831491712707188e-05,
1969
+ "loss": 1.192,
1970
+ "step": 6420
1971
+ },
1972
+ {
1973
+ "epoch": 1.78,
1974
+ "learning_rate": 2.776243093922652e-05,
1975
+ "loss": 1.1866,
1976
+ "step": 6440
1977
+ },
1978
+ {
1979
+ "epoch": 1.78,
1980
+ "learning_rate": 2.7693370165745858e-05,
1981
+ "loss": 1.1933,
1982
+ "step": 6460
1983
+ },
1984
+ {
1985
+ "epoch": 1.79,
1986
+ "learning_rate": 2.7624309392265197e-05,
1987
+ "loss": 1.185,
1988
+ "step": 6480
1989
+ },
1990
+ {
1991
+ "epoch": 1.8,
1992
+ "learning_rate": 2.755524861878453e-05,
1993
+ "loss": 1.1893,
1994
+ "step": 6500
1995
+ },
1996
+ {
1997
+ "epoch": 1.8,
1998
+ "learning_rate": 2.7486187845303867e-05,
1999
+ "loss": 1.1897,
2000
+ "step": 6520
2001
+ },
2002
+ {
2003
+ "epoch": 1.81,
2004
+ "learning_rate": 2.7417127071823206e-05,
2005
+ "loss": 1.1904,
2006
+ "step": 6540
2007
+ },
2008
+ {
2009
+ "epoch": 1.81,
2010
+ "learning_rate": 2.7348066298342545e-05,
2011
+ "loss": 1.189,
2012
+ "step": 6560
2013
+ },
2014
+ {
2015
+ "epoch": 1.82,
2016
+ "learning_rate": 2.7279005524861877e-05,
2017
+ "loss": 1.1932,
2018
+ "step": 6580
2019
+ },
2020
+ {
2021
+ "epoch": 1.82,
2022
+ "learning_rate": 2.7209944751381215e-05,
2023
+ "loss": 1.1825,
2024
+ "step": 6600
2025
+ },
2026
+ {
2027
+ "epoch": 1.83,
2028
+ "learning_rate": 2.7140883977900554e-05,
2029
+ "loss": 1.1913,
2030
+ "step": 6620
2031
+ },
2032
+ {
2033
+ "epoch": 1.83,
2034
+ "learning_rate": 2.707182320441989e-05,
2035
+ "loss": 1.1889,
2036
+ "step": 6640
2037
+ },
2038
+ {
2039
+ "epoch": 1.84,
2040
+ "learning_rate": 2.7002762430939228e-05,
2041
+ "loss": 1.183,
2042
+ "step": 6660
2043
+ },
2044
+ {
2045
+ "epoch": 1.85,
2046
+ "learning_rate": 2.6933701657458566e-05,
2047
+ "loss": 1.1879,
2048
+ "step": 6680
2049
+ },
2050
+ {
2051
+ "epoch": 1.85,
2052
+ "learning_rate": 2.6864640883977905e-05,
2053
+ "loss": 1.1879,
2054
+ "step": 6700
2055
+ },
2056
+ {
2057
+ "epoch": 1.86,
2058
+ "learning_rate": 2.6795580110497237e-05,
2059
+ "loss": 1.1987,
2060
+ "step": 6720
2061
+ },
2062
+ {
2063
+ "epoch": 1.86,
2064
+ "learning_rate": 2.6726519337016576e-05,
2065
+ "loss": 1.1826,
2066
+ "step": 6740
2067
+ },
2068
+ {
2069
+ "epoch": 1.87,
2070
+ "learning_rate": 2.6657458563535914e-05,
2071
+ "loss": 1.1854,
2072
+ "step": 6760
2073
+ },
2074
+ {
2075
+ "epoch": 1.87,
2076
+ "learning_rate": 2.6588397790055246e-05,
2077
+ "loss": 1.1916,
2078
+ "step": 6780
2079
+ },
2080
+ {
2081
+ "epoch": 1.88,
2082
+ "learning_rate": 2.6519337016574585e-05,
2083
+ "loss": 1.1898,
2084
+ "step": 6800
2085
+ },
2086
+ {
2087
+ "epoch": 1.88,
2088
+ "learning_rate": 2.6450276243093923e-05,
2089
+ "loss": 1.1857,
2090
+ "step": 6820
2091
+ },
2092
+ {
2093
+ "epoch": 1.89,
2094
+ "learning_rate": 2.6381215469613262e-05,
2095
+ "loss": 1.1856,
2096
+ "step": 6840
2097
+ },
2098
+ {
2099
+ "epoch": 1.89,
2100
+ "learning_rate": 2.6312154696132597e-05,
2101
+ "loss": 1.1822,
2102
+ "step": 6860
2103
+ },
2104
+ {
2105
+ "epoch": 1.9,
2106
+ "learning_rate": 2.6243093922651936e-05,
2107
+ "loss": 1.1986,
2108
+ "step": 6880
2109
+ },
2110
+ {
2111
+ "epoch": 1.91,
2112
+ "learning_rate": 2.6174033149171275e-05,
2113
+ "loss": 1.1821,
2114
+ "step": 6900
2115
+ },
2116
+ {
2117
+ "epoch": 1.91,
2118
+ "learning_rate": 2.6104972375690613e-05,
2119
+ "loss": 1.1934,
2120
+ "step": 6920
2121
+ },
2122
+ {
2123
+ "epoch": 1.92,
2124
+ "learning_rate": 2.6035911602209945e-05,
2125
+ "loss": 1.1831,
2126
+ "step": 6940
2127
+ },
2128
+ {
2129
+ "epoch": 1.92,
2130
+ "learning_rate": 2.5966850828729284e-05,
2131
+ "loss": 1.188,
2132
+ "step": 6960
2133
+ },
2134
+ {
2135
+ "epoch": 1.93,
2136
+ "learning_rate": 2.5897790055248622e-05,
2137
+ "loss": 1.1808,
2138
+ "step": 6980
2139
+ },
2140
+ {
2141
+ "epoch": 1.93,
2142
+ "learning_rate": 2.5828729281767954e-05,
2143
+ "loss": 1.1883,
2144
+ "step": 7000
2145
+ },
2146
+ {
2147
+ "epoch": 1.94,
2148
+ "learning_rate": 2.5759668508287293e-05,
2149
+ "loss": 1.1858,
2150
+ "step": 7020
2151
+ },
2152
+ {
2153
+ "epoch": 1.94,
2154
+ "learning_rate": 2.569060773480663e-05,
2155
+ "loss": 1.1983,
2156
+ "step": 7040
2157
+ },
2158
+ {
2159
+ "epoch": 1.95,
2160
+ "learning_rate": 2.562154696132597e-05,
2161
+ "loss": 1.1753,
2162
+ "step": 7060
2163
+ },
2164
+ {
2165
+ "epoch": 1.96,
2166
+ "learning_rate": 2.5552486187845302e-05,
2167
+ "loss": 1.187,
2168
+ "step": 7080
2169
+ },
2170
+ {
2171
+ "epoch": 1.96,
2172
+ "learning_rate": 2.548342541436464e-05,
2173
+ "loss": 1.1784,
2174
+ "step": 7100
2175
+ },
2176
+ {
2177
+ "epoch": 1.97,
2178
+ "learning_rate": 2.541436464088398e-05,
2179
+ "loss": 1.188,
2180
+ "step": 7120
2181
+ },
2182
+ {
2183
+ "epoch": 1.97,
2184
+ "learning_rate": 2.5345303867403315e-05,
2185
+ "loss": 1.187,
2186
+ "step": 7140
2187
+ },
2188
+ {
2189
+ "epoch": 1.98,
2190
+ "learning_rate": 2.5276243093922653e-05,
2191
+ "loss": 1.1794,
2192
+ "step": 7160
2193
+ },
2194
+ {
2195
+ "epoch": 1.98,
2196
+ "learning_rate": 2.5207182320441992e-05,
2197
+ "loss": 1.1819,
2198
+ "step": 7180
2199
+ },
2200
+ {
2201
+ "epoch": 1.99,
2202
+ "learning_rate": 2.513812154696133e-05,
2203
+ "loss": 1.1839,
2204
+ "step": 7200
2205
+ },
2206
+ {
2207
+ "epoch": 1.99,
2208
+ "learning_rate": 2.5069060773480663e-05,
2209
+ "loss": 1.1828,
2210
+ "step": 7220
2211
+ },
2212
+ {
2213
+ "epoch": 2.0,
2214
+ "learning_rate": 2.5e-05,
2215
+ "loss": 1.1921,
2216
+ "step": 7240
2217
+ },
2218
+ {
2219
+ "epoch": 2.01,
2220
+ "learning_rate": 2.4930939226519336e-05,
2221
+ "loss": 1.1571,
2222
+ "step": 7260
2223
+ },
2224
+ {
2225
+ "epoch": 2.01,
2226
+ "learning_rate": 2.4861878453038675e-05,
2227
+ "loss": 1.1573,
2228
+ "step": 7280
2229
+ },
2230
+ {
2231
+ "epoch": 2.02,
2232
+ "learning_rate": 2.479281767955801e-05,
2233
+ "loss": 1.1609,
2234
+ "step": 7300
2235
+ },
2236
+ {
2237
+ "epoch": 2.02,
2238
+ "learning_rate": 2.472375690607735e-05,
2239
+ "loss": 1.1587,
2240
+ "step": 7320
2241
+ },
2242
+ {
2243
+ "epoch": 2.03,
2244
+ "learning_rate": 2.4654696132596684e-05,
2245
+ "loss": 1.1698,
2246
+ "step": 7340
2247
+ },
2248
+ {
2249
+ "epoch": 2.03,
2250
+ "learning_rate": 2.4585635359116023e-05,
2251
+ "loss": 1.1653,
2252
+ "step": 7360
2253
+ },
2254
+ {
2255
+ "epoch": 2.04,
2256
+ "learning_rate": 2.451657458563536e-05,
2257
+ "loss": 1.1633,
2258
+ "step": 7380
2259
+ },
2260
+ {
2261
+ "epoch": 2.04,
2262
+ "learning_rate": 2.4447513812154697e-05,
2263
+ "loss": 1.1612,
2264
+ "step": 7400
2265
+ },
2266
+ {
2267
+ "epoch": 2.05,
2268
+ "learning_rate": 2.4378453038674036e-05,
2269
+ "loss": 1.1526,
2270
+ "step": 7420
2271
+ },
2272
+ {
2273
+ "epoch": 2.06,
2274
+ "learning_rate": 2.430939226519337e-05,
2275
+ "loss": 1.1628,
2276
+ "step": 7440
2277
+ },
2278
+ {
2279
+ "epoch": 2.06,
2280
+ "learning_rate": 2.424033149171271e-05,
2281
+ "loss": 1.1695,
2282
