File size: 10,376 Bytes
4bef05b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os
from argparse import ArgumentParser
import warnings
from omegaconf import OmegaConf
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision.utils import make_grid
from accelerate import Accelerator
from accelerate.utils import set_seed
from einops import rearrange
from tqdm import tqdm
import lpips
from model import SwinIR
from utils.common import instantiate_from_config
# https://github.com/XPixelGroup/BasicSR/blob/033cd6896d898fdd3dcda32e3102a792efa1b8f4/basicsr/utils/color_util.py#L186
def rgb2ycbcr_pt(img, y_only=False):
"""Convert RGB images to YCbCr images (PyTorch version).
It implements the ITU-R BT.601 conversion for standard-definition television. See more details in
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
Args:
img (Tensor): Images with shape (n, 3, h, w), the range [0, 1], float, RGB format.
y_only (bool): Whether to only return Y channel. Default: False.
Returns:
(Tensor): converted images with the shape (n, 3/1, h, w), the range [0, 1], float.
"""
if y_only:
weight = torch.tensor([[65.481], [128.553], [24.966]]).to(img)
out_img = torch.matmul(img.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + 16.0
else:
weight = torch.tensor([[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]).to(img)
bias = torch.tensor([16, 128, 128]).view(1, 3, 1, 1).to(img)
out_img = torch.matmul(img.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + bias
out_img = out_img / 255.
return out_img
# https://github.com/XPixelGroup/BasicSR/blob/033cd6896d898fdd3dcda32e3102a792efa1b8f4/basicsr/metrics/psnr_ssim.py#L52
def calculate_psnr_pt(img, img2, crop_border, test_y_channel=False):
"""Calculate PSNR (Peak Signal-to-Noise Ratio) (PyTorch version).
Reference: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
Args:
img (Tensor): Images with range [0, 1], shape (n, 3/1, h, w).
img2 (Tensor): Images with range [0, 1], shape (n, 3/1, h, w).
crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the calculation.
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
Returns:
float: PSNR result.
"""
assert img.shape == img2.shape, (f'Image shapes are different: {img.shape}, {img2.shape}.')
if crop_border != 0:
img = img[:, :, crop_border:-crop_border, crop_border:-crop_border]
img2 = img2[:, :, crop_border:-crop_border, crop_border:-crop_border]
if test_y_channel:
img = rgb2ycbcr_pt(img, y_only=True)
img2 = rgb2ycbcr_pt(img2, y_only=True)
img = img.to(torch.float64)
img2 = img2.to(torch.float64)
mse = torch.mean((img - img2)**2, dim=[1, 2, 3])
return 10. * torch.log10(1. / (mse + 1e-8))
def main(args) -> None:
# Setup accelerator:
accelerator = Accelerator(split_batches=True)
set_seed(231)
device = accelerator.device
cfg = OmegaConf.load(args.config)
# Setup an experiment folder:
if accelerator.is_local_main_process:
exp_dir = cfg.train.exp_dir
os.makedirs(exp_dir, exist_ok=True)
ckpt_dir = os.path.join(exp_dir, "checkpoints")
os.makedirs(ckpt_dir, exist_ok=True)
print(f"Experiment directory created at {exp_dir}")
# Create model:
swinir: SwinIR = instantiate_from_config(cfg.model.swinir)
if cfg.train.resume:
swinir.load_state_dict(torch.load(cfg.train.resume, map_location="cpu"), strict=True)
if accelerator.is_local_main_process:
print(f"strictly load weight from checkpoint: {cfg.train.resume}")
else:
if accelerator.is_local_main_process:
print("initialize from scratch")
# Setup optimizer:
opt = torch.optim.AdamW(
swinir.parameters(), lr=cfg.train.learning_rate,
weight_decay=0
)
# Setup data:
dataset = instantiate_from_config(cfg.dataset.train)
loader = DataLoader(
dataset=dataset, batch_size=cfg.train.batch_size,
num_workers=cfg.train.num_workers,
shuffle=True, drop_last=True
)
val_dataset = instantiate_from_config(cfg.dataset.val)
val_loader = DataLoader(
dataset=val_dataset, batch_size=cfg.train.batch_size,
num_workers=cfg.train.num_workers,
shuffle=False, drop_last=False
)
if accelerator.is_local_main_process:
print(f"Dataset contains {len(dataset):,} images from {dataset.file_list}")
# Prepare models for training:
swinir.train().to(device)
swinir, opt, loader, val_loader = accelerator.prepare(swinir, opt, loader, val_loader)
pure_swinir = accelerator.unwrap_model(swinir)
# Variables for monitoring/logging purposes:
global_step = 0
max_steps = cfg.train.train_steps
step_loss = []
epoch = 0
epoch_loss = []
with warnings.catch_warnings():
# avoid warnings from lpips internal
warnings.simplefilter("ignore")
lpips_model = lpips.LPIPS(net="alex", verbose=accelerator.is_local_main_process).eval().to(device)
if accelerator.is_local_main_process:
writer = SummaryWriter(exp_dir)
print(f"Training for {max_steps} steps...")