+ "step": 7460
2283
+ },
2284
+ {
2285
+ "epoch": 2.07,
2286
+ "learning_rate": 2.4171270718232045e-05,
2287
+ "loss": 1.1663,
2288
+ "step": 7480
2289
+ },
2290
+ {
2291
+ "epoch": 2.07,
2292
+ "learning_rate": 2.4102209944751383e-05,
2293
+ "loss": 1.1601,
2294
+ "step": 7500
2295
+ },
2296
+ {
2297
+ "epoch": 2.07,
2298
+ "eval_validation_accuracy": 0.05679042501221299,
2299
+ "eval_validation_loss": 1.1941546201705933,
2300
+ "eval_validation_runtime": 3780.6761,
2301
+ "eval_validation_samples_per_second": 0.661,
2302
+ "eval_validation_steps_per_second": 0.021,
2303
+ "step": 7500
2304
+ },
2305
+ {
2306
+ "epoch": 2.08,
2307
+ "learning_rate": 2.403314917127072e-05,
2308
+ "loss": 1.1613,
2309
+ "step": 7520
2310
+ },
2311
+ {
2312
+ "epoch": 2.08,
2313
+ "learning_rate": 2.3964088397790057e-05,
2314
+ "loss": 1.1609,
2315
+ "step": 7540
2316
+ },
2317
+ {
2318
+ "epoch": 2.09,
2319
+ "learning_rate": 2.3895027624309393e-05,
2320
+ "loss": 1.1597,
2321
+ "step": 7560
2322
+ },
2323
+ {
2324
+ "epoch": 2.09,
2325
+ "learning_rate": 2.3825966850828728e-05,
2326
+ "loss": 1.1561,
2327
+ "step": 7580
2328
+ },
2329
+ {
2330
+ "epoch": 2.1,
2331
+ "learning_rate": 2.3756906077348066e-05,
2332
+ "loss": 1.154,
2333
+ "step": 7600
2334
+ },
2335
+ {
2336
+ "epoch": 2.1,
2337
+ "learning_rate": 2.3687845303867405e-05,
2338
+ "loss": 1.1555,
2339
+ "step": 7620
2340
+ },
2341
+ {
2342
+ "epoch": 2.11,
2343
+ "learning_rate": 2.3618784530386744e-05,
2344
+ "loss": 1.163,
2345
+ "step": 7640
2346
+ },
2347
+ {
2348
+ "epoch": 2.12,
2349
+ "learning_rate": 2.354972375690608e-05,
2350
+ "loss": 1.1677,
2351
+ "step": 7660
2352
+ },
2353
+ {
2354
+ "epoch": 2.12,
2355
+ "learning_rate": 2.3480662983425418e-05,
2356
+ "loss": 1.1662,
2357
+ "step": 7680
2358
+ },
2359
+ {
2360
+ "epoch": 2.13,
2361
+ "learning_rate": 2.3411602209944753e-05,
2362
+ "loss": 1.1638,
2363
+ "step": 7700
2364
+ },
2365
+ {
2366
+ "epoch": 2.13,
2367
+ "learning_rate": 2.3342541436464088e-05,
2368
+ "loss": 1.1604,
2369
+ "step": 7720
2370
+ },
2371
+ {
2372
+ "epoch": 2.14,
2373
+ "learning_rate": 2.3273480662983427e-05,
2374
+ "loss": 1.1516,
2375
+ "step": 7740
2376
+ },
2377
+ {
2378
+ "epoch": 2.14,
2379
+ "learning_rate": 2.3204419889502762e-05,
2380
+ "loss": 1.1546,
2381
+ "step": 7760
2382
+ },
2383
+ {
2384
+ "epoch": 2.15,
2385
+ "learning_rate": 2.31353591160221e-05,
2386
+ "loss": 1.1565,
2387
+ "step": 7780
2388
+ },
2389
+ {
2390
+ "epoch": 2.15,
2391
+ "learning_rate": 2.3066298342541436e-05,
2392
+ "loss": 1.1568,
2393
+ "step": 7800
2394
+ },
2395
+ {
2396
+ "epoch": 2.16,
2397
+ "learning_rate": 2.2997237569060775e-05,
2398
+ "loss": 1.1534,
2399
+ "step": 7820
2400
+ },
2401
+ {
2402
+ "epoch": 2.17,
2403
+ "learning_rate": 2.292817679558011e-05,
2404
+ "loss": 1.1669,
2405
+ "step": 7840
2406
+ },
2407
+ {
2408
+ "epoch": 2.17,
2409
+ "learning_rate": 2.285911602209945e-05,
2410
+ "loss": 1.1558,
2411
+ "step": 7860
2412
+ },
2413
+ {
2414
+ "epoch": 2.18,
2415
+ "learning_rate": 2.2790055248618787e-05,
2416
+ "loss": 1.1617,
2417
+ "step": 7880
2418
+ },
2419
+ {
2420
+ "epoch": 2.18,
2421
+ "learning_rate": 2.2720994475138122e-05,
2422
+ "loss": 1.1566,
2423
+ "step": 7900
2424
+ },
2425
+ {
2426
+ "epoch": 2.19,
2427
+ "learning_rate": 2.265193370165746e-05,
2428
+ "loss": 1.1576,
2429
+ "step": 7920
2430
+ },
2431
+ {
2432
+ "epoch": 2.19,
2433
+ "learning_rate": 2.2582872928176796e-05,
2434
+ "loss": 1.1492,
2435
+ "step": 7940
2436
+ },
2437
+ {
2438
+ "epoch": 2.2,
2439
+ "learning_rate": 2.2513812154696135e-05,
2440
+ "loss": 1.1662,
2441
+ "step": 7960
2442
+ },
2443
+ {
2444
+ "epoch": 2.2,
2445
+ "learning_rate": 2.244475138121547e-05,
2446
+ "loss": 1.1589,
2447
+ "step": 7980
2448
+ },
2449
+ {
2450
+ "epoch": 2.21,
2451
+ "learning_rate": 2.237569060773481e-05,
2452
+ "loss": 1.157,
2453
+ "step": 8000
2454
+ },
2455
+ {
2456
+ "epoch": 2.22,
2457
+ "learning_rate": 2.2306629834254144e-05,
2458
+ "loss": 1.1606,
2459
+ "step": 8020
2460
+ },
2461
+ {
2462
+ "epoch": 2.22,
2463
+ "learning_rate": 2.223756906077348e-05,
2464
+ "loss": 1.1461,
2465
+ "step": 8040
2466
+ },
2467
+ {
2468
+ "epoch": 2.23,
2469
+ "learning_rate": 2.2168508287292818e-05,
2470
+ "loss": 1.157,
2471
+ "step": 8060
2472
+ },
2473
+ {
2474
+ "epoch": 2.23,
2475
+ "learning_rate": 2.2099447513812153e-05,
2476
+ "loss": 1.1612,
2477
+ "step": 8080
2478
+ },
2479
+ {
2480
+ "epoch": 2.24,
2481
+ "learning_rate": 2.2030386740331492e-05,
2482
+ "loss": 1.1624,
2483
+ "step": 8100
2484
+ },
2485
+ {
2486
+ "epoch": 2.24,
2487
+ "learning_rate": 2.196132596685083e-05,
2488
+ "loss": 1.1586,
2489
+ "step": 8120
2490
+ },
2491
+ {
2492
+ "epoch": 2.25,
2493
+ "learning_rate": 2.189226519337017e-05,
2494
+ "loss": 1.1559,
2495
+ "step": 8140
2496
+ },
2497
+ {
2498
+ "epoch": 2.25,
2499
+ "learning_rate": 2.1823204419889505e-05,
2500
+ "loss": 1.1603,
2501
+ "step": 8160
2502
+ },
2503
+ {
2504
+ "epoch": 2.26,
2505
+ "learning_rate": 2.1754143646408843e-05,
2506
+ "loss": 1.1636,
2507
+ "step": 8180
2508
+ },
2509
+ {
2510
+ "epoch": 2.27,
2511
+ "learning_rate": 2.168508287292818e-05,
2512
+ "loss": 1.1554,
2513
+ "step": 8200
2514
+ },
2515
+ {
2516
+ "epoch": 2.27,
2517
+ "learning_rate": 2.1616022099447514e-05,
2518
+ "loss": 1.1569,
2519
+ "step": 8220
2520
+ },
2521
+ {
2522
+ "epoch": 2.28,
2523
+ "learning_rate": 2.1546961325966852e-05,
2524
+ "loss": 1.1712,
2525
+ "step": 8240
2526
+ },
2527
+ {
2528
+ "epoch": 2.28,
2529
+ "learning_rate": 2.1477900552486188e-05,
2530
+ "loss": 1.1532,
2531
+ "step": 8260
2532
+ },
2533
+ {
2534
+ "epoch": 2.29,
2535
+ "learning_rate": 2.1408839779005526e-05,
2536
+ "loss": 1.1664,
2537
+ "step": 8280
2538
+ },
2539
+ {
2540
+ "epoch": 2.29,
2541
+ "learning_rate": 2.133977900552486e-05,
2542
+ "loss": 1.1619,
2543
+ "step": 8300
2544
+ },
2545
+ {
2546
+ "epoch": 2.3,
2547
+ "learning_rate": 2.12707182320442e-05,
2548
+ "loss": 1.158,
2549
+ "step": 8320
2550
+ },
2551
+ {
2552
+ "epoch": 2.3,
2553
+ "learning_rate": 2.1201657458563536e-05,
2554
+ "loss": 1.153,
2555
+ "step": 8340
2556
+ },
2557
+ {
2558
+ "epoch": 2.31,
2559
+ "learning_rate": 2.1132596685082874e-05,
2560
+ "loss": 1.1608,
2561
+ "step": 8360
2562
+ },
2563
+ {
2564
+ "epoch": 2.31,
2565
+ "learning_rate": 2.1063535911602213e-05,
2566
+ "loss": 1.1548,
2567
+ "step": 8380
2568
+ },
2569
+ {
2570
+ "epoch": 2.32,
2571
+ "learning_rate": 2.0994475138121548e-05,
2572
+ "loss": 1.1484,
2573
+ "step": 8400
2574
+ },
2575
+ {
2576
+ "epoch": 2.33,
2577
+ "learning_rate": 2.0925414364640887e-05,
2578
+ "loss": 1.1576,
2579
+ "step": 8420
2580
+ },
2581
+ {
2582
+ "epoch": 2.33,
2583
+ "learning_rate": 2.0856353591160222e-05,
2584
+ "loss": 1.1623,
2585
+ "step": 8440
2586
+ },
2587
+ {
2588
+ "epoch": 2.34,
2589
+ "learning_rate": 2.078729281767956e-05,
2590
+ "loss": 1.1555,
2591
+ "step": 8460
2592
+ },
2593
+ {
2594
+ "epoch": 2.34,
2595
+ "learning_rate": 2.0718232044198896e-05,
2596
+ "loss": 1.1571,
2597
+ "step": 8480
2598
+ },
2599
+ {
2600
+ "epoch": 2.35,
2601
+ "learning_rate": 2.064917127071823e-05,
2602
+ "loss": 1.1557,
2603
+ "step": 8500
2604
+ },
2605
+ {
2606
+ "epoch": 2.35,
2607
+ "learning_rate": 2.058011049723757e-05,
2608
+ "loss": 1.1554,
2609
+ "step": 8520
2610
+ },
2611
+ {
2612
+ "epoch": 2.36,
2613
+ "learning_rate": 2.0511049723756905e-05,
2614
+ "loss": 1.1554,
2615
+ "step": 8540
2616
+ },
2617
+ {
2618
+ "epoch": 2.36,
2619
+ "learning_rate": 2.0441988950276244e-05,
2620
+ "loss": 1.1605,
2621
+ "step": 8560
2622
+ },
2623
+ {
2624
+ "epoch": 2.37,
2625
+ "learning_rate": 2.037292817679558e-05,
2626
+ "loss": 1.1535,
2627
+ "step": 8580
2628
+ },
2629
+ {
2630
+ "epoch": 2.38,
2631
+ "learning_rate": 2.0303867403314918e-05,
2632
+ "loss": 1.1585,
2633
+ "step": 8600
2634
+ },
2635
+ {
2636
+ "epoch": 2.38,
2637
+ "learning_rate": 2.0234806629834256e-05,
2638
+ "loss": 1.162,
2639
+ "step": 8620
2640
+ },
2641
+ {
2642
+ "epoch": 2.39,
2643
+ "learning_rate": 2.0165745856353595e-05,
2644
+ "loss": 1.1588,
2645
+ "step": 8640
2646
+ },
2647
+ {
2648
+ "epoch": 2.39,
2649
+ "learning_rate": 2.009668508287293e-05,
2650
+ "loss": 1.1568,
2651
+ "step": 8660
2652
+ },
2653
+ {
2654
+ "epoch": 2.4,
2655
+ "learning_rate": 2.0027624309392265e-05,
2656
+ "loss": 1.1548,
2657
+ "step": 8680
2658
+ },
2659
+ {
2660
+ "epoch": 2.4,
2661
+ "learning_rate": 1.9958563535911604e-05,
2662
+ "loss": 1.1521,
2663
+ "step": 8700
2664
+ },
2665
+ {
2666
+ "epoch": 2.41,
2667
+ "learning_rate": 1.988950276243094e-05,
2668
+ "loss": 1.1612,
2669
+ "step": 8720
2670
+ },
2671
+ {
2672
+ "epoch": 2.41,
2673
+ "learning_rate": 1.9820441988950278e-05,
2674
+ "loss": 1.1592,
2675
+ "step": 8740
2676
+ },
2677
+ {
2678
+ "epoch": 2.42,
2679
+ "learning_rate": 1.9751381215469613e-05,
2680
+ "loss": 1.1571,
2681
+ "step": 8760
2682
+ },
2683
+ {
2684
+ "epoch": 2.43,
2685
+ "learning_rate": 1.9682320441988952e-05,
2686
+ "loss": 1.1572,
2687
+ "step": 8780
2688
+ },
2689
+ {
2690
+ "epoch": 2.43,
2691
+ "learning_rate": 1.9613259668508287e-05,
2692
+ "loss": 1.1507,
2693
+ "step": 8800
2694
+ },
2695
+ {
2696
+ "epoch": 2.44,
2697
+ "learning_rate": 1.9544198895027623e-05,
2698
+ "loss": 1.1569,
2699
+ "step": 8820
2700
+ },
2701
+ {
2702
+ "epoch": 2.44,
2703
+ "learning_rate": 1.947513812154696e-05,
2704
+ "loss": 1.1626,
2705
+ "step": 8840
2706
+ },
2707
+ {
2708
+ "epoch": 2.45,
2709
+ "learning_rate": 1.94060773480663e-05,
2710
+ "loss": 1.1565,
2711
+ "step": 8860
2712
+ },
2713
+ {
2714
+ "epoch": 2.45,
2715
+ "learning_rate": 1.933701657458564e-05,
2716
+ "loss": 1.1551,
2717
+ "step": 8880
2718
+ },
2719
+ {
2720
+ "epoch": 2.46,
2721
+ "learning_rate": 1.9267955801104974e-05,
2722
+ "loss": 1.1718,
2723
+ "step": 8900
2724
+ },
2725
+ {
2726
+ "epoch": 2.46,
2727
+ "learning_rate": 1.9198895027624312e-05,
2728
+ "loss": 1.1512,
2729
+ "step": 8920
2730
+ },
2731
+ {
2732
+ "epoch": 2.47,
2733
+ "learning_rate": 1.913328729281768e-05,
2734
+ "loss": 1.1479,
2735
+ "step": 8940
2736
+ },
2737
+ {
2738
+ "epoch": 2.47,
2739
+ "learning_rate": 1.9064226519337015e-05,
2740
+ "loss": 1.1606,
2741
+ "step": 8960
2742
+ },
2743
+ {
2744
+ "epoch": 2.48,
2745
+ "learning_rate": 1.8995165745856354e-05,
2746
+ "loss": 1.1566,
2747
+ "step": 8980
2748
+ },
2749
+ {
2750
+ "epoch": 2.49,
2751
+ "learning_rate": 1.8926104972375693e-05,
2752
+ "loss": 1.1648,
2753
+ "step": 9000
2754
+ },
2755
+ {
2756
+ "epoch": 2.49,
2757
+ "eval_validation_accuracy": 0.05684982901807523,
2758
+ "eval_validation_loss": 1.1861985921859741,
2759
+ "eval_validation_runtime": 3774.7742,
2760
+ "eval_validation_samples_per_second": 0.662,
2761
+ "eval_validation_steps_per_second": 0.021,
2762
+ "step": 9000
2763
+ },
2764
+ {
2765
+ "epoch": 2.49,
2766
+ "learning_rate": 1.8857044198895028e-05,
2767
+ "loss": 1.1584,
2768
+ "step": 9020
2769
+ },
2770
+ {
2771
+ "epoch": 2.5,
2772
+ "learning_rate": 1.8787983425414367e-05,
2773
+ "loss": 1.1512,
2774
+ "step": 9040
2775
+ },
2776
+ {
2777
+ "epoch": 2.5,
2778
+ "learning_rate": 1.8718922651933702e-05,
2779
+ "loss": 1.1547,
2780
+ "step": 9060
2781
+ },
2782
+ {
2783
+ "epoch": 2.51,
2784
+ "learning_rate": 1.864986187845304e-05,
2785
+ "loss": 1.1496,
2786
+ "step": 9080
2787
+ },
2788
+ {
2789
+ "epoch": 2.51,
2790
+ "learning_rate": 1.8580801104972376e-05,
2791
+ "loss": 1.1563,
2792
+ "step": 9100
2793
+ },
2794
+ {
2795
+ "epoch": 2.52,
2796
+ "learning_rate": 1.8511740331491715e-05,
2797
+ "loss": 1.1484,
2798
+ "step": 9120
2799
+ },
2800
+ {
2801
+ "epoch": 2.52,
2802
+ "learning_rate": 1.844267955801105e-05,
2803
+ "loss": 1.154,
2804
+ "step": 9140
2805
+ },
2806
+ {
2807
+ "epoch": 2.53,
2808
+ "learning_rate": 1.837361878453039e-05,
2809
+ "loss": 1.1548,
2810
+ "step": 9160
2811
+ },
2812
+ {
2813
+ "epoch": 2.54,
2814
+ "learning_rate": 1.8304558011049724e-05,
2815
+ "loss": 1.146,
2816
+ "step": 9180
2817
+ },
2818
+ {
2819
+ "epoch": 2.54,
2820
+ "learning_rate": 1.8235497237569062e-05,
2821
+ "loss": 1.1508,
2822
+ "step": 9200
2823
+ },
2824
+ {
2825
+ "epoch": 2.55,
2826
+ "learning_rate": 1.8166436464088398e-05,
2827
+ "loss": 1.157,
2828
+ "step": 9220
2829
+ },
2830
+ {
2831
+ "epoch": 2.55,
2832
+ "learning_rate": 1.8097375690607736e-05,
2833
+ "loss": 1.1549,
2834
+ "step": 9240
2835
+ },
2836
+ {
2837
+ "epoch": 2.56,
2838
+ "learning_rate": 1.8028314917127075e-05,
2839
+ "loss": 1.1618,
2840
+ "step": 9260
2841
+ },
2842
+ {
2843
+ "epoch": 2.56,
2844
+ "learning_rate": 1.795925414364641e-05,
2845
+ "loss": 1.1557,
2846
+ "step": 9280
2847
+ },
2848
+ {
2849
+ "epoch": 2.57,
2850
+ "learning_rate": 1.789019337016575e-05,
2851
+ "loss": 1.1556,
2852
+ "step": 9300
2853
+ },
2854
+ {
2855
+ "epoch": 2.57,
2856
+ "learning_rate": 1.7821132596685084e-05,
2857
+ "loss": 1.1507,
2858
+ "step": 9320
2859
+ },
2860
+ {
2861
+ "epoch": 2.58,
2862
+ "learning_rate": 1.7752071823204423e-05,
2863
+ "loss": 1.1554,
2864
+ "step": 9340
2865
+ },
2866
+ {
2867
+ "epoch": 2.59,
2868
+ "learning_rate": 1.7683011049723758e-05,
2869
+ "loss": 1.1641,
2870
+ "step": 9360
2871
+ },
2872
+ {
2873
+ "epoch": 2.59,
2874
+ "learning_rate": 1.7613950276243093e-05,
2875
+ "loss": 1.1503,
2876
+ "step": 9380
2877
+ },
2878
+ {
2879
+ "epoch": 2.6,
2880
+ "learning_rate": 1.7544889502762432e-05,
2881
+ "loss": 1.1563,
2882
+ "step": 9400
2883
+ },
2884
+ {
2885
+ "epoch": 2.6,
2886
+ "learning_rate": 1.7475828729281767e-05,
2887
+ "loss": 1.1497,
2888
+ "step": 9420
2889
+ },
2890
+ {
2891
+ "epoch": 2.61,
2892
+ "learning_rate": 1.7406767955801106e-05,
2893
+ "loss": 1.1498,
2894
+ "step": 9440
2895
+ },
2896
+ {
2897
+ "epoch": 2.61,
2898
+ "learning_rate": 1.733770718232044e-05,
2899
+ "loss": 1.1507,