while global_step < max_steps:
pbar = tqdm(iterable=None, disable=not accelerator.is_local_main_process, unit="batch", total=len(loader))
for gt, lq, _ in loader:
gt = rearrange((gt + 1) / 2, "b h w c -> b c h w").contiguous().float().to(device)
lq = rearrange(lq, "b h w c -> b c h w").contiguous().float().to(device)
pred = swinir(lq)
loss = F.mse_loss(input=pred, target=gt, reduction="sum")
opt.zero_grad()
accelerator.backward(loss)
opt.step()
accelerator.wait_for_everyone()
global_step += 1
step_loss.append(loss.item())
epoch_loss.append(loss.item())
pbar.update(1)
pbar.set_description(f"Epoch: {epoch:04d}, Global Step: {global_step:07d}, Loss: {loss.item():.6f}")
# Log loss values:
if global_step % cfg.train.log_every == 0:
# Gather values from all processes
avg_loss = accelerator.gather(torch.tensor(step_loss, device=device).unsqueeze(0)).mean().item()
step_loss.clear()
if accelerator.is_local_main_process:
writer.add_scalar("train/loss_step", avg_loss, global_step)
# Save checkpoint:
if global_step % cfg.train.ckpt_every == 0:
if accelerator.is_local_main_process:
checkpoint = pure_swinir.state_dict()
ckpt_path = f"{ckpt_dir}/{global_step:07d}.pt"
torch.save(checkpoint, ckpt_path)
if global_step % cfg.train.image_every == 0 or global_step == 1:
swinir.eval()
N = 12
log_gt, log_lq = gt[:N], lq[:N]
with torch.no_grad():
log_pred = swinir(log_lq)
if accelerator.is_local_main_process:
for tag, image in [
("image/pred", log_pred),
("image/gt", log_gt),
("image/lq", log_lq),
]:
writer.add_image(tag, make_grid(image, nrow=4), global_step)
swinir.train()
# Evaluate model:
if global_step % cfg.train.val_every == 0:
swinir.eval()
val_loss = []
val_lpips = []
val_psnr = []
val_pbar = tqdm(iterable=None, disable=not accelerator.is_local_main_process, unit="batch",
total=len(val_loader), leave=False, desc="Validation")
# TODO: use accelerator.gather_for_metrics for more precise metric calculation?
for val_gt, val_lq, _ in val_loader:
val_gt = rearrange((val_gt + 1) / 2, "b h w c -> b c h w").contiguous().float().to(device)
val_lq = rearrange(val_lq, "b h w c -> b c h w").contiguous().float().to(device)
with torch.no_grad():
# forward
val_pred = swinir(val_lq)
# compute metrics (loss, lpips, psnr)
val_loss.append(F.mse_loss(input=val_pred, target=val_gt, reduction="sum").item())
val_lpips.append(lpips_model(val_pred, val_gt, normalize=True).mean().item())
val_psnr.append(calculate_psnr_pt(val_pred, val_gt, crop_border=0).mean().item())
val_pbar.update(1)
val_pbar.close()
avg_val_loss = accelerator.gather(torch.tensor(val_loss, device=device).unsqueeze(0)).mean().item()
avg_val_lpips = accelerator.gather(torch.tensor(val_lpips, device=device).unsqueeze(0)).mean().item()
avg_val_psnr = accelerator.gather(torch.tensor(val_psnr, device=device).unsqueeze(0)).mean().item()
if accelerator.is_local_main_process:
for tag, val in [
("val/loss", avg_val_loss),
("val/lpips", avg_val_lpips),
("val/psnr", avg_val_psnr)
]:
writer.add_scalar(tag, val, global_step)
swinir.train()
accelerator.wait_for_everyone()
if global_step == max_steps:
break
pbar.close()
epoch += 1
avg_epoch_loss = accelerator.gather(torch.tensor(epoch_loss, device=device).unsqueeze(0)).mean().item()
epoch_loss.clear()
if accelerator.is_local_main_process:
writer.add_scalar("train/loss_epoch", avg_epoch_loss, global_step)
if accelerator.is_local_main_process:
print("done!")
writer.close()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--config", type=str, required=True)
args = parser.parse_args()
main(args)
|