2900
+ "step": 9460
2901
+ },
2902
+ {
2903
+ "epoch": 2.62,
2904
+ "learning_rate": 1.726864640883978e-05,
2905
+ "loss": 1.1581,
2906
+ "step": 9480
2907
+ },
2908
+ {
2909
+ "epoch": 2.62,
2910
+ "learning_rate": 1.719958563535912e-05,
2911
+ "loss": 1.1477,
2912
+ "step": 9500
2913
+ },
2914
+ {
2915
+ "epoch": 2.63,
2916
+ "learning_rate": 1.7130524861878454e-05,
2917
+ "loss": 1.1549,
2918
+ "step": 9520
2919
+ },
2920
+ {
2921
+ "epoch": 2.64,
2922
+ "learning_rate": 1.7061464088397792e-05,
2923
+ "loss": 1.1607,
2924
+ "step": 9540
2925
+ },
2926
+ {
2927
+ "epoch": 2.64,
2928
+ "learning_rate": 1.6992403314917128e-05,
2929
+ "loss": 1.1493,
2930
+ "step": 9560
2931
+ },
2932
+ {
2933
+ "epoch": 2.65,
2934
+ "learning_rate": 1.6923342541436466e-05,
2935
+ "loss": 1.1531,
2936
+ "step": 9580
2937
+ },
2938
+ {
2939
+ "epoch": 2.65,
2940
+ "learning_rate": 1.68542817679558e-05,
2941
+ "loss": 1.1539,
2942
+ "step": 9600
2943
+ },
2944
+ {
2945
+ "epoch": 2.66,
2946
+ "learning_rate": 1.678522099447514e-05,
2947
+ "loss": 1.1494,
2948
+ "step": 9620
2949
+ },
2950
+ {
2951
+ "epoch": 2.66,
2952
+ "learning_rate": 1.6716160220994475e-05,
2953
+ "loss": 1.1517,
2954
+ "step": 9640
2955
+ },
2956
+ {
2957
+ "epoch": 2.67,
2958
+ "learning_rate": 1.6647099447513814e-05,
2959
+ "loss": 1.1538,
2960
+ "step": 9660
2961
+ },
2962
+ {
2963
+ "epoch": 2.67,
2964
+ "learning_rate": 1.657803867403315e-05,
2965
+ "loss": 1.1565,
2966
+ "step": 9680
2967
+ },
2968
+ {
2969
+ "epoch": 2.68,
2970
+ "learning_rate": 1.6508977900552485e-05,
2971
+ "loss": 1.161,
2972
+ "step": 9700
2973
+ },
2974
+ {
2975
+ "epoch": 2.68,
2976
+ "learning_rate": 1.6439917127071823e-05,
2977
+ "loss": 1.1495,
2978
+ "step": 9720
2979
+ },
2980
+ {
2981
+ "epoch": 2.69,
2982
+ "learning_rate": 1.6370856353591162e-05,
2983
+ "loss": 1.1471,
2984
+ "step": 9740
2985
+ },
2986
+ {
2987
+ "epoch": 2.7,
2988
+ "learning_rate": 1.6301795580110497e-05,
2989
+ "loss": 1.1496,
2990
+ "step": 9760
2991
+ },
2992
+ {
2993
+ "epoch": 2.7,
2994
+ "learning_rate": 1.6232734806629836e-05,
2995
+ "loss": 1.1469,
2996
+ "step": 9780
2997
+ },
2998
+ {
2999
+ "epoch": 2.71,
3000
+ "learning_rate": 1.6163674033149174e-05,
3001
+ "loss": 1.1547,
3002
+ "step": 9800
3003
+ },
3004
+ {
3005
+ "epoch": 2.71,
3006
+ "learning_rate": 1.609461325966851e-05,
3007
+ "loss": 1.1518,
3008
+ "step": 9820
3009
+ },
3010
+ {
3011
+ "epoch": 2.72,
3012
+ "learning_rate": 1.6025552486187845e-05,
3013
+ "loss": 1.1603,
3014
+ "step": 9840
3015
+ },
3016
+ {
3017
+ "epoch": 2.72,
3018
+ "learning_rate": 1.5956491712707184e-05,
3019
+ "loss": 1.1584,
3020
+ "step": 9860
3021
+ },
3022
+ {
3023
+ "epoch": 2.73,
3024
+ "learning_rate": 1.588743093922652e-05,
3025
+ "loss": 1.1569,
3026
+ "step": 9880
3027
+ },
3028
+ {
3029
+ "epoch": 2.73,
3030
+ "learning_rate": 1.5818370165745858e-05,
3031
+ "loss": 1.1575,
3032
+ "step": 9900
3033
+ },
3034
+ {
3035
+ "epoch": 2.74,
3036
+ "learning_rate": 1.5749309392265193e-05,
3037
+ "loss": 1.153,
3038
+ "step": 9920
3039
+ },
3040
+ {
3041
+ "epoch": 2.75,
3042
+ "learning_rate": 1.568024861878453e-05,
3043
+ "loss": 1.1521,
3044
+ "step": 9940
3045
+ },
3046
+ {
3047
+ "epoch": 2.75,
3048
+ "learning_rate": 1.5611187845303867e-05,
3049
+ "loss": 1.1549,
3050
+ "step": 9960
3051
+ },
3052
+ {
3053
+ "epoch": 2.76,
3054
+ "learning_rate": 1.5542127071823205e-05,
3055
+ "loss": 1.1564,
3056
+ "step": 9980
3057
+ },
3058
+ {
3059
+ "epoch": 2.76,
3060
+ "learning_rate": 1.547306629834254e-05,
3061
+ "loss": 1.154,
3062
+ "step": 10000
3063
+ },
3064
+ {
3065
+ "epoch": 2.77,
3066
+ "learning_rate": 1.540400552486188e-05,
3067
+ "loss": 1.1477,
3068
+ "step": 10020
3069
+ },
3070
+ {
3071
+ "epoch": 2.77,
3072
+ "learning_rate": 1.5334944751381218e-05,
3073
+ "loss": 1.1532,
3074
+ "step": 10040
3075
+ },
3076
+ {
3077
+ "epoch": 2.78,
3078
+ "learning_rate": 1.5265883977900553e-05,
3079
+ "loss": 1.1548,
3080
+ "step": 10060
3081
+ },
3082
+ {
3083
+ "epoch": 2.78,
3084
+ "learning_rate": 1.5196823204419892e-05,
3085
+ "loss": 1.1468,
3086
+ "step": 10080
3087
+ },
3088
+ {
3089
+ "epoch": 2.79,
3090
+ "learning_rate": 1.5127762430939227e-05,
3091
+ "loss": 1.1535,
3092
+ "step": 10100
3093
+ },
3094
+ {
3095
+ "epoch": 2.8,
3096
+ "learning_rate": 1.5058701657458566e-05,
3097
+ "loss": 1.161,
3098
+ "step": 10120
3099
+ },
3100
+ {
3101
+ "epoch": 2.8,
3102
+ "learning_rate": 1.4989640883977901e-05,
3103
+ "loss": 1.1419,
3104
+ "step": 10140
3105
+ },
3106
+ {
3107
+ "epoch": 2.81,
3108
+ "learning_rate": 1.4920580110497236e-05,
3109
+ "loss": 1.156,
3110
+ "step": 10160
3111
+ },
3112
+ {
3113
+ "epoch": 2.81,
3114
+ "learning_rate": 1.4851519337016575e-05,
3115
+ "loss": 1.1511,
3116
+ "step": 10180
3117
+ },
3118
+ {
3119
+ "epoch": 2.82,
3120
+ "learning_rate": 1.4782458563535912e-05,
3121
+ "loss": 1.1498,
3122
+ "step": 10200
3123
+ },
3124
+ {
3125
+ "epoch": 2.82,
3126
+ "learning_rate": 1.471339779005525e-05,
3127
+ "loss": 1.1512,
3128
+ "step": 10220
3129
+ },
3130
+ {
3131
+ "epoch": 2.83,
3132
+ "learning_rate": 1.4644337016574586e-05,
3133
+ "loss": 1.1495,
3134
+ "step": 10240
3135
+ },
3136
+ {
3137
+ "epoch": 2.83,
3138
+ "learning_rate": 1.4575276243093924e-05,
3139
+ "loss": 1.1499,
3140
+ "step": 10260
3141
+ },
3142
+ {
3143
+ "epoch": 2.84,
3144
+ "learning_rate": 1.450621546961326e-05,
3145
+ "loss": 1.1561,
3146
+ "step": 10280
3147
+ },
3148
+ {
3149
+ "epoch": 2.85,
3150
+ "learning_rate": 1.4437154696132598e-05,
3151
+ "loss": 1.1448,
3152
+ "step": 10300
3153
+ },
3154
+ {
3155
+ "epoch": 2.85,
3156
+ "learning_rate": 1.4368093922651935e-05,
3157
+ "loss": 1.1534,
3158
+ "step": 10320
3159
+ },
3160
+ {
3161
+ "epoch": 2.86,
3162
+ "learning_rate": 1.429903314917127e-05,
3163
+ "loss": 1.1473,
3164
+ "step": 10340
3165
+ },
3166
+ {
3167
+ "epoch": 2.86,
3168
+ "learning_rate": 1.422997237569061e-05,
3169
+ "loss": 1.1448,
3170
+ "step": 10360
3171
+ },
3172
+ {
3173
+ "epoch": 2.87,
3174
+ "learning_rate": 1.4160911602209944e-05,
3175
+ "loss": 1.1549,
3176
+ "step": 10380
3177
+ },
3178
+ {
3179
+ "epoch": 2.87,
3180
+ "learning_rate": 1.4091850828729283e-05,
3181
+ "loss": 1.1463,
3182
+ "step": 10400
3183
+ },
3184
+ {
3185
+ "epoch": 2.88,
3186
+ "learning_rate": 1.4022790055248618e-05,
3187
+ "loss": 1.1513,
3188
+ "step": 10420
3189
+ },
3190
+ {
3191
+ "epoch": 2.88,
3192
+ "learning_rate": 1.3953729281767957e-05,
3193
+ "loss": 1.1527,
3194
+ "step": 10440
3195
+ },
3196
+ {
3197
+ "epoch": 2.89,
3198
+ "learning_rate": 1.3884668508287294e-05,
3199
+ "loss": 1.1476,
3200
+ "step": 10460
3201
+ },
3202
+ {
3203
+ "epoch": 2.89,
3204
+ "learning_rate": 1.381560773480663e-05,
3205
+ "loss": 1.1474,
3206
+ "step": 10480
3207
+ },
3208
+ {
3209
+ "epoch": 2.9,
3210
+ "learning_rate": 1.3746546961325968e-05,
3211
+ "loss": 1.1451,
3212
+ "step": 10500
3213
+ },
3214
+ {
3215
+ "epoch": 2.9,
3216
+ "eval_validation_accuracy": 0.0568980947728383,
3217
+ "eval_validation_loss": 1.1791410446166992,
3218
+ "eval_validation_runtime": 4192.8215,
3219
+ "eval_validation_samples_per_second": 0.596,
3220
+ "eval_validation_steps_per_second": 0.019,
3221
+ "step": 10500
3222
+ },
3223
+ {
3224
+ "epoch": 2.91,
3225
+ "learning_rate": 1.3677486187845303e-05,
3226
+ "loss": 1.1604,
3227
+ "step": 10520
3228
+ },
3229
+ {
3230
+ "epoch": 2.91,
3231
+ "learning_rate": 1.3608425414364642e-05,
3232
+ "loss": 1.1568,
3233
+ "step": 10540
3234
+ },
3235
+ {
3236
+ "epoch": 2.92,
3237
+ "learning_rate": 1.3539364640883979e-05,
3238
+ "loss": 1.1506,
3239
+ "step": 10560
3240
+ },
3241
+ {
3242
+ "epoch": 2.92,
3243
+ "learning_rate": 1.3470303867403317e-05,
3244
+ "loss": 1.1509,
3245
+ "step": 10580
3246
+ },
3247
+ {
3248
+ "epoch": 2.93,
3249
+ "learning_rate": 1.3401243093922653e-05,
3250
+ "loss": 1.1569,
3251
+ "step": 10600
3252
+ },
3253
+ {
3254
+ "epoch": 2.93,
3255
+ "learning_rate": 1.3332182320441988e-05,
3256
+ "loss": 1.1592,
3257
+ "step": 10620
3258
+ },
3259
+ {
3260
+ "epoch": 2.94,
3261
+ "learning_rate": 1.3263121546961327e-05,
3262
+ "loss": 1.1508,
3263
+ "step": 10640
3264
+ },
3265
+ {
3266
+ "epoch": 2.94,
3267
+ "learning_rate": 1.3194060773480662e-05,
3268
+ "loss": 1.1521,
3269
+ "step": 10660
3270
+ },
3271
+ {
3272
+ "epoch": 2.95,
3273
+ "learning_rate": 1.3125e-05,
3274
+ "loss": 1.1576,
3275
+ "step": 10680
3276
+ },
3277
+ {
3278
+ "epoch": 2.96,
3279
+ "learning_rate": 1.3055939226519338e-05,
3280
+ "loss": 1.151,
3281
+ "step": 10700
3282
+ },
3283
+ {
3284
+ "epoch": 2.96,
3285
+ "learning_rate": 1.2986878453038676e-05,
3286
+ "loss": 1.1466,
3287
+ "step": 10720
3288
+ },
3289
+ {
3290
+ "epoch": 2.97,
3291
+ "learning_rate": 1.2917817679558011e-05,
3292
+ "loss": 1.1481,
3293
+ "step": 10740
3294
+ },
3295
+ {
3296
+ "epoch": 2.97,
3297
+ "learning_rate": 1.284875690607735e-05,
3298
+ "loss": 1.1483,
3299
+ "step": 10760
3300
+ },
3301
+ {
3302
+ "epoch": 2.98,
3303
+ "learning_rate": 1.2779696132596685e-05,
3304
+ "loss": 1.1484,
3305
+ "step": 10780
3306
+ },
3307
+ {
3308
+ "epoch": 2.98,
3309
+ "learning_rate": 1.2710635359116022e-05,
3310
+ "loss": 1.1515,
3311
+ "step": 10800
3312
+ },
3313
+ {
3314
+ "epoch": 2.99,
3315
+ "learning_rate": 1.2641574585635361e-05,
3316
+ "loss": 1.149,
3317
+ "step": 10820
3318
+ },
3319
+ {
3320
+ "epoch": 2.99,
3321
+ "learning_rate": 1.2572513812154696e-05,
3322
+ "loss": 1.1494,
3323
+ "step": 10840
3324
+ },
3325
+ {
3326
+ "epoch": 3.0,
3327
+ "learning_rate": 1.2503453038674035e-05,
3328
+ "loss": 1.1484,
3329
+ "step": 10860
3330
+ },
3331
+ {
3332
+ "epoch": 3.01,
3333
+ "learning_rate": 1.243439226519337e-05,
3334
+ "loss": 1.1214,
3335
+ "step": 10880
3336
+ },
3337
+ {
3338
+ "epoch": 3.01,
3339
+ "learning_rate": 1.2365331491712707e-05,
3340
+ "loss": 1.1231,
3341
+ "step": 10900
3342
+ },
3343
+ {
3344
+ "epoch": 3.02,
3345
+ "learning_rate": 1.2296270718232044e-05,
3346
+ "loss": 1.1282,
3347
+ "step": 10920
3348
+ },
3349
+ {
3350
+ "epoch": 3.02,
3351
+ "learning_rate": 1.2227209944751383e-05,
3352
+ "loss": 1.1277,
3353
+ "step": 10940
3354
+ },
3355
+ {
3356
+ "epoch": 3.03,
3357
+ "learning_rate": 1.215814917127072e-05,
3358
+ "loss": 1.1402,
3359
+ "step": 10960
3360
+ },
3361
+ {
3362
+ "epoch": 3.03,
3363
+ "learning_rate": 1.2089088397790057e-05,
3364
+ "loss": 1.1381,
3365
+ "step": 10980
3366
+ },
3367
+ {
3368
+ "epoch": 3.04,
3369
+ "learning_rate": 1.2020027624309394e-05,
3370
+ "loss": 1.1265,
3371
+ "step": 11000
3372
+ },
3373
+ {
3374
+ "epoch": 3.04,
3375
+ "learning_rate": 1.1950966850828729e-05,
3376
+ "loss": 1.1281,
3377
+ "step": 11020
3378
+ },
3379
+ {
3380
+ "epoch": 3.05,
3381
+ "learning_rate": 1.1881906077348066e-05,
3382
+ "loss": 1.1291,
3383
+ "step": 11040
3384
+ },
3385
+ {
3386
+ "epoch": 3.06,
3387
+ "learning_rate": 1.1812845303867404e-05,
3388
+ "loss": 1.1359,
3389
+ "step": 11060
3390
+ },
3391
+ {
3392
+ "epoch": 3.06,
3393
+ "learning_rate": 1.1743784530386741e-05,
3394
+ "loss": 1.1254,
3395
+ "step": 11080
3396
+ },
3397
+ {
3398
+ "epoch": 3.07,
3399
+ "learning_rate": 1.1674723756906078e-05,
3400
+ "loss": 1.1372,
3401
+ "step": 11100
3402
+ },
3403
+ {
3404
+ "epoch": 3.07,
3405
+ "learning_rate": 1.1605662983425415e-05,
3406
+ "loss": 1.1399,
3407
+ "step": 11120
3408
+ },
3409
+ {
3410
+ "epoch": 3.08,
3411
+ "learning_rate": 1.1536602209944752e-05,
3412
+ "loss": 1.1284,
3413
+ "step": 11140
3414
+ },
3415
+ {
3416
+ "epoch": 3.08,
3417
+ "learning_rate": 1.146754143646409e-05,
3418
+ "loss": 1.1254,
3419
+ "step": 11160
3420
+ },
3421
+ {
3422
+ "epoch": 3.09,
3423
+ "learning_rate": 1.1398480662983426e-05,
3424
+ "loss": 1.1288,
3425
+ "step": 11180
3426
+ },
3427
+ {
3428
+ "epoch": 3.09,
3429
+ "learning_rate": 1.1329419889502763e-05,
3430
+ "loss": 1.1285,
3431
+ "step": 11200
3432
+ },
3433
+ {
3434
+ "epoch": 3.1,
3435
+ "learning_rate": 1.12603591160221e-05,
3436
+ "loss": 1.1259,
3437
+ "step": 11220
3438
+ },
3439
+ {
3440
+ "epoch": 3.1,
3441
+ "learning_rate": 1.1191298342541437e-05,
3442
+ "loss": 1.1295,
3443
+ "step": 11240
3444
+ },
3445
+ {
3446
+ "epoch": 3.11,
3447
+ "learning_rate": 1.1122237569060774e-05,
3448
+ "loss": 1.1193,
3449
+ "step": 11260
3450
+ },
3451
+ {
3452
+ "epoch": 3.12,
3453
+ "learning_rate": 1.1053176795580111e-05,
3454
+ "loss": 1.1344,
3455
+ "step": 11280
3456
+ },
3457
+ {
3458
+ "epoch": 3.12,
3459
+ "learning_rate": 1.0984116022099448e-05,
3460
+ "loss": 1.1316,
3461
+ "step": 11300
3462
+ },
3463
+ {
3464
+ "epoch": 3.13,
3465
+ "learning_rate": 1.0915055248618785e-05,
3466
+ "loss": 1.1275,
3467
+ "step": 11320
3468
+ },
3469
+ {
3470
+ "epoch": 3.13,
3471
+ "learning_rate": 1.0845994475138122e-05,
3472
+ "loss": 1.1334,
3473
+ "step": 11340
3474
+ },
3475
+ {
3476
+ "epoch": 3.14,
3477
+ "learning_rate": 1.0776933701657459e-05,
3478
+ "loss": 1.1347,
3479
+ "step": 11360
3480
+ },
3481
+ {
3482
+ "epoch": 3.14,
3483
+ "learning_rate": 1.0707872928176796e-05,
3484
+ "loss": 1.1372,
3485
+ "step": 11380
3486
+ },
3487
+ {
3488
+ "epoch": 3.15,
3489
+ "learning_rate": 1.0638812154696133e-05,
3490
+ "loss": 1.1316,
3491
+ "step": 11400
3492
+ },
3493
+ {
3494
+ "epoch": 3.15,
3495
+ "learning_rate": 1.056975138121547e-05,
3496
+ "loss": 1.1325,
3497
+ "step": 11420
3498
+ },
3499
+ {
3500
+ "epoch": 3.16,
3501
+ "learning_rate": 1.0500690607734807e-05,
3502
+ "loss": 1.1321,
3503
+ "step": 11440
3504
+ },
3505
+ {
3506
+ "epoch": 3.17,
3507
+ "learning_rate": 1.0431629834254145e-05,
3508
+ "loss": 1.1351,
3509
+ "step": 11460
3510
+ },
3511
+ {
3512
+ "epoch": 3.17,
3513
+ "learning_rate": 1.0362569060773482e-05,
3514
+ "loss": 1.1345,
3515
+ "step": 11480
3516
+ },
3517
+ {
3518
+ "epoch": 3.18,
3519
+ "learning_rate": 1.0293508287292817e-05,
3520
+ "loss": 1.1245,
3521
+ "step": 11500
3522
+ },
3523
+ {
3524
+ "epoch": 3.18,
3525
+ "learning_rate": 1.0224447513812154e-05,
3526
+ "loss": 1.1249,
3527
+ "step": 11520
3528
+ },
3529
+ {
3530
+ "epoch": 3.19,
3531
+ "learning_rate": 1.0155386740331491e-05,
3532
+ "loss": 1.1274,
3533
+ "step": 11540
3534
+ },
3535
+ {
3536
+ "epoch": 3.19,
3537
+ "learning_rate": 1.008632596685083e-05,
3538
+ "loss": 1.1315,
3539
+ "step": 11560
3540
+ },
3541
+ {
3542
+ "epoch": 3.2,
3543
+ "learning_rate": 1.0017265193370167e-05,
3544
+ "loss": 1.1261,
3545
+ "step": 11580
3546
+ },
3547
+ {
3548
+ "epoch": 3.2,
3549
+ "learning_rate": 9.948204419889504e-06,
3550
+ "loss": 1.1276,
3551
+ "step": 11600
3552
+ },
3553
+ {
3554
+ "epoch": 3.21,
3555
+ "learning_rate": 9.879143646408841e-06,
3556
+ "loss": 1.1312,
3557
+ "step": 11620
3558
+ },
3559
+ {
3560
+ "epoch": 3.22,
3561
+ "learning_rate": 9.810082872928178e-06,
3562
+ "loss": 1.1353,
3563
+ "step": 11640
3564
+ },
3565
+ {
3566
+ "epoch": 3.22,
3567
+ "learning_rate": 9.741022099447513e-06,
3568
+ "loss": 1.1243,
3569
+ "step": 11660
3570
+ },
3571
+ {
3572
+ "epoch": 3.23,
3573
+ "learning_rate": 9.671961325966852e-06,
3574
+ "loss": 1.1343,
3575
+ "step": 11680
3576
+ },
3577
+ {
3578
+ "epoch": 3.23,
3579
+ "learning_rate": 9.602900552486189e-06,
3580
+ "loss": 1.1238,
3581
+ "step": 11700
3582
+ },
3583
+ {
3584
+ "epoch": 3.24,
3585
+ "learning_rate": 9.533839779005526e-06,
3586
+ "loss": 1.1315,
3587
+ "step": 11720
3588
+ },
3589
+ {
3590
+ "epoch": 3.24,
3591
+ "learning_rate": 9.464779005524863e-06,
3592
+ "loss": 1.1358,
3593
+ "step": 11740
3594
+ },
3595
+ {
3596
+ "epoch": 3.25,
3597
+ "learning_rate": 9.3957182320442e-06,
3598
+ "loss": 1.1229,
3599
+ "step": 11760
3600
+ },
3601
+ {
3602
+ "epoch": 3.25,
3603
+ "learning_rate": 9.326657458563537e-06,
3604
+ "loss": 1.1281,
3605
+ "step": 11780
3606
+ },
3607
+ {
3608
+ "epoch": 3.26,
3609
+ "learning_rate": 9.257596685082874e-06,
3610
+ "loss": 1.1318,
3611
+ "step": 11800
3612
+ },
3613
+ {
3614
+ "epoch": 3.26,
3615
+ "learning_rate": 9.18853591160221e-06,
3616
+ "loss": 1.1232,
3617
+ "step": 11820
3618
+ },
3619
+ {
3620
+ "epoch": 3.27,
3621
+ "learning_rate": 9.119475138121547e-06,
3622
+ "loss": 1.1234,
3623
+ "step": 11840
3624
+ },
3625
+ {
3626
+ "epoch": 3.28,
3627
+ "learning_rate": 9.050414364640884e-06,
3628
+ "loss": 1.1334,
3629
+ "step": 11860
3630
+ },
3631
+ {
3632
+ "epoch": 3.28,
3633
+ "learning_rate": 8.981353591160221e-06,
3634
+ "loss": 1.1309,
3635
+ "step": 11880
3636
+ },
3637
+ {
3638
+ "epoch": 3.29,
3639
+ "learning_rate": 8.912292817679558e-06,
3640
+ "loss": 1.1335,
3641
+ "step": 11900
3642
+ },
3643
+ {
3644
+ "epoch": 3.29,
3645
+ "learning_rate": 8.843232044198895e-06,
3646
+ "loss": 1.1322,
3647
+ "step": 11920
3648
+ },
3649
+ {
3650
+ "epoch": 3.3,
3651
+ "learning_rate": 8.774171270718232e-06,
3652
+ "loss": 1.1206,
3653
+ "step": 11940
3654
+ },
3655
+ {
3656
+ "epoch": 3.3,
3657
+ "learning_rate": 8.70511049723757e-06,
3658
+ "loss": 1.1333,
3659
+ "step": 11960
3660
+ },
3661
+ {
3662
+ "epoch": 3.31,
3663
+ "learning_rate": 8.636049723756906e-06,
3664
+ "loss": 1.1361,
3665
+ "step": 11980
3666
+ },
3667
+ {
3668
+ "epoch": 3.31,
3669
+ "learning_rate": 8.566988950276243e-06,
3670
+ "loss": 1.1267,
3671
+ "step": 12000
3672
+ },
3673
+ {
3674
+ "epoch": 3.31,
3675
+ "eval_validation_accuracy": 0.0569209574987787,
3676
+ "eval_validation_loss": 1.1777355670928955,
3677
+ "eval_validation_runtime": 3858.1389,
3678
+ "eval_validation_samples_per_second": 0.648,
3679
+ "eval_validation_steps_per_second": 0.02,
3680
+ "step": 12000
3681
+ },
3682
+ {
3683
+ "epoch": 3.32,
3684
+ "learning_rate": 8.512841756420879e-06,
3685
+ "loss": 1.119,
3686
+ "step": 12020
3687
+ },
3688
+ {
3689
+ "epoch": 3.33,
3690
+ "learning_rate": 8.447252140292737e-06,
3691
+ "loss": 1.1313,
3692
+ "step": 12040
3693
+ },
3694
+ {
3695
+ "epoch": 3.33,
3696
+ "learning_rate": 8.37821043910522e-06,
3697
+ "loss": 1.1329,
3698
+ "step": 12060
3699
+ },
3700
+ {
3701
+ "epoch": 3.34,
3702
+ "learning_rate": 8.309168737917703e-06,
3703
+ "loss": 1.1308,
3704
+ "step": 12080
3705
+ },
3706
+ {
3707
+ "epoch": 3.34,
3708
+ "learning_rate": 8.240127036730186e-06,
3709
+ "loss": 1.1366,
3710
+ "step": 12100
3711
+ },
3712
+ {
3713
+ "epoch": 3.35,
3714
+ "learning_rate": 8.171085335542667e-06,
3715
+ "loss": 1.1307,
3716
+ "step": 12120
3717
+ },
3718
+ {
3719
+ "epoch": 3.35,
3720
+ "learning_rate": 8.102043634355152e-06,
3721
+ "loss": 1.1324,
3722
+ "step": 12140
3723
+ },
3724
+ {
3725
+ "epoch": 3.36,
3726
+ "learning_rate": 8.033001933167633e-06,
3727
+ "loss": 1.1218,
3728
+ "step": 12160
3729
+ },
3730
+ {
3731
+ "epoch": 3.36,
3732
+ "learning_rate": 7.963960231980116e-06,
3733
+ "loss": 1.1272,
3734
+ "step": 12180
3735
+ },
3736
+ {
3737
+ "epoch": 3.37,
3738
+ "learning_rate": 7.894918530792599e-06,
3739
+ "loss": 1.1233,
3740
+ "step": 12200
3741
+ },
3742
+ {
3743
+ "epoch": 3.37,
3744
+ "learning_rate": 7.825876829605082e-06,
3745
+ "loss": 1.1307,
3746
+ "step": 12220
3747
+ },
3748
+ {
3749
+ "epoch": 3.38,
3750
+ "learning_rate": 7.756835128417565e-06,
3751
+ "loss": 1.1303,
3752
+ "step": 12240
3753
+ },
3754
+ {
3755
+ "epoch": 3.39,
3756
+ "learning_rate": 7.687793427230048e-06,
3757
+ "loss": 1.1308,
3758
+ "step": 12260
3759
+ },
3760
+ {
3761
+ "epoch": 3.39,
3762
+ "learning_rate": 7.618751726042531e-06,
3763
+ "loss": 1.1223,
3764
+ "step": 12280
3765
+ },
3766
+ {
3767
+ "epoch": 3.4,
3768
+ "learning_rate": 7.549710024855013e-06,
3769
+ "loss": 1.1238,
3770
+ "step": 12300
3771
+ },
3772
+ {
3773
+ "epoch": 3.4,
3774
+ "learning_rate": 7.480668323667496e-06,
3775
+ "loss": 1.1288,
3776
+ "step": 12320
3777
+ },
3778
+ {
3779
+ "epoch": 3.41,
3780
+ "learning_rate": 7.411626622479978e-06,
3781
+ "loss": 1.1397,
3782
+ "step": 12340
3783
+ },
3784
+ {
3785
+ "epoch": 3.41,
3786
+ "learning_rate": 7.3425849212924615e-06,
3787
+ "loss": 1.1284,
3788
+ "step": 12360
3789
+ },
3790
+ {
3791
+ "epoch": 3.42,
3792
+ "learning_rate": 7.2735432201049436e-06,
3793
+ "loss": 1.1339,
3794
+ "step": 12380
3795
+ },
3796
+ {
3797
+ "epoch": 3.42,
3798
+ "learning_rate": 7.2045015189174265e-06,
3799
+ "loss": 1.1286,
3800
+ "step": 12400
3801
+ },
3802
+ {
3803
+ "epoch": 3.43,
3804
+ "learning_rate": 7.1354598177299086e-06,
3805
+ "loss": 1.1287,
3806
+ "step": 12420
3807
+ },
3808
+ {
3809
+ "epoch": 3.44,
3810
+ "learning_rate": 7.066418116542392e-06,
3811
+ "loss": 1.1277,
3812
+ "step": 12440
3813
+ },
3814
+ {
3815
+ "epoch": 3.44,
3816
+ "learning_rate": 6.997376415354874e-06,
3817
+ "loss": 1.1333,
3818
+ "step": 12460
3819
+ },
3820
+ {
3821
+ "epoch": 3.45,
3822
+ "learning_rate": 6.928334714167357e-06,
3823
+ "loss": 1.1332,
3824
+ "step": 12480
3825
+ },
3826
+ {
3827
+ "epoch": 3.45,
3828
+ "learning_rate": 6.859293012979841e-06,
3829
+ "loss": 1.1307,
3830
+ "step": 12500
3831
+ },
3832
+ {
3833
+ "epoch": 3.46,
3834
+ "learning_rate": 6.790251311792322e-06,
3835
+ "loss": 1.1345,
3836
+ "step": 12520
3837
+ },
3838
+ {
3839
+ "epoch": 3.46,
3840
+ "learning_rate": 6.721209610604806e-06,
3841
+ "loss": 1.1289,
3842
+ "step": 12540
3843
+ },
3844
+ {
3845
+ "epoch": 3.47,
3846
+ "learning_rate": 6.652167909417288e-06,
3847
+ "loss": 1.1281,
3848
+ "step": 12560
3849
+ },
3850
+ {
3851
+ "epoch": 3.47,
3852
+ "learning_rate": 6.583126208229771e-06,
3853
+ "loss": 1.1329,
3854
+ "step": 12580
3855
+ },
3856
+ {
3857
+ "epoch": 3.48,
3858
+ "learning_rate": 6.514084507042253e-06,
3859
+ "loss": 1.1175,
3860
+ "step": 12600
3861
+ },
3862
+ {
3863
+ "epoch": 3.49,
3864
+ "learning_rate": 6.445042805854737e-06,
3865
+ "loss": 1.1262,
3866
+ "step": 12620
3867
+ },
3868
+ {
3869
+ "epoch": 3.49,
3870
+ "learning_rate": 6.376001104667219e-06,
3871
+ "loss": 1.1296,
3872
+ "step": 12640
3873
+ },
3874
+ {
3875
+ "epoch": 3.5,
3876
+ "learning_rate": 6.306959403479702e-06,
3877
+ "loss": 1.1193,
3878
+ "step": 12660
3879
+ },
3880
+ {
3881
+ "epoch": 3.5,
3882
+ "learning_rate": 6.237917702292185e-06,
3883
+ "loss": 1.1256,
3884
+ "step": 12680
3885
+ },
3886
+ {
3887
+ "epoch": 3.51,
3888
+ "learning_rate": 6.168876001104668e-06,
3889
+ "loss": 1.1308,
3890
+ "step": 12700
3891
+ },
3892
+ {
3893
+ "epoch": 3.51,
3894
+ "learning_rate": 6.09983429991715e-06,
3895
+ "loss": 1.1341,
3896
+ "step": 12720
3897
+ },
3898
+ {
3899
+ "epoch": 3.52,
3900
+ "learning_rate": 6.030792598729633e-06,
3901
+ "loss": 1.1321,
3902
+ "step": 12740
3903
+ },
3904
+ {
3905
+ "epoch": 3.52,
3906
+ "learning_rate": 5.961750897542116e-06,
3907
+ "loss": 1.128,
3908
+ "step": 12760
3909
+ },
3910
+ {
3911
+ "epoch": 3.53,
3912
+ "learning_rate": 5.892709196354598e-06,
3913
+ "loss": 1.1271,
3914
+ "step": 12780
3915
+ },
3916
+ {
3917
+ "epoch": 3.53,
3918
+ "learning_rate": 5.823667495167081e-06,
3919
+ "loss": 1.1327,
3920
+ "step": 12800
3921
+ },
3922
+ {
3923
+ "epoch": 3.54,
3924
+ "learning_rate": 5.754625793979564e-06,
3925
+ "loss": 1.1255,
3926
+ "step": 12820
3927
+ },
3928
+ {
3929
+ "epoch": 3.55,
3930
+ "learning_rate": 5.685584092792047e-06,
3931
+ "loss": 1.1373,
3932
+ "step": 12840
3933
+ },
3934
+ {
3935
+ "epoch": 3.55,
3936
+ "learning_rate": 5.61654239160453e-06,
3937
+ "loss": 1.1212,
3938
+ "step": 12860
3939
+ },
3940
+ {
3941
+ "epoch": 3.56,
3942
+ "learning_rate": 5.5475006904170125e-06,
3943
+ "loss": 1.1303,
3944
+ "step": 12880
3945
+ },
3946
+ {
3947
+ "epoch": 3.56,
3948
+ "learning_rate": 5.4784589892294955e-06,
3949
+ "loss": 1.1241,
3950
+ "step": 12900
3951
+ },
3952
+ {
3953
+ "epoch": 3.57,
3954
+ "learning_rate": 5.4094172880419775e-06,
3955
+ "loss": 1.1265,
3956
+ "step": 12920
3957
+ },
3958
+ {
3959
+ "epoch": 3.57,
3960
+ "learning_rate": 5.3403755868544605e-06,
3961
+ "loss": 1.1099,
3962
+ "step": 12940
3963
+ },
3964
+ {
3965
+ "epoch": 3.58,
3966
+ "learning_rate": 5.271333885666943e-06,
3967
+ "loss": 1.128,
3968
+ "step": 12960
3969
+ },
3970
+ {
3971
+ "epoch": 3.58,
3972
+ "learning_rate": 5.2022921844794255e-06,
3973
+ "loss": 1.117,
3974
+ "step": 12980
3975
+ },
3976
+ {
3977
+ "epoch": 3.59,
3978
+ "learning_rate": 5.133250483291908e-06,
3979
+ "loss": 1.1224,
3980
+ "step": 13000
3981
+ },
3982
+ {
3983
+ "epoch": 3.6,
3984
+ "learning_rate": 5.064208782104391e-06,
3985
+ "loss": 1.1249,
3986
+ "step": 13020
3987
+ },
3988
+ {
3989
+ "epoch": 3.6,
3990
+ "learning_rate": 4.995167080916873e-06,
3991
+ "loss": 1.1282,
3992
+ "step": 13040
3993
+ },
3994
+ {
3995
+ "epoch": 3.61,
3996
+ "learning_rate": 4.926125379729356e-06,
3997
+ "loss": 1.1242,
3998
+ "step": 13060
3999
+ },
4000
+ {
4001
+ "epoch": 3.61,
4002
+ "learning_rate": 4.85708367854184e-06,
4003
+ "loss": 1.1241,
4004
+ "step": 13080
4005
+ },
4006
+ {
4007
+ "epoch": 3.62,
4008
+ "learning_rate": 4.788041977354322e-06,
4009
+ "loss": 1.1212,
4010
+ "step": 13100
4011
+ },
4012
+ {
4013
+ "epoch": 3.62,
4014
+ "learning_rate": 4.719000276166805e-06,
4015
+ "loss": 1.1248,
4016
+ "step": 13120
4017
+ },
4018
+ {
4019
+ "epoch": 3.63,
4020
+ "learning_rate": 4.649958574979288e-06,
4021
+ "loss": 1.1305,
4022
+ "step": 13140
4023
+ },
4024
+ {
4025
+ "epoch": 3.63,
4026
+ "learning_rate": 4.58091687379177e-06,
4027
+ "loss": 1.1375,
4028
+ "step": 13160
4029
+ },
4030
+ {
4031
+ "epoch": 3.64,
4032
+ "learning_rate": 4.511875172604253e-06,
4033
+ "loss": 1.1184,
4034
+ "step": 13180
4035
+ },
4036
+ {
4037
+ "epoch": 3.65,
4038
+ "learning_rate": 4.442833471416736e-06,
4039
+ "loss": 1.1294,
4040
+ "step": 13200
4041
+ },
4042
+ {
4043
+ "epoch": 3.65,
4044
+ "learning_rate": 4.373791770229219e-06,
4045
+ "loss": 1.1304,
4046
+ "step": 13220
4047
+ },
4048
+ {
4049
+ "epoch": 3.66,
4050
+ "learning_rate": 4.304750069041701e-06,
4051
+ "loss": 1.1247,
4052
+ "step": 13240
4053
+ },
4054
+ {
4055
+ "epoch": 3.66,
4056
+ "learning_rate": 4.235708367854184e-06,
4057
+ "loss": 1.1344,
4058
+ "step": 13260
4059
+ },
4060
+ {
4061
+ "epoch": 3.67,
4062
+ "learning_rate": 4.166666666666667e-06,
4063
+ "loss": 1.1284,
4064
+ "step": 13280
4065
+ },
4066
+ {
4067
+ "epoch": 3.67,
4068
+ "learning_rate": 4.097624965479149e-06,
4069
+ "loss": 1.1289,
4070
+ "step": 13300
4071
+ },
4072
+ {
4073
+ "epoch": 3.68,
4074
+ "learning_rate": 4.028583264291632e-06,
4075
+ "loss": 1.1179,
4076
+ "step": 13320
4077
+ },
4078
+ {
4079
+ "epoch": 3.68,
4080
+ "learning_rate": 3.959541563104116e-06,
4081
+ "loss": 1.1256,
4082
+ "step": 13340
4083
+ },
4084
+ {
4085
+ "epoch": 3.69,
4086
+ "learning_rate": 3.890499861916598e-06,
4087
+ "loss": 1.1258,
4088
+ "step": 13360
4089
+ },
4090
+ {
4091
+ "epoch": 3.7,
4092
+ "learning_rate": 3.821458160729081e-06,
4093
+ "loss": 1.1317,
4094
+ "step": 13380
4095
+ },
4096
+ {
4097
+ "epoch": 3.7,
4098
+ "learning_rate": 3.7524164595415636e-06,
4099
+ "loss": 1.1232,
4100
+ "step": 13400
4101
+ },
4102
+ {
4103
+ "epoch": 3.71,
4104
+ "learning_rate": 3.683374758354046e-06,
4105
+ "loss": 1.1293,
4106
+ "step": 13420
4107
+ },
4108
+ {
4109
+ "epoch": 3.71,
4110
+ "learning_rate": 3.6143330571665286e-06,
4111
+ "loss": 1.1266,
4112
+ "step": 13440
4113
+ },
4114
+ {
4115
+ "epoch": 3.72,
4116
+ "learning_rate": 3.5452913559790115e-06,
4117
+ "loss": 1.1317,
4118
+ "step": 13460
4119
+ },
4120
+ {
4121
+ "epoch": 3.72,
4122
+ "learning_rate": 3.476249654791494e-06,
4123
+ "loss": 1.1345,
4124
+ "step": 13480
4125
+ },
4126
+ {
4127
+ "epoch": 3.73,
4128
+ "learning_rate": 3.407207953603977e-06,
4129
+ "loss": 1.1195,
4130
+ "step": 13500
4131
+ },
4132
+ {
4133
+ "epoch": 3.73,
4134
+ "learning_rate": 3.3381662524164595e-06,
4135
+ "loss": 1.135,
4136
+ "step": 13520
4137
+ },
4138
+ {
4139
+ "epoch": 3.74,
4140
+ "learning_rate": 3.269124551228942e-06,
4141
+ "loss": 1.1401,
4142
+ "step": 13540
4143
+ },
4144
+ {
4145
+ "epoch": 3.74,
4146
+ "learning_rate": 3.200082850041425e-06,
4147
+ "loss": 1.1335,
4148
+ "step": 13560
4149
+ },
4150
+ {
4151
+ "epoch": 3.75,
4152
+ "learning_rate": 3.1310411488539083e-06,
4153
+ "loss": 1.1305,
4154
+ "step": 13580
4155
+ },
4156
+ {
4157
+ "epoch": 3.76,
4158
+ "learning_rate": 3.0619994476663903e-06,
4159
+ "loss": 1.1276,
4160
+ "step": 13600
4161
+ },
4162
+ {
4163
+ "epoch": 3.76,
4164
+ "learning_rate": 2.9929577464788733e-06,
4165
+ "loss": 1.1257,
4166
+ "step": 13620
4167
+ },
4168
+ {
4169
+ "epoch": 3.77,
4170
+ "learning_rate": 2.923916045291356e-06,
4171
+ "loss": 1.1228,
4172
+ "step": 13640
4173
+ },
4174
+ {
4175
+ "epoch": 3.77,
4176
+ "learning_rate": 2.854874344103839e-06,
4177
+ "loss": 1.1342,
4178
+ "step": 13660
4179
+ },
4180
+ {
4181
+ "epoch": 3.78,
4182
+ "learning_rate": 2.7858326429163216e-06,
4183
+ "loss": 1.1366,
4184
+ "step": 13680
4185
+ },
4186
+ {
4187
+ "epoch": 3.78,
4188
+ "learning_rate": 2.716790941728804e-06,
4189
+ "loss": 1.132,
4190
+ "step": 13700
4191
+ },
4192
+ {
4193
+ "epoch": 3.79,
4194
+ "learning_rate": 2.647749240541287e-06,
4195
+ "loss": 1.1308,
4196
+ "step": 13720
4197
+ },
4198
+ {
4199
+ "epoch": 3.79,
4200
+ "learning_rate": 2.5787075393537696e-06,
4201
+ "loss": 1.1297,
4202
+ "step": 13740
4203
+ },
4204
+ {
4205
+ "epoch": 3.8,
4206
+ "learning_rate": 2.5096658381662525e-06,
4207
+ "loss": 1.1241,
4208
+ "step": 13760
4209
+ },
4210
+ {
4211
+ "epoch": 3.81,
4212
+ "learning_rate": 2.4406241369787354e-06,
4213
+ "loss": 1.1288,
4214
+ "step": 13780
4215
+ },
4216
+ {
4217
+ "epoch": 3.81,
4218
+ "learning_rate": 2.371582435791218e-06,
4219
+ "loss": 1.1226,
4220
+ "step": 13800
4221
+ },
4222
+ {
4223
+ "epoch": 3.82,
4224
+ "learning_rate": 2.302540734603701e-06,
4225
+ "loss": 1.1224,
4226
+ "step": 13820
4227
+ },
4228
+ {
4229
+ "epoch": 3.82,
4230
+ "learning_rate": 2.2334990334161834e-06,
4231
+ "loss": 1.1243,
4232
+ "step": 13840
4233
+ },
4234
+ {
4235
+ "epoch": 3.83,
4236
+ "learning_rate": 2.164457332228666e-06,
4237
+ "loss": 1.1295,
4238
+ "step": 13860
4239
+ },
4240
+ {
4241
+ "epoch": 3.83,
4242
+ "learning_rate": 2.0954156310411492e-06,
4243
+ "loss": 1.1227,
4244
+ "step": 13880
4245
+ },
4246
+ {
4247
+ "epoch": 3.84,
4248
+ "learning_rate": 2.0263739298536317e-06,
4249
+ "loss": 1.1185,
4250
+ "step": 13900
4251
+ },
4252
+ {
4253
+ "epoch": 3.84,
4254
+ "learning_rate": 1.9573322286661142e-06,
4255
+ "loss": 1.1259,
4256
+ "step": 13920
4257
+ },
4258
+ {
4259
+ "epoch": 3.85,
4260
+ "learning_rate": 1.8882905274785972e-06,
4261
+ "loss": 1.1294,
4262
+ "step": 13940
4263
+ },
4264
+ {
4265
+ "epoch": 3.86,
4266
+ "learning_rate": 1.8192488262910799e-06,
4267
+ "loss": 1.1304,
4268
+ "step": 13960
4269
+ },
4270
+ {
4271
+ "epoch": 3.86,
4272
+ "learning_rate": 1.7502071251035624e-06,
4273
+ "loss": 1.1263,
4274
+ "step": 13980
4275
+ },
4276
+ {
4277
+ "epoch": 3.87,
4278
+ "learning_rate": 1.6811654239160455e-06,
4279
+ "loss": 1.133,
4280
+ "step": 14000
4281
+ },
4282
+ {
4283
+ "epoch": 3.87,
4284
+ "learning_rate": 1.6121237227285282e-06,
4285
+ "loss": 1.122,
4286
+ "step": 14020
4287
+ },
4288
+ {
4289
+ "epoch": 3.88,
4290
+ "learning_rate": 1.5465341066003867e-06,
4291
+ "loss": 1.1327,
4292
+ "step": 14040
4293
+ },
4294
+ {
4295
+ "epoch": 3.88,
4296
+ "learning_rate": 1.4774924054128694e-06,
4297
+ "loss": 1.1308,
4298
+ "step": 14060
4299
+ },
4300
+ {
4301
+ "epoch": 3.89,
4302
+ "learning_rate": 1.4084507042253521e-06,
4303
+ "loss": 1.1351,
4304
+ "step": 14080
4305
+ },
4306
+ {
4307
+ "epoch": 3.89,
4308
+ "learning_rate": 1.3394090030378348e-06,
4309
+ "loss": 1.1237,
4310
+ "step": 14100
4311
+ },
4312
+ {
4313
+ "epoch": 3.9,
4314
+ "learning_rate": 1.2703673018503175e-06,
4315
+ "loss": 1.1318,
4316
+ "step": 14120
4317
+ },
4318
+ {
4319
+ "epoch": 3.9,
4320
+ "learning_rate": 1.2013256006628005e-06,
4321
+ "loss": 1.1226,
4322
+ "step": 14140
4323
+ },
4324
+ {
4325
+ "epoch": 3.91,
4326
+ "learning_rate": 1.1322838994752832e-06,
4327
+ "loss": 1.127,
4328
+ "step": 14160
4329
+ },
4330
+ {
4331
+ "epoch": 3.92,
4332
+ "learning_rate": 1.0632421982877657e-06,
4333
+ "loss": 1.1215,
4334
+ "step": 14180
4335
+ },
4336
+ {
4337
+ "epoch": 3.92,
4338
+ "learning_rate": 9.942004971002486e-07,
4339
+ "loss": 1.1305,
4340
+ "step": 14200
4341
+ },
4342
+ {
4343
+ "epoch": 3.93,
4344
+ "learning_rate": 9.251587959127313e-07,
4345
+ "loss": 1.1265,
4346
+ "step": 14220
4347
+ },
4348
+ {
4349
+ "epoch": 3.93,
4350
+ "learning_rate": 8.56117094725214e-07,
4351
+ "loss": 1.12,
4352
+ "step": 14240
4353
+ },
4354
+ {
4355
+ "epoch": 3.94,
4356
+ "learning_rate": 7.870753935376969e-07,
4357
+ "loss": 1.1219,
4358
+ "step": 14260
4359
+ },
4360
+ {
4361
+ "epoch": 3.94,
4362
+ "learning_rate": 7.180336923501795e-07,
4363
+ "loss": 1.1257,
4364
+ "step": 14280
4365
+ },
4366
+ {
4367
+ "epoch": 3.95,
4368
+ "learning_rate": 6.489919911626623e-07,
4369
+ "loss": 1.1321,
4370
+ "step": 14300
4371
+ },
4372
+ {
4373
+ "epoch": 3.95,
4374
+ "learning_rate": 5.79950289975145e-07,
4375
+ "loss": 1.1264,
4376
+ "step": 14320
4377
+ },
4378
+ {
4379
+ "epoch": 3.96,
4380
+ "learning_rate": 5.109085887876277e-07,
4381
+ "loss": 1.1272,
4382
+ "step": 14340
4383
+ },
4384
+ {
4385
+ "epoch": 3.97,
4386
+ "learning_rate": 4.418668876001105e-07,
4387
+ "loss": 1.1233,
4388
+ "step": 14360
4389
+ },
4390
+ {
4391
+ "epoch": 3.97,
4392
+ "learning_rate": 3.7282518641259323e-07,
4393
+ "loss": 1.1326,
4394
+ "step": 14380
4395
+ },
4396
+ {
4397
+ "epoch": 3.98,
4398
+ "learning_rate": 3.03783485225076e-07,
4399
+ "loss": 1.1286,
4400
+ "step": 14400
4401
+ },
4402
+ {
4403
+ "epoch": 3.98,
4404
+ "learning_rate": 2.347417840375587e-07,
4405
+ "loss": 1.1198,
4406
+ "step": 14420
4407
+ },
4408
+ {
4409
+ "epoch": 3.99,
4410
+ "learning_rate": 1.657000828500414e-07,
4411
+ "loss": 1.1193,
4412
+ "step": 14440
4413
+ },
4414
+ {
4415
+ "epoch": 3.99,
4416
+ "learning_rate": 9.665838166252417e-08,
4417
+ "loss": 1.1329,
4418
+ "step": 14460
4419
+ },
4420
+ {
4421
+ "epoch": 4.0,
4422
+ "learning_rate": 2.7616680475006907e-08,
4423
+ "loss": 1.127,
4424
+ "step": 14480
4425
+ },
4426
+ {
4427
+ "epoch": 4.0,
4428
+ "step": 14484,
4429
+ "total_flos": 6.028721702271818e+19,
4430
+ "train_loss": 0.11551530145209522,
4431
+ "train_runtime": 3653.4642,
4432
+ "train_samples_per_second": 507.345,
4433
+ "train_steps_per_second": 3.964
4434
+ }
4435
+ ],
4436
+ "max_steps": 14484,
4437
+ "num_train_epochs": 4,
4438
+ "total_flos": 6.028721702271818e+19,
4439
+ "trial_name": null,
4440
+ "trial_params": null
4441
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3f099f5182e50add4876993ef34bd991b3d18a989b842b2e0885ca042525e5e
3
+ size 4